1
|
Huangfu X, Zhang Y, Wang Y, Ma C. The determination of thallium in the environment: A review of conventional and advanced techniques and applications. CHEMOSPHERE 2024; 358:142201. [PMID: 38692367 DOI: 10.1016/j.chemosphere.2024.142201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024]
Abstract
Thallium (Tl) is a potential toxicity element that poses significant ecological and environmental risks. Recently, a substantial amount of Tl has been released into the environment through natural and human activities, which attracts increasing attention. The determination of this hazardous and trace element is crucial for controlling its pollution. This article summarizes the advancement and progress in optimizing Tl detection techniques, including atomic absorption spectroscopy (AAS), voltammetry, inductively coupled plasma (ICP)-based methods, spectrophotometry, and X-ray-based methods. Additionally, it introduces sampling and pretreatment methods such as diffusive gradients in thin films (DGT), liquid-liquid extraction, solid phase extraction, and cloud point extraction. Among these techniques, ICP-mass spectrometry (MS) is the preferred choice for Tl detection due to its high precision in determining Tl as well as its species and isotopic composition. Meanwhile, some new materials and agents are employed in detection. The application of novel work electrode materials and chromogenic agents is discussed. Emphasis is placed on reducing solvent consumption and utilizing pretreatment techniques such as ultrasound-assisted processes and functionalized magnetic particles. Most detection is performed in aqueous matrices, while X-ray-based methods applied to solid phases are summarized which provide non-destructive analysis. This work improves the understanding of Tl determination technology while serving as a valuable resource for researchers seeking appropriate analytical techniques.
Collapse
Affiliation(s)
- Xiaoliu Huangfu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China.
| | - Yifan Zhang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Yunzhu Wang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Chengxue Ma
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
2
|
Dakova I, Yordanova T, Karadjova I. Polymeric Materials in Speciation Analysis Based on Solid-Phase Extraction. Molecules 2023; 29:187. [PMID: 38202769 PMCID: PMC10780835 DOI: 10.3390/molecules29010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Speciation analysis is a relevant topic since the (eco)toxicity, bioavailability, bio (geo)chemical cycles, and mobility of a given element depend on its chemical forms (oxidation state, organic ligands, etc.). The reliability of analytical results for chemical species of elements depends mostly on the maintaining of their stability during the sample pretreatment step and on the selectivity of further separation step. Solid-phase extraction (SPE) is a matter of choice as the most suitable and widely used procedure for both enrichment of chemical species of elements and their separation. The features of sorbent material are of great importance to ensure extraction efficiency from one side and selectivity from the other side of the SPE procedure. This review presents an update on the application of polymeric materials in solid-phase extraction used in nonchromatographic methods for speciation analysis.
Collapse
Affiliation(s)
| | | | - Irina Karadjova
- Faculty of Chemistry and Pharmacy, University of Sofia “St. Kliment Ohridski”, 1, James. Bourchier Blvd.1, 1164 Sofia, Bulgaria; (I.D.); (T.Y.)
| |
Collapse
|
3
|
Solidified floating organic drop microextraction in tandem with syringe membrane miro-solid phase extraction for sequential detection of thallium (III) and thallium (I) by graphite furnace atomic absorption spectrometry. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
4
|
Magnetic graphene oxide as a valuable material for the speciation of trace elements. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Chen S, Yan J, Wang C, Zhang C, Lu D. Determination of Tl(III) and Tl(I) in food samples with two-step direct immersion single-drop microextraction followed by graphite furnace atomic absorption spectrometry. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Elemental Speciation Analysis in Environmental Studies: Latest Trends and Ecological Impact. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182212135. [PMID: 34831893 PMCID: PMC8623758 DOI: 10.3390/ijerph182212135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Speciation analysis is a key aspect of modern analytical chemistry, as the toxicity, environmental mobility, and bioavailability of elemental analytes are known to depend strongly on an element’s chemical species. Henceforth, great efforts have been made in recent years to develop methods that allow not only the determination of elements as a whole, but also each of its separate species. Environmental analytical chemistry has not ignored this trend, and this review aims to summarize the latest methods and techniques developed with this purpose. From the perspective of each relevant element and highlighting the importance of their speciation analysis, different sample treatment methods are introduced and described, with the spotlight on the use of modern nanomaterials and novel solvents in solid phase and liquid-liquid microextractions. In addition, an in-depth discussion of instrumental techniques aimed both at the separation and quantification of metal and metalloid species is presented, ranging from chromatographic separations to electro-chemical speciation analysis. Special emphasis is made throughout this work on the greenness of these developments, considering their alignment with the precepts of the Green Chemistry concept and critically reviewing their environmental impact.
Collapse
|
7
|
Wang N, Xue W, Wan C, Wang Y, Li Y. Hydrophobic polymer tethered magnetic zirconium-based metal-organic framework as advance and recyclable adsorbent for microwave-assisted extraction of polycyclic aromatic hydrocarbons from environmental water samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Magnetic nanomaterials as sorbents for trace elements analysis in environmental and biological samples. Talanta 2021; 230:122306. [PMID: 33934772 DOI: 10.1016/j.talanta.2021.122306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/20/2021] [Accepted: 03/06/2021] [Indexed: 12/07/2022]
Abstract
This review focuses on magnetic nanomaterials as sorbents for trace elements analysis in environmental and biological samples. The design and preparation of magnetic nanomaterials with specific functional groups for trace elemental analysis are summarized, along with relevant adsorption mechanism. The application of these magnetic sorbents in different operation modes for the quantification of trace elements and their species in environmental and biological samples are discussed. The trend of development in this field is also prospected.
Collapse
|
9
|
López-García I, Muñoz-Sandoval MJ, Hernández-Córdoba M. Dispersive micro-solid phase extraction with a magnetic nanocomposite followed by electrothermal atomic absorption measurement for the speciation of thallium. Talanta 2021; 228:122206. [PMID: 33773710 DOI: 10.1016/j.talanta.2021.122206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/13/2021] [Accepted: 02/06/2021] [Indexed: 10/22/2022]
Abstract
A magnetic dispersive micro-solid phase extraction procedure for the determination of the thallium content in waters is presented. The incorporation in the sample (10 mL) of a small amount of graphene-Fe3O4 composite (3.6 mg) in the presence of 10-4 mol L-1 Aliquat 336 at pH 2 results in the complete retention of both thallium(I) and thallium(III). After separation with a magnet, the micro-solid phase recovered is treated with 0.05 mL of a 0.1 mol L-1 sodium ethylenediaminetetracetate solution at pH 9, and the supernatant obtained after application of the magnet is introduced in the electrothermal atomizer of an atomic absorption spectrometer to obtain the signal corresponding to the total thallium content. For speciation, the trivalent form in a second sample aliquot is separated by means of a liquid-liquid extraction stage with chloroform and methyl trioctyl ammonium in the presence of bromide, and the signal corresponding to the monovalent form is obtained, the concentration of thallium(III) being obtained by difference. The enrichment factor is 185, which permits a detection limit as low as 0.01 μg L-1 of the analyte to be achieved. The relative standard deviation for five measurements at the 0.1 μg L-1 thallium level is below 5%. The reliability of the procedure is verified by analysing five certified reference samples for which speciation data are also given.
Collapse
Affiliation(s)
- Ignacio López-García
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare-Nostrum", University of Murcia, E-30100 Murcia, Spain.
| | - María J Muñoz-Sandoval
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare-Nostrum", University of Murcia, E-30100 Murcia, Spain
| | - Manuel Hernández-Córdoba
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare-Nostrum", University of Murcia, E-30100 Murcia, Spain
| |
Collapse
|
10
|
Mousavi SH, Manoochehri M, Afshar Taromi F. Fabrication of a novel magnetic metal-organic framework functionalized with 2-aminothiophenol for preconcentration of trace silver amounts in water and wastewater. RSC Adv 2021; 11:13867-13875. [PMID: 35423912 PMCID: PMC8697535 DOI: 10.1039/d1ra00420d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/02/2021] [Indexed: 11/21/2022] Open
Abstract
Herein, a novel magnetic metal-organic framework functionalized (MMOF) with 2-aminothiophenol (2-ATP) was fabricated and employed for separation/preconcentration of trace silver amounts. At first magnetite nanoparticles (Fe3O4 NPs) were synthesized and then coated with SiO2. Thereafter, the Fe3O4@SiO2 nanoparticles were modified with 2-ATP. Finally, the functionalized MMOF was prepared by the fabrication of MIL-101(Cr) in the presence of Fe3O4@SiO2@2-ATP NPs. MIL-101(Cr)/Fe3O4@SiO2@2-ATP nanocomposite was characterized with FT-IR, SEM, elemental analysis, XRD and VSM and then utilized in the separation/determination of silver ions in various real samples. The effects of diverse experimental variables such as pH, uptake time, adsorbent amount, desorption time, eluent concentration and volume were studied comprehensively employing experimental design methodology. After optimization, LOD and linearity were 0.05 ng mL-1 and 0.2-200 ng mL-1, respectively. Repeatability of the new method was determined based on RSD value for 5, 50, 150 ng mL-1 (n = 5) concentrations which was 9.3%, 6.8% and 4.5%, respectively. Ultimately, the outlined method was utilized in the separation/determination of silver ions in various water and wastewater samples satisfactorily.
Collapse
Affiliation(s)
- Seyyed Hossein Mousavi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University Tehran 1467686831 Iran +98 2188385798 +98 9127242698
| | - Mahboobeh Manoochehri
- Department of Chemistry, Central Tehran Branch, Islamic Azad University Tehran 1467686831 Iran +98 2188385798 +98 9127242698
| | - Faramarz Afshar Taromi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology 424 Hafez Avenue, P. O. Box: 15875-4413 Tehran Iran
| |
Collapse
|
11
|
Eskandarpour M, Jamshidi P, Moghaddam MR, Ghasmei JB, Shemirani F. A highly selective magnetic solid-phase extraction method for preconcentration of Cd(II) using N,N′-bis(salicylidene)ethylenediamine in water and food samples. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03783-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Mehraban M, Manoochehri M, Afshar Taromi F. Trace amount determination of Cd(ii), Pb(ii) and Ni(ii) ions in agricultural and seafood samples after magnetic solid phase extraction by MIL-101(Cr)/phenylthiosemicarbazide-functionalized magnetite nanoparticle composite. NEW J CHEM 2018. [DOI: 10.1039/c8nj03912g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a novel nanosorbent consisting of phenylthiosemicarbazide magnetite nanoparticles and MIL-101(Cr) was synthesized, characterized and utilized to magnetic solid phase extraction of some heavy metals in various agricultural and seafood samples.
Collapse
Affiliation(s)
- Masoomeh Mehraban
- Department of Chemistry
- Central Tehran Branch
- Islamic Azad University
- Tehran
- Iran
| | | | | |
Collapse
|