1
|
Kumar J, Yadav N, Mishra V, Koppisetti HVSRM, Roy A, Mitra A, Mahalingam V. Orotic acid-capped Tb(III)-doped calcium sulphate nanorods for the selective detection of tryptophan. NANOSCALE 2024; 16:20679-20688. [PMID: 39431852 DOI: 10.1039/d4nr02774d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Lanthanide-based luminescent materials have gained huge attention due to their applications in optoelectronic devices, sensing, bio-imaging, anti-counterfeiting, and more. In this work, we report a luminescence-based sensor for the detection of tryptophan using orotic acid-capped Tb3+-doped CaSO4 nanorods (NRs). Orotic acid (OA) was found to play a dual role as a capping agent to control the growth of the nanorods and as a sensitizer for Tb3+ ions. The resulting nanorods exhibited excellent dispersibility and strong photoluminescence signals characteristic of Tb3+ ions in the visible region. Nearly 10-fold enhancement in the emission intensity was noted through OA sensitization compared to direct excitation of Tb3+ ions (acceptors). Interestingly, the strong emission intensity of the NRs reduced significantly with the addition of tryptophan. In contrast, hardly any change was noted with the addition of other amino acids and metal ions, suggesting greater selectivity for tryptophan. Moreover, there is barely any notable interference from other amino acids toward the detection of tryptophan. The limit of detection is found to be ∼0.61 μM. Finally, the sensing study was extended to biological samples to detect tryptophan present in blood plasma, urine, and saliva samples. The nanorods demonstrated high detection abilities, indicating the potential of the developed materials for biomedical applications.
Collapse
Affiliation(s)
- Jaydeep Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, West Bengal, India.
| | - Neha Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, West Bengal, India
| | - Viplove Mishra
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, West Bengal, India.
| | - Heramba V S R M Koppisetti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, West Bengal, India.
| | - Avishek Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, West Bengal, India.
| | - Antarip Mitra
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, West Bengal, India.
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, West Bengal, India.
| |
Collapse
|
2
|
Lin P, Ye S, Pan L, Huang R, Zhang H, Wang D. Nanocrystals Incorporated with Mordenite Zeolite Composites with Enhanced Upconversion Emission for Cu 2+ Detection. MATERIALS (BASEL, SWITZERLAND) 2024; 17:854. [PMID: 38399105 PMCID: PMC10890416 DOI: 10.3390/ma17040854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
In this research, upconversion nanocrystals incorporated with MOR zeolite composites were synthesized using the desilicated MOR zeolite as a host for the in situ growth of NaREF4 (RE = Y, Gd) Yb/Er nanocrystals. The structure and morphology of the composites were studied with XRD, XPS, and TEM measurements, and the spectral studies indicated that the subsequent thermal treatment can effectively improve the upconversion emission intensity of Er3+. By using the NaYF4:Yb/Er@DSi1.0MOR-HT composite that holds the strongest upconversion emission, a probe of UCNC@DSiMOR/BPEI was constructed with the modification of branched poly ethylenimine for the detection of Cu2+. It was indicated that the integrated emission intensity of Er3+ shows a linear dependence with the logarithm value of the Cu2+ concentration ranging from 0.1 to 10 μM. This study offered a feasible method for the construction of UCNC@zeolite composites with enhanced upconversion emission, which may have a potential application as fluorescent probes for the detection of various metal ions by adjusting the doping luminescent center.
Collapse
Affiliation(s)
| | - Song Ye
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China; (P.L.); (L.P.); (R.H.); (H.Z.); (D.W.)
| | | | | | | | | |
Collapse
|
3
|
Patsula V, Mareková D, Jendelová P, Nahorniak M, Shapoval O, Matouš P, Oleksa V, Konefał R, Vosmanská M, Machová-Urdziková L, Horák D. Polymer-coated hexagonal upconverting nanoparticles: chemical stability and cytotoxicity. Front Chem 2023; 11:1207984. [PMID: 37426333 PMCID: PMC10327433 DOI: 10.3389/fchem.2023.1207984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023] Open
Abstract
Large (120 nm) hexagonal NaYF4:Yb, Er nanoparticles (UCNPs) were synthesized by high-temperature coprecipitation method and coated with poly(ethylene glycol)-alendronate (PEG-Ale), poly (N,N-dimethylacrylamide-co-2-aminoethylacrylamide)-alendronate (PDMA-Ale) or poly(methyl vinyl ether-co-maleic acid) (PMVEMA). The colloidal stability of polymer-coated UCNPs in water, PBS and DMEM medium was investigated by dynamic light scattering; UCNP@PMVEMA particles showed the best stability in PBS. Dissolution of the particles in water, PBS, DMEM and artificial lysosomal fluid (ALF) determined by potentiometric measurements showed that all particles were relatively chemically stable in DMEM. The UCNP@Ale-PEG and UCNP@Ale-PDMA particles were the least soluble in water and ALF, while the UCNP@PMVEMA particles were the most chemically stable in PBS. Green fluorescence of FITC-Ale-modified UCNPs was observed inside the cells, demonstrating successful internalization of particles into cells. The highest uptake was observed for neat UCNPs, followed by UCNP@Ale-PDMA and UCNP@PMVEMA. Viability of C6 cells and rat mesenchymal stem cells (rMSCs) growing in the presence of UCNPs was monitored by Alamar Blue assay. Culturing with UCNPs for 24 h did not affect cell viability. Prolonged incubation with particles for 72 h reduced cell viability to 40%-85% depending on the type of coating and nanoparticle concentration. The greatest decrease in cell viability was observed in cells cultured with neat UCNPs and UCNP@PMVEMA particles. Thanks to high upconversion luminescence, high cellular uptake and low toxicity, PDMA-coated hexagonal UCNPs may find future applications in cancer therapy.
Collapse
Affiliation(s)
- Vitalii Patsula
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Dana Mareková
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Department of Neurosciences, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Pavla Jendelová
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Department of Neurosciences, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Mykhailo Nahorniak
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Oleksandr Shapoval
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Petr Matouš
- Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Viktoriia Oleksa
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Rafał Konefał
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Magda Vosmanská
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czechia
| | | | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
4
|
Jiang W, Yi J, Li X, He F, Niu N, Chen L. A Comprehensive Review on Upconversion Nanomaterials-Based Fluorescent Sensor for Environment, Biology, Food and Medicine Applications. BIOSENSORS 2022; 12:1036. [PMID: 36421153 PMCID: PMC9688752 DOI: 10.3390/bios12111036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Near-infrared-excited upconversion nanoparticles (UCNPs) have multicolor emissions, a low auto-fluorescence background, a high chemical stability, and a long fluorescence lifetime. The fluorescent probes based on UCNPs have achieved great success in the analysis of different samples. Here, we presented the research results of UCNPs probes utilized in analytical applications including environment, biology, food and medicine in the last five years; we also introduced the design and construction of upconversion optical sensing platforms. Future trends and challenges of the UCNPs used in the analytical field have also been discussed with particular emphasis.
Collapse
Affiliation(s)
- Wei Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Jiaqi Yi
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Xiaoshuang Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Na Niu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Ligang Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| |
Collapse
|
5
|
Shao H, Ma Q, Yu W, Dong X, Hong X. "Off-On" typed upconversion fluorescence resonance energy transfer probe for the determination of Cu 2+ in tap water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120920. [PMID: 35085997 DOI: 10.1016/j.saa.2022.120920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Detection of copper plays a prominent role in the environmental protection and human health. Herein, we firstly design and construct an "off-on" upconversion fluorescence resonance energy transfer (UFRET) probe with low toxicity for the Cu2+ determination by using NaYF4: Yb3+, Er3+ upconversion nanoparticles (UCNPs) and Au NPs. UCNPs with positive charge and Au NPs with negative charge are respectively employed as the donor and acceptor, and bound together to form UFRET probe. The upconversion fluorescence quenching of UCNPs occurs by Au NPs through FRET (defined as "off" state). When Cu2+ exists in samples, Cu2+ reacts with 4-mercaptobenzoic acid (4-MBA) capped on the surface of Au NPs to make Au NPs detach from UCNPs, leading to the termination of FRET and the recovery of upconversion fluorescence (defined as "on" state). "Off-on" typed UFRET probe has excellent sensing performances, including linear range of 0.02-1 μM Cu2+ concentration, the limit of detection of 18.2 nM, high selectivity to Cu2+ and good recovery. The probe has been successfully used to determine Cu2+ in spiked tap water with satisfactory results. The probe will provide theoretical and technical support for the design of new sensitive heavy metal ion detection probe.
Collapse
Affiliation(s)
- Hong Shao
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, P. R. China; Key Laboratory of UV-Emitting Materials and Technology at Ministry of Education, Northeast Normal University, Changchun 130024, PR China; Research Institute of Changchun University of Science and Technology in Chongqing, Chongqing 401120, PR China
| | - Qianli Ma
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, P. R. China; Research Institute of Changchun University of Science and Technology in Chongqing, Chongqing 401120, PR China
| | - Wensheng Yu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, P. R. China
| | - Xiangting Dong
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, P. R. China; Research Institute of Changchun University of Science and Technology in Chongqing, Chongqing 401120, PR China.
| | - Xia Hong
- Key Laboratory of UV-Emitting Materials and Technology at Ministry of Education, Northeast Normal University, Changchun 130024, PR China.
| |
Collapse
|
6
|
Tuning the Sensing Properties of N and S Co-Doped Carbon Dots for Colorimetric Detection of Copper and Cobalt in Water. SENSORS 2022; 22:s22072487. [PMID: 35408102 PMCID: PMC9003535 DOI: 10.3390/s22072487] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 01/05/2023]
Abstract
In this study, nitrogen and sulfur co-doped carbon dots (NS-CDs) were investigated for the detection of heavy metals in water through absorption-based colorimetric response. NS-CDs were synthesized by a simple one-pot hydrothermal method and characterized by TEM, STEM-coupled with energy dispersive X-ray analysis, NMR, and IR spectroscopy. Addition of Cu(II) ions to NS-CD aqueous solutions gave origin to a distinct absorption band at 660 nm which was attributed to the formation of cuprammonium complexes through coordination with amino functional groups of NS-CDs. Absorbance increased linearly with Cu(II) concentration in the range 1–100 µM and enabled a limit of detection of 200 nM. No response was observed with the other tested metals, including Fe(III) which, however, appreciably decreased sensitivity to copper. Increase of pH of the NS-CD solution up to 9.5 greatly reduced this interference effect and enhanced the response to Cu(II), thus confirming the different nature of the two interactions. In addition, a concurrent response to Co(II) appeared in a different spectral region, thus suggesting the possibility of dual-species multiple sensitivity. The present method neither requires any other reagents nor any previous assay treatment and thus can be a promising candidate for low-cost monitoring of copper onsite and by unskilled personnel.
Collapse
|
7
|
Shao H, Yin D, Li D, Ma Q, Yu W, Dong X. Simultaneous Visual Detection and Removal of Cu 2+ with Electrospun Self-Supporting Flexible Amidated Polyacrylonitrile/Branched Polyethyleneimine Nanofiber Membranes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49288-49300. [PMID: 34632771 DOI: 10.1021/acsami.1c13722] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sensitive detection and effective removal of copper ions (Cu2+) from water are still arduous tasks required to protect public health and environmental safety because of the serious impacts of Cu2+ on humans and other organisms. Herein, we report the design and fabrication of self-supporting flexible amidated polyacrylonitrile/branched polyethyleneimine nanofiber membranes (abbreviated as aPAN/BPEI NMs) via facile electrospinning and a subsequent hydrothermal method, which are used not only as strips for the visual detection of Cu2+ but also as effective adsorbents for the removal of Cu2+ from water. Because aPAN/BPEI NMs are self-supporting, they can be easily removed from the solution to reduce secondary pollution to the environment. Based on the high Cu2+ binding capacity of BPEI, Cu2+ ions are adsorbed on the aPAN/BPEI NMs, which leads to the appearance of new absorbance bands at 280 and 636 nm and a color change from yellow to blue. aPAN/BPEI NMs are utilized for the visual detection of Cu2+ with a linear range of 50-700 μM and limits of detection of 11.5 and 4.8 μM (absorption peaks at 280 and 636 nm). More importantly, aPAN/BPEI NMs exhibit excellent selectivity and certain recovery with a simple treatment. Furthermore, by utilizing the adsorption characteristics of Cu2+ in aqueous media, it can be effectively removed by aPAN/BPEI NMs with a remarkable adsorption capacity of 209.53 mg·g-1. Additionally, the removal of Cu2+ by aPAN/BPEI NMs does not exhibit interference by other foreign ions. The adsorption process conforms well to the pseudo-second order (PSO) kinetic model and Jovanovich model, proving that adsorption occurs via chemical and monolayer adsorption mechanisms. Accordingly, this work will provide theoretical and technical support for the design and fabrication of novel heavy metal ion detection-removal integrated materials exhibiting high sensitivity and strong adsorption.
Collapse
Affiliation(s)
- Hong Shao
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, P. R. China
| | - Duanduan Yin
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, P. R. China
| | - Dan Li
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, P. R. China
| | - Qianli Ma
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, P. R. China
| | - Wensheng Yu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, P. R. China
| | - Xiangting Dong
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, P. R. China
| |
Collapse
|
8
|
Liang G, Wang H, Shi H, Wang H, Zhu M, Jing A, Li J, Li G. Recent progress in the development of upconversion nanomaterials in bioimaging and disease treatment. J Nanobiotechnology 2020; 18:154. [PMID: 33121496 PMCID: PMC7596946 DOI: 10.1186/s12951-020-00713-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 10/20/2020] [Indexed: 01/02/2023] Open
Abstract
Multifunctional lanthanide-based upconversion nanoparticles (UCNPs), which feature efficiently convert low-energy photons into high-energy photons, have attracted considerable attention in the domain of materials science and biomedical applications. Due to their unique photophysical properties, including light-emitting stability, excellent upconversion luminescence efficiency, low autofluorescence, and high detection sensitivity, and high penetration depth in samples, UCNPs have been widely applied in biomedical applications, such as biosensing, imaging and theranostics. In this review, we briefly introduced the major components of UCNPs and the luminescence mechanism. Then, we compared several common design synthesis strategies and presented their advantages and disadvantages. Several examples of the functionalization of UCNPs were given. Next, we detailed their biological applications in bioimaging and disease treatment, particularly drug delivery and photodynamic therapy, including antibacterial photodynamic therapy. Finally, the future practical applications in materials science and biomedical fields, as well as the remaining challenges to UCNPs application, were described. This review provides useful practical information and insights for the research on and application of UCNPs in the field of cancer.
Collapse
Affiliation(s)
- Gaofeng Liang
- Medical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China.
| | - Haojie Wang
- Medical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Hao Shi
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Haitao Wang
- School of Environmental Science and Engineering, Nankai University, Tianjin,, 300350, China
| | - Mengxi Zhu
- Medical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Aihua Jing
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jinghua Li
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Guangda Li
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
9
|
Li J, Wang X, Shen M, Shi X. Polyethylenimine-Assisted Generation of Optical Nanoprobes for Biosensing Applications. ACS APPLIED BIO MATERIALS 2020; 3:3935-3955. [PMID: 35025470 DOI: 10.1021/acsabm.0c00536] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Detection of analytes in biological systems is pivotal to explore their physiological roles and provide diagnostic and treatment options for related diseases, which however remains a great challenge. Optical nanoprobes that exhibit absorption or fluorescence signal changes in response to the targets of interest have emerged as a versatile class of biosensors in the field. Polyethylenimine (PEI) with abundant amine groups plays indispensable roles in the construction of optical nanoprobes and mediating the sensing processes. After interaction with analytes, PEI-based optical nanoprobes can be induced to form aggregates, be disassembled or separated into individual units, or undergo structure/component alterations. As such, the optical properties of these nanoprobes have corresponding changes, allowing for sensitive and selective detection of a wide variety of analytes in biological environment. Up to now, detections of reactive oxygen species, pH, metal ions, biothiols, neurotransmitters, therapeutic agents, oxygen levels, enzyme activities, and virus/bacteria have been successfully demonstrated using PEI-based optical nanoprobes. Herein, we summarize the recent developments of PEI-based optical nanoprobes for biosensing applications and highlight the probe designs and sensing mechanisms. The existing challenges and prospects regarding biosensing applications of PEI-based optical nanoprobes are also briefly discussed.
Collapse
Affiliation(s)
- Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiaoying Wang
- Xuhui District Center for Disease Control and Prevention, Shanghai 200237, China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.,CQM-Centro de Quimica da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
10
|
A system composed of polyethylenimine-capped upconversion nanoparticles, copper(II), hydrogen peroxide and 3,3′,5,5′-tetramethylbenzidine for colorimetric and fluorometric determination of glyphosate. Mikrochim Acta 2019; 186:835. [DOI: 10.1007/s00604-019-3936-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/12/2019] [Indexed: 01/18/2023]
|
11
|
Shao H, Wen X, Ding Y, Hong X, Zhao H. Colorimetric determination of copper(II) by using branched-polyethylenimine droplet evaporation on a superhydrophilic-superhydrophobic micropatterned surface. Mikrochim Acta 2019; 186:701. [PMID: 31620903 DOI: 10.1007/s00604-019-3805-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/08/2019] [Indexed: 12/31/2022]
Abstract
A colorimetric method is described for the determination of Cu(II). It is based on branched polyethylenimine (BPEI) droplet evaporation on a superhydrophilic-superhydrophobic polystyrene micropatterned surface. Exposure to Cu(II) leads to a color change from colorless to light blue and dark blue. The micropatterned surface was fabricated via combining electrospinning with oxygen plasma and served as a detection substrate. Analysis requires only a single drop of blood. The method has a linear response in the 5.0 μM to 2.5 mM Cu(II) concentration range which is within the physiological range (15.7 ∼ 23.6 μM). Compared to an assay in solution, the detection limit is decreased from 386 nM to 89 nM. Excellent selectivity over other metal ions and anions was achieved. Graphical abstract A rapid and sensitive colorimetric detection platform for Cu(II) was fabricated by using branched-polyethylenimine droplet evaporation on a superhydrophilic-superhydrophobic micropatterned surface. Only a single drop of blood was needed for the analysis. The sensitivity was improved about 4.3 times.
Collapse
Affiliation(s)
- Hong Shao
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, People's Republic of China
| | - Xiaokun Wen
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, People's Republic of China
| | - Yadan Ding
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, People's Republic of China
| | - Xia Hong
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, People's Republic of China.
| | - Huiying Zhao
- Department of Basic Medicine, Gerontology Department of First Bethune Hospital, Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
12
|
Wang X, Kang C, Pan Y, Jiang R. Photothermal effects of NaYF 4:Yb,Er@PE 3@Fe 3O 4 superparamagnetic nanoprobes in the treatment of melanoma. Int J Nanomedicine 2019; 14:4319-4331. [PMID: 31354263 PMCID: PMC6572766 DOI: 10.2147/ijn.s203077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 05/01/2019] [Indexed: 01/19/2023] Open
Abstract
Objective: The study aimed to synthesize superparamagnetic NaYF4:Yb,Er@PE3@Fe3O4 upconversion nanoprobes and to study their photothermal effects for the treatment of malignant melanoma. Methods: Morphological characteristics of the synthesized nanoprobes were examined by scanning electron microscopy. Their biocompatibility and biodistribution profiles were assessed through blood routine/biochemistry tests and the inductively coupled plasma/optical emission spectrometry-based analysis of tissue metal elements. Their photothermal conversion efficiency and their potential as contrast agents for upconversion luminescence (UCL)/magnetic resonance imaging (MRI) dual-modal imaging were tested. Efficacy in photothermal therapy, which was achieved by combining nanoprobes with near-infrared (NIR) irradiation, was evaluated in both A375 cell line and BALB/c mice models. The underlying mechanisms were interrogated by molecular approaches including the MTT assay, flow cytometry, semiquantitative PCR, western blot, and immunohistochemistry. Results: 1) Our synthesized NaYF4:Yb,Er@PE3@Fe3O4 nanoprobes exhibited a uniform cubic morphology with a diameter of ~50 nm. Subcutaneous administration led to no severe, long-lasting adverse effects in mice, possibly due to complete removal of these nanomaterials within one month. 2) Our nanoprobes possessed superior photothermal conversion efficiency and strong contrasting effects during UCL/MRI dual-modal imaging, corroborating their applications in imaging-guided photothermal therapy. 3) Combinatorial treatment of these nanoprobes with NIR irradiation induced profound apoptosis/necrosis in A375 cells. Similarly, the same treatment modality led to strong therapeutic effects in BALB/c mice implanted with A375 tumor xenografts. Mechanistic studies suggested an involvement of heat shock protein 70 in mediating the observed antitumor effects of our nanoprobes. Conclusion: Our study describes a convenient method to synthesize a new type of superparamagnetic upconversion nanoprobes, which possess high biocompatibility and can be used in imaging-guided photothermal therapy for the treatment of malignant melanoma. Importantly, our findings will promote clinical applications of NaYF4:Yb,Er@PE3@Fe3O4 as novel theranostic agents in treating melanoma and many other tumors.
Collapse
Affiliation(s)
- Xue Wang
- Department of Obstetrics & Gynecology, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Chunyang Kang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Ying Pan
- Department of Obstetrics & Gynecology, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Rihua Jiang
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
13
|
Chen Y, Lian Y, Huang M, Wei L, Xiao L. A dual-mode fluorometric/colorimetric sensor for Cu 2+ detection based on hybridized carbon dots and gold-silver core-shell nanoparticles. Analyst 2019; 144:4250-4257. [PMID: 31215576 DOI: 10.1039/c9an00850k] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A fluorometric and colorimetric dual mode sensing platform based on hybridized carbon dots (Cdots) and gold-silver core-shell nanoparticles (Au@Ag NPs) has been established for the sensitive detection of trace Cu2+ ions in aqueous solution. In this system, the fluorescence of Cdots was quenched by Au@Ag NPs due to the surface plasmon-enhanced energy transfer. Due to the fact that Cu2+ could accelerate the etching process of Au@Ag NPs in the presence of thiosulfate, the fluorescence of Cdots was recovered. The limit of detection (LOD) is 4.81 nM for fluorometric measurements and 3.85 nM for colorimetric measurements. The dynamic range from these two modes is 0.005-1 μM. Importantly, Cu2+ in solution can also be directly visualized by this sensor via evident color change from the solution. Therefore, this dual mode nanosensor has potential applications for the efficient detection of Cu2+ ions in aqueous samples with great selectivity and high sensitivity.
Collapse
Affiliation(s)
- Yuqing Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Yawen Lian
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Mengna Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Lin Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
14
|
Sarkar D, Ganguli S, Samanta T, Mahalingam V. Design of Lanthanide-Doped Colloidal Nanocrystals: Applications as Phosphors, Sensors, and Photocatalysts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6211-6230. [PMID: 30149717 DOI: 10.1021/acs.langmuir.8b01593] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The unique optical characteristics of lanthanides (Ln3+) such as high color purity, long excited-state lifetimes, less perturbation of excited states by the crystal field environment, and the easy spectral conversion of wavelengths through upconversion and downconversion processes have caught the attention of many scientists in the recent past. To broaden the scope of using these properties, it is important to make suitable Ln3+-doped materials, particularly in colloidal forms. In this feature article, we discuss the different synthesis strategies for making Ln3+-doped nanoparticles in colloidal forms, particularly ways of functionalizing hydrophobic surfaces to hydrophilic surfaces to enhance their dispersibility and luminescence in aqueous media. We have enumerated the various strategies and sensitizers utilized to increase the luminescence of the nanoparticles. Furthermore, the use of these colloidal nanoparticle systems in sensing application by the appropriate selection of capping ligands has been discussed. In addition, we have shown how the energy transfer efficiency from Ce3+ to Ln3+ ions can be utilized for the detection of toxic metal ions and small molecules. Finally, we discuss examples where the spectral conversion ability of these materials has been used in photocatalysis and solar cell applications.
Collapse
Affiliation(s)
- Debashrita Sarkar
- Department of Chemical Sciences and Center for Advanced Functional Materials (CAFM) , Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur , 741246 , West Bengal , India
| | - Sagar Ganguli
- Department of Chemical Sciences and Center for Advanced Functional Materials (CAFM) , Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur , 741246 , West Bengal , India
| | - Tuhin Samanta
- Department of Chemical Sciences and Center for Advanced Functional Materials (CAFM) , Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur , 741246 , West Bengal , India
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences and Center for Advanced Functional Materials (CAFM) , Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur , 741246 , West Bengal , India
| |
Collapse
|
15
|
Efficient dual-mode colorimetric/fluorometric sensor for the detection of copper ions and vitamin C based on pH-sensitive amino-terminated nitrogen-doped carbon quantum dots: effect of reactive oxygen species and antioxidants. Anal Bioanal Chem 2019; 411:2619-2633. [DOI: 10.1007/s00216-019-01710-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 12/31/2022]
|
16
|
Luo Z, Qi Q, Zhang L, Zeng R, Su L, Tang D. Branched Polyethylenimine-Modified Upconversion Nanohybrid-Mediated Photoelectrochemical Immunoassay with Synergistic Effect of Dual-Purpose Copper Ions. Anal Chem 2019; 91:4149-4156. [DOI: 10.1021/acs.analchem.8b05959] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhongbin Luo
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
| | - Qingan Qi
- Department of General Surgery, The Hospital of Eighty-Third Army, Xinxiang 453000, People's Republic of China
| | - Lijia Zhang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
| | - Ruijin Zeng
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
| | - Lingshan Su
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
| |
Collapse
|
17
|
Analyte-triggered cyclic autocatalytic oxidation amplification combined with an upconversion nanoparticle probe for fluorometric detection of copper(II). Mikrochim Acta 2018; 185:484. [PMID: 30276757 DOI: 10.1007/s00604-018-3015-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/20/2018] [Indexed: 02/04/2023]
Abstract
The authors describe an upconversion nanoparticle-based (UCNP-based) fluorometric method for ultrasensitive and selective detection of Cu2+. The UCNPs show a strong emission band at 550 nm under near-infrared excitation at 980 nm. The principle of the strategy is that gold nanoparticles (AuNP) can quench the fluorescence of UCNP. In contrast, the addition of L-cysteine (Cys) can induce the aggregation of AuNP, resulting in a fluorescence recovery of the UCNPs. On addition of Cu2+, it oxidizes Cys to cystine and is reduced to Cu+. The Cu+ thusformed can be oxidized cyclically to Cu2+ by dissolved O2, which catalyzes and recycles the whole reaction. Thus, the aggregation of AuNP is inhibited and the fluorescence recovered by Cys is quenched. Under the optimal condition, the quenching efficiency shows a good linear response to the concentrations of Cu2+ in the 0.4-40 nM range. The limit of detection is 0.16 nM, which is 5 orders of magnitude lower than the U.S. Environmental Protection Agency limit for Cu2+ in drinking water (20 μM). The method has been further applied to monitor Cu2+ levels in real samples. The results of detection are well consistent with those obtained by atomic absorption spectroscopy. Graphical abstract Gold nanoparticles (AuNP) as a high efficient fluorescence quenching reagent of upconversion nanoparticles (UCNP) were used in a fluorometric method for detection of Cu2+ based on a cyclic catalytic oxidation amplification strategy.
Collapse
|
18
|
Zhang B, Meng J, Mi X, Zhang C, Zhang Z, Zheng H. Enhanced upconversion fluorescent probe of single NaYF4:Yb3+/Er3+/Zn2+ nanoparticles for copper ion detection. RSC Adv 2018; 8:37618-37622. [PMID: 35558603 PMCID: PMC9089350 DOI: 10.1039/c8ra07103a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 10/31/2018] [Indexed: 11/21/2022] Open
Abstract
Surface modified NaYF4:Yb3+/Er3+/Zn2+ upconversion nanoparticles were obtained by using branched polyethylenimine (PEI). Strong fluorescence emission was observed and the influence of copper ions on the fluorescence emission of the PEI-modified NaYF4:Yb3+/Er3+/Zn2+ nanoparticles was investigated. It was found that the fluorescence emission can be quenched through luminescence resonance energy transfer from the particle to the copper ions. The results show that the PEI modified NaYF4:Yb3+/Er3+/Zn2+ nanoparticle can be used as a fluorescent probe for highly sensitive and selective detection of copper ions. Single-particle fluorescent probe for copper ion detection based on fluorescence quenching.![]()
Collapse
Affiliation(s)
- Baobao Zhang
- School of Physics and Information Technology
- Shaanxi Normal University
- Xi'an 710119
- P. R. China
| | - Jiajia Meng
- School of Physics and Information Technology
- Shaanxi Normal University
- Xi'an 710119
- P. R. China
| | - Xiaohu Mi
- School of Physics and Information Technology
- Shaanxi Normal University
- Xi'an 710119
- P. R. China
| | - Changjian Zhang
- School of Physics and Information Technology
- Shaanxi Normal University
- Xi'an 710119
- P. R. China
| | - Zhenglong Zhang
- School of Physics and Information Technology
- Shaanxi Normal University
- Xi'an 710119
- P. R. China
| | - Hairong Zheng
- School of Physics and Information Technology
- Shaanxi Normal University
- Xi'an 710119
- P. R. China
| |
Collapse
|