1
|
Krishan B, Kumar A, Azmi W, Dhiman S. Biological activities of citrus fruit-derived copper oxide nanoparticles: towards sustainable antimicrobial and antioxidant solutions. Folia Microbiol (Praha) 2025:10.1007/s12223-025-01266-4. [PMID: 40346379 DOI: 10.1007/s12223-025-01266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 04/15/2025] [Indexed: 05/11/2025]
Abstract
The synthesis of CuO NPs from Citrus fruit peel waste is a noteworthy strategy for the effective repurposing utilization of waste and its application in therapeutic studies. Synthesized copper oxide nanoparticles (CuO NPs) from citrus fruit extracts displayed a dark greenish-black colour with sizes ranging from 379.41, 113.19 and 142.76 nm of lemon, orange and tangerine CuO NPs. Phytochemical screening confirmed the presence of phytochemicals in the extracts wherein lemon CuO NPs lacked flavonoids and cardiac glycosides, while orange CuO NPs lacked alkaloids and flavonoids, and tangerine CuO NPs lacked only alkaloids. The decrease in phenolic concentration in CuO NPs was attributed to complex formation with metal ions. Tangerine CuO NPs exhibited the highest antioxidant activity, while lemon CuO NPs showed the highest total antioxidant capacity. Antibacterial activity increased with CuO NP concentration, with tangerine CuO NPs displaying the highest activity against both Bacillus subtilis subtilis strain 168 and Escherichia coli strain PU-1 isolated from Ghagghar river, Haryana, India. This activity was linked to the disruption of bacterial cell membranes and oxidative stress, supported by the interaction between CuO NPs and bacterial cell components. These findings contribute to understanding of various potential applications of citrus fruit-derived CuO NPs in antimicrobial and antioxidant therapies.
Collapse
Affiliation(s)
- Bhanu Krishan
- Department of Biotechnology, Himachal Pradesh University, Himachal Pradesh, Summerhill, Shimla, 171005, India
| | - Anu Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Wamik Azmi
- Department of Biotechnology, Himachal Pradesh University, Himachal Pradesh, Summerhill, Shimla, 171005, India.
| | - Sunny Dhiman
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
2
|
Ahmad I, Sead FF, Kanjariya P, Kumar A, Rajivm A, Shankhyan A, Jaidka S, Kumar H, Aminov Z. Nanomaterial sensors for enhanced detection of serotonin. Clin Chim Acta 2025; 569:120160. [PMID: 39892692 DOI: 10.1016/j.cca.2025.120160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
The detection of serotonin (5-HT), a critical neurotransmitter, has garnered significant attention in biosensor research because of its pivotal role in neurological and physiological processes. This narrative review highlights advancements in nanomaterial-based sensors designed to increase the sensitivity, specificity, and functionality of serotonin detection. Carbon-based nanomaterials, including carbon nanotubes (CNTs), graphene derivatives, and carbon nanofibers (CNFs), have demonstrated remarkable potential owing to their large surface area, superior electrical conductivity, and biocompatibility. These materials enable rapid electron transfer and selective serotonin adsorption, making them integral to electrochemical and wearable sensor technologies. Emerging technologies, including field-effect transistors (FETs), magnetoelastic biosensors, and molecularly imprinted polymers (MIPs), have demonstrated ultralow detection limits and real-time monitoring capabilities, suggesting promising applications for clinical diagnostics and personalized healthcare. Metal-based sensors, which utilize nanoparticles of gold, silver, and other metals, have also shown exceptional performance in serotonin detection through enhanced electrocatalysis and optical properties. This review underscores the transformative potential of nanomaterial-based sensors in serotonin detection, emphasizing their role in advancing neuroscience research, disease diagnostics, and therapeutic monitoring.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia; Health and Medical Research Center, King Khalid University, AlQura'a, Abha, P.O. Box 960, Saudi Arabia.
| | - Fadhel F Sead
- Department of Dentistry, College of Dentistry, the Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| | - Prakash Kanjariya
- Marwadi University Research Center, Department of Physics, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India
| | - Anjan Kumar
- Department of Electronics and Communication Engineering, GLA University, Mathura 281406, India
| | - Asha Rajivm
- Department of Physics & Electronics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Aman Shankhyan
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India
| | - Sachin Jaidka
- Department of Physics, Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali140307, Punjab, India
| | - Harish Kumar
- Department of Applied Sciences-Physics, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
| |
Collapse
|
3
|
Duhan J, Kumar H, Obrai S. Recent Advances in Nanomaterials Based Optical Sensors for the Detection of Melatonin and Serotonin. J Fluoresc 2025; 35:1315-1333. [PMID: 38436821 DOI: 10.1007/s10895-024-03647-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
In this review paper we discussed the detection of melatonin and serotonin by using various optical methods. Melatonin and serotonin are very necessary body hormones these are also called neuroregulatory hormones secreted by pineal gland in brain by pinealocytes and shape of pineal gland is cone like. Sensitive detection of melatonin and serotonin in pharmacological samples and human serum is crucial for human beings, lots of research publications available in literature for melatonin and serotonin and we overviewed these papers. We have deeply reviewed many research papers where sensitively sensing of melatonin and serotonin occurs, by using of various interfering agents and nanomaterials. This review aims presenting colorimetry, fluorometry and spectrophotometric detection of melatonin (MEL) and serotonin (SER) by using different metal oxides, carbon nanomaterials (nanosheets, nanorods, nanofibers) and many other agents. Nanomaterials typically possess favourable optical, electrical and mechanical characteristics, they provide up new avenues for enhancing the efficacy of sensors. It is crucial to provide an optical sensors platform that is dependable, sensitive and low price. The development of sensors and biosensors to use nanomaterials for neurotransmitters has advanced significantly in recent years. There are currently many developing biomarkers in biological fluids, and bionanomaterial-based biosensor systems, as well as clinical and pharmacological settings, have garnered significant interest. Biomarkers have been found using optical devices in a quick, selective and sensitive manner. Our aim is to compile all the data that already published on MEL, SER sensing and comparison of each method, we mainly focused on principle, observations, sensitivity, selectivity, limit of detection, mechanism behind the reaction, effect of temperature, pH and concentration. In the last of this paper, we discuss some challenges of these methods and future projects.
Collapse
Affiliation(s)
- Jyoti Duhan
- Dr BR Ambedkar national institute of technology, Jalandhar, Punjab, India
| | - Himanshu Kumar
- Dr BR Ambedkar national institute of technology, Jalandhar, Punjab, India
| | - Sangeeta Obrai
- Dr BR Ambedkar national institute of technology, Jalandhar, Punjab, India.
| |
Collapse
|
4
|
Wang YL, Lee YH, Chou CL, Chang YS, Liu WC, Chiu HW. Oxidative stress and potential effects of metal nanoparticles: A review of biocompatibility and toxicity concerns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123617. [PMID: 38395133 DOI: 10.1016/j.envpol.2024.123617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Metal nanoparticles (M-NPs) have garnered significant attention due to their unique properties, driving diverse applications across packaging, biomedicine, electronics, and environmental remediation. However, the potential health risks associated with M-NPs must not be disregarded. M-NPs' ability to accumulate in organs and traverse the blood-brain barrier poses potential health threats to animals, humans, and the environment. The interaction between M-NPs and various cellular components, including DNA, multiple proteins, and mitochondria, triggers the production of reactive oxygen species (ROS), influencing several cellular activities. These interactions have been linked to various effects, such as protein alterations, the buildup of M-NPs in the Golgi apparatus, heightened lysosomal hydrolases, mitochondrial dysfunction, apoptosis, cell membrane impairment, cytoplasmic disruption, and fluctuations in ATP levels. Despite the evident advantages M-NPs offer in diverse applications, gaps in understanding their biocompatibility and toxicity necessitate further research. This review provides an updated assessment of M-NPs' pros and cons across different applications, emphasizing associated hazards and potential toxicity. To ensure the responsible and safe use of M-NPs, comprehensive research is conducted to fully grasp the potential impact of these nanoparticles on both human health and the environment. By delving into their intricate interactions with biological systems, we can navigate the delicate balance between harnessing the benefits of M-NPs and minimizing potential risks. Further exploration will pave the way for informed decision-making, leading to the conscientious development of these nanomaterials and safeguarding the well-being of society and the environment.
Collapse
Affiliation(s)
- Yung-Li Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, 406, Taiwan
| | - Chu-Lin Chou
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City, 320, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan
| | - Yu-Sheng Chang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Wen-Chih Liu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, 114, Taiwan; Section of Nephrology, Department of Medicine, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung, 928, Taiwan; Department of Nursing, Meiho University, Pingtung, 912, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
5
|
Xu X, Zuo Y, Chen S, Hatami A, Gu H. Advancements in Brain Research: The In Vivo/In Vitro Electrochemical Detection of Neurochemicals. BIOSENSORS 2024; 14:125. [PMID: 38534232 DOI: 10.3390/bios14030125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Neurochemicals, crucial for nervous system function, influence vital bodily processes and their fluctuations are linked to neurodegenerative diseases and mental health conditions. Monitoring these compounds is pivotal, yet the intricate nature of the central nervous system poses challenges. Researchers have devised methods, notably electrochemical sensing with micro-nanoscale electrodes, offering high-resolution monitoring despite low concentrations and rapid changes. Implantable sensors enable precise detection in brain tissues with minimal damage, while microdialysis-coupled platforms allow in vivo sampling and subsequent in vitro analysis, addressing the selectivity issues seen in other methods. While lacking temporal resolution, techniques like HPLC and CE complement electrochemical sensing's selectivity, particularly for structurally similar neurochemicals. This review covers essential neurochemicals and explores miniaturized electrochemical sensors for brain analysis, emphasizing microdialysis integration. It discusses the pros and cons of these techniques, forecasting electrochemical sensing's future in neuroscience research. Overall, this comprehensive review outlines the evolution, strengths, and potential applications of electrochemical sensing in the study of neurochemicals, offering insights into future advancements in the field.
Collapse
Affiliation(s)
- Xiaoxuan Xu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yimei Zuo
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Amir Hatami
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, P.O. Box 45195-1159, Zanjan 45137-66731, Iran
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Hui Gu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
6
|
Kashisaz M, Enayatizamir N, Fu P, Eslahi M. Synthesis of nanoparticles using Trichoderma Harzianum, characterization, antifungal activity and impact on Plant Growth promoting Bacteria. World J Microbiol Biotechnol 2024; 40:107. [PMID: 38396217 DOI: 10.1007/s11274-024-03920-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/03/2024] [Indexed: 02/25/2024]
Abstract
Globally cultivated cereals are frequently threatened by various plant pathogenic agents such as Fusarium fungi. To combat these pathogens, researchers have made nanoparticles as potential agricultural pesticides. In this study, selenium and titanium dioxide NPs were synthesized using Trichoderma harzianum metabolites. Characterization of the NPs indicated varying size and shapes of both NPs and functional groups existence to constitute both NPs. The evaluation of antifungal activity of NPs against plant pathogenic fungi, Fusarium culmorum, indicated both NPs maximum antifungal activity at concentration of 100 mg/L. The impacts of nanoparticles on some beneficial plant growth promoting bacteria (PGPB) were evaluated and showed their inhibition effect on optical density of PGPB at a concentration of 100 mg/L but they did not have any impact on nitrogen fixation by bacteria. Existence of TiO2NPs reduced the intensity of color change to pink compared to the control indicating auxin production. Both NPs demonstrated different impact on phosphate solubilization index. This study suggests that the synthesized nanoparticles have the potential to serve as antifungal compounds at special concentration against plant diseases without significantly reducing the potential of PGPB at low concentrations.
Collapse
Affiliation(s)
- Marayam Kashisaz
- Department of Soil Sciecne, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Naeimeh Enayatizamir
- Department of Soil Sciecne, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Mohammadreza Eslahi
- Department of Plant Protection, Khuzestan Agricultural and Natural Resource Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
| |
Collapse
|
7
|
Ahmad HMN, Andrade A, Song E. Continuous Real-Time Detection of Serotonin Using an Aptamer-Based Electrochemical Biosensor. BIOSENSORS 2023; 13:983. [PMID: 37998158 PMCID: PMC10669129 DOI: 10.3390/bios13110983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Serotonin (5-HT) is a critical neurotransmitter involved in many neuronal functions, and 5-HT depletion has been linked to several mental diseases. The fast release and clearance of serotonin in the extracellular space, low analyte concentrations, and a multitude of interfering species make the detection of serotonin challenging. This work presents an electrochemical aptamer-based biosensing platform that can monitor 5-HT continuously with high sensitivity and selectivity. Our electrochemical sensor showed a response time of approximately 1 min to a step change in the serotonin concentration in continuous monitoring using a single-frequency EIS (electrochemical impedance spectroscopy) technique. The developed sensing platform was able to detect 5-HT in the range of 25-150 nM in the continuous sample fluid flow with a detection limit (LOD) of 5.6 nM. The electrochemical sensor showed promising selectivity against other species with similar chemical structures and redox potentials, including dopamine (DA), norepinephrine (NE), L-tryptophan (L-TP), 5-hydroxyindoleacetic acid (5-HIAA), and 5-hydroxytryptophan (5-HTP). The proposed sensing platform is able to achieve high selectivity in the nanomolar range continuously in real-time, demonstrating the potential for monitoring serotonin from neurons in organ-on-a-chip or brain-on-a-chip-based platforms.
Collapse
Affiliation(s)
- Habib M. N. Ahmad
- Department of Electrical & Computer Engineering, University of New Hampshire, Durham, NH 03824, USA;
| | - Arturo Andrade
- Robert J. & Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA;
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Edward Song
- Department of Electrical & Computer Engineering, University of New Hampshire, Durham, NH 03824, USA;
| |
Collapse
|
8
|
Hu Z, Zhu R, Figueroa-Miranda G, Zhou L, Feng L, Offenhäusser A, Mayer D. Truncated Electrochemical Aptasensor with Enhanced Antifouling Capability for Highly Sensitive Serotonin Detection. BIOSENSORS 2023; 13:881. [PMID: 37754115 PMCID: PMC10527390 DOI: 10.3390/bios13090881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023]
Abstract
Accurate determination of serotonin (ST) provides insight into neurological processes and enables applications in clinical diagnostics of brain diseases. Herein, we present an electrochemical aptasensor based on truncated DNA aptamers and a polyethylene glycol (PEG) molecule-functionalized sensing interface for highly sensitive and selective ST detection. The truncated aptamers have a small size and adopt a stable stem-loop configuration, which improves the accessibility of the aptamer for the analyte and enhances the sensitivity of the aptasensor. Upon target binding, these aptamers perform a conformational change, leading to a variation in the Faraday current of the redox tag, which was recorded by square wave voltammetry (SWV). Using PEG as blocking molecules minimizes nonspecific adsorption of other interfering molecules and thus endows an enhanced antifouling ability. The proposed electrochemical aptamer sensor showed a wide range of detection lasting from 0.1 nM to 1000 nM with a low limit of detection of 0.14 nM. Owing to the unique properties of aptamer receptors, the aptasensor also exhibits high selectivity and stability. Furthermore, with the reduced unspecific adsorption, assaying of ST in human serum and artificial cerebrospinal fluid (aCSF) showed excellent performance. The reported strategy of utilizing antifouling PEG describes a novel approach to building antifouling aptasensors and holds great potential for neurochemical investigations and clinical diagnosis.
Collapse
Affiliation(s)
- Ziheng Hu
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; (Z.H.); (R.Z.); (G.F.-M.); (L.Z.); (A.O.)
- Faculty I, RWTH Aachen University, 52062 Aachen, Germany
| | - Ruifeng Zhu
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; (Z.H.); (R.Z.); (G.F.-M.); (L.Z.); (A.O.)
| | - Gabriela Figueroa-Miranda
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; (Z.H.); (R.Z.); (G.F.-M.); (L.Z.); (A.O.)
| | - Lei Zhou
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; (Z.H.); (R.Z.); (G.F.-M.); (L.Z.); (A.O.)
| | - Lingyan Feng
- Department of Materials Genome Institute, and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China;
| | - Andreas Offenhäusser
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; (Z.H.); (R.Z.); (G.F.-M.); (L.Z.); (A.O.)
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; (Z.H.); (R.Z.); (G.F.-M.); (L.Z.); (A.O.)
| |
Collapse
|
9
|
Roy A, De SK, Dey S, Bhattacharya M, Satpati B, Senapati D. Resultant inward imbalanced seeding force (RIISF)-induced concave gold nanostar (CAuNS) for non-enzymatic electrocatalytic detection of serotonin and Kynurenine in human serum. Anal Chim Acta 2023; 1248:340908. [PMID: 36813459 DOI: 10.1016/j.aca.2023.340908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
CTAC-based gold nanoseed-induced concave curvature evolution of surface boundary planes from concave gold nanocube (CAuNC) to concave gold nanostar (CAuNS) has been achieved by a novel synthetic methodology simply by controlling the extent of seed used and hence the generated 'Resultant Inward Imbalanced Seeding Force (RIISF)'. The resultant CAuNS shows an excellent enhancement in catalytic activity compared to CAuNC and other intermediates as a function of curvature-induced anisotropy. Detailed characterization evaluates the presence of an enhanced number of multiple defect sites, high energy facets, larger surface area, and roughened surface which ultimately results in an increased mechanical strain, coordinately unsaturation, and multifacet-oriented anisotropic behavior suitable for positive influence on the binding affinity of CAuNSs. While different crystalline and structural parameters improve their catalytic activity, the resultant uniform three-dimensional (3D) platform shows comparatively easy pliability and well absorptivity on the glassy carbon electrode surface for increased shelf life, a uniform structure to confine a large extent of stoichiometric systems, and long-term stability under ambient conditions for making this newly developed material a unique nonenzymatic scalable universal electrocatalytic platform. With the help of various electrochemical measurements, the ability of the platform has been established by performing highly specific and sensitive detection of the two most important human bio messengers: Serotonin (STN) and Kynurenine (KYN) which are metabolites of L-Tryptophan in the human body system. The present study mechanistically surveys the role of seed-induced RIISF-modulated anisotropy in controlling the catalytic activity which offers a universal 3D electrocatalytic sensing tenet by an electrocatalytic approach.
Collapse
Affiliation(s)
- Anuradha Roy
- Chemical Sciences Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Sandip Kumar De
- Chemical Sciences Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Suman Dey
- Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Maireyee Bhattacharya
- Chemical Sciences Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Biswarup Satpati
- Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Dulal Senapati
- Chemical Sciences Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata, 700064, India.
| |
Collapse
|
10
|
Hu Z, Li Y, Figueroa-Miranda G, Musal S, Li H, Martínez-Roque MA, Hu Q, Feng L, Mayer D, Offenhäusser A. Aptamer based biosensor platforms for neurotransmitters analysis. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
11
|
Murugadoss G, Salla S, Kumar MR, Kandhasamy N, Al Garalleh H, Garaleh M, Brindhadevi K, Pugazhendhi A. Decoration of ZnO surface with tiny sulfide-based nanoparticles for improve photocatalytic degradation efficiency. ENVIRONMENTAL RESEARCH 2023; 220:115171. [PMID: 36621548 DOI: 10.1016/j.envres.2022.115171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/21/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Modifying wide band gap ZnO nanoparticles surface by combine narrow bandgap semiconductors is a novel route to promote the ZnO to diverse applications. Herein, different metal sulfides (CdS, Ag2S and Bi2S3) were decorated on ZnO surface using facile a chemical route for photocatalytic application. Crystal structure, surface morphology and optical changes for the surface modified ZnO were studied by using various characterization techniques. The XRD spectra exhibited mixed phase of decorated metal sulfide nanoparticles along with strong pattens of hexagonal structure ZnO. The SEM images were confirmed that tiny CdS, Ag2S and Bi2S3 sulfide nanoparticles are well decorated on ZnO hexagonal rods surface. Band gap of the ZnO was tuned into visible region by modifying the surface by the sulfide nanoparticles. Textile industry-based crystal violet (CV) dye was used as a model pollutant to evaluate the photocatalytic activity of sulfides decorated well-crystalline ZnO photocatalysts under natural sunlight. Among the three catalysts, the Ag2S decorated ZnO achieved greatest photodegradation efficiency of 94.1% for degradation of the CV dye with rate constant value of 0.050. The highest catalytic activity may be related to Ag2S acting a significant part in reducing bandgap and boosting hole, superoxide radical, and hydroxyl radical formation, which inhibits recombination, hence enhancing the photocatalyst's efficacy, activity, and also stability.
Collapse
Affiliation(s)
- Govindhasamy Murugadoss
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Sunitha Salla
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Manavalan Rajesh Kumar
- Institute of Natural Science and Mathematics, Ural Federal University, Yekaterinburg, 620002, Russia
| | - Narthana Kandhasamy
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Hakim Al Garalleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia
| | - Mazen Garaleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia; Department of Applied Chemistry, Faculty of Science, Tafila Technical University, Tafila, 66141, Jordan
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali, India.
| |
Collapse
|
12
|
Fan M, Han S, Huang Q, Chen J, Feng S, Lu Y, You R. Ratiometric SERS-based assay with "sandwich" structure for detection of serotonin. Mikrochim Acta 2023; 190:100. [PMID: 36821003 DOI: 10.1007/s00604-023-05634-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/24/2022] [Indexed: 02/24/2023]
Abstract
A ratiometric nanoensemble-functionalized Surface-Enhanced Raman Spectroscopy (SERS) chip is proposed and an ultrasensitive "sandwich" structure introduced for the detection of 5-HT to achieve early diagnosis of colon cancer. The SERS-based chip contains core-shell SERS active substrates coded by different Raman tags with Raman-silent region peaks (Au@EBP@Au NR arrays and Au@MBN@Ag NPs) and then identify-function molecule modification to construct the "sandwich" structure (Au@EBP@Au NR arrays/5-HT/Au@MBN@Ag NPs). Au@EBP@Au NR arrays showed excellent SERS performance, including good uniformity with an RSD of 5.53% and an enhancement factor (EF) of 2.13 × 107. The intensity ratio of the peaks in the Raman silent region was proportional to the concentration of 5-HT in the range 5 × 10-7-1 × 10-3 M, with a detection limit (LOD) of 4.9 × 10-9 M. Excellent assay accuracy was also demonstrated, with recoveries in the range 96.80% to 104.96%. Finally, we found that 5-HT expression levels in normal human sera were much lower than those in colon cancer patients by using a SERS-based chip for determination of the concentration of 5-HT in clinical colon cancer serum. This result suggested that the proposed approach has potential for detecting 5-HT by ratiometric SERS-based chips for early diagnosis of colon cancer.
Collapse
Affiliation(s)
- Min Fan
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced, Materials Oriented Chemical Engineering, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, 350007, China.,Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Sirui Han
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced, Materials Oriented Chemical Engineering, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, 350007, China
| | - Qian Huang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced, Materials Oriented Chemical Engineering, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, 350007, China
| | - Jingbo Chen
- Department of Oncology Shengli Clinical Medical College of Fujian Medical , University Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China.
| | - Shangyuan Feng
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Yudong Lu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced, Materials Oriented Chemical Engineering, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, 350007, China
| | - Ruiyun You
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced, Materials Oriented Chemical Engineering, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, 350007, China.
| |
Collapse
|
13
|
Da Y, Luo S, Tian Y. Real-Time Monitoring of Neurotransmitters in the Brain of Living Animals. ACS APPLIED MATERIALS & INTERFACES 2023; 15:138-157. [PMID: 35394736 DOI: 10.1021/acsami.2c02740] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Neurotransmitters, as important chemical small molecules, perform the function of neural signal transmission from cell to cell. Excess concentrations of neurotransmitters are often closely associated with brain diseases, such as Alzheimer's disease, depression, schizophrenia, and Parkinson's disease. On the other hand, the release of neurotransmitters under the induced stimulation indicates the occurrence of reward-related behaviors, including food and drug addiction. Therefore, to understand the physiological and pathological functions of neurotransmitters, especially in complex environments of the living brain, it is urgent to develop effective tools to monitor their dynamics with high sensitivity and specificity. Over the past 30 years, significant advances in electrochemical sensors and optical probes have brought new possibilities for studying neurons and neural circuits by monitoring the changes in neurotransmitters. This Review focuses on the progress in the construction of sensors for in vivo analysis of neurotransmitters in the brain and summarizes current attempts to address key issues in the development of sensors with high selectivity, sensitivity, and stability. Combined with the latest advances in technologies and methods, several strategies for sensor construction are provided for recording chemical signal changes in the complex environment of the brain.
Collapse
Affiliation(s)
- Yifan Da
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Shihua Luo
- Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
14
|
Khan MQ, Khan RA, Alsalme A, Ahmad K, Kim H. Design and Fabrication of α-MnO 2-Nanorods-Modified Glassy-Carbon-Electrode-Based Serotonin Sensor. BIOSENSORS 2022; 12:849. [PMID: 36290986 PMCID: PMC9599580 DOI: 10.3390/bios12100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Serotonin is a very important monoamine neurotransmitter, which takes part in biological and psychological processes. In the present scenario, design and fabrication of a serotonin electrochemical sensor is of great significance. In this study, we have synthesized α-MnO2 via a hydrothermal synthesis method using potassium permanganate as a precursor. The physiochemical properties, such as structural and phase-purity of the prepared α-MnO2, were investigated by various characterization techniques and methods (powder X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy). Furthermore, the serotonin sensor was fabricated using α-MnO2 as an electrode modifier or electro-catalyst. The bare glassy carbon electrode (GCE) was adopted as a working substrate, and its active carbon surface was modified with the synthesized α-MnO2. This modified GCE (α-MnO2/GCE = MGCE) was explored as a serotonin sensor. The electrochemical investigations showed that the MGCE has excellent electro-catalytic properties towards determination of serotonin. The MGCE exhibits an excellent detection limit (DL) of 0.14 µM, along with good sensitivity of 2.41 µAµM-1 cm-2. The MGCE also demonstrated excellent selectivity for determination of serotonin in the presence of various electro-active/interfering molecules. The MGCE also exhibits good cyclic repeatability, stability, and storage stability.
Collapse
Affiliation(s)
- Mohd Quasim Khan
- Department of Chemistry, M.M.D. College, Moradabad, M.J.P. Rohilkhand University, Bareilly 244001, UP, India
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khursheed Ahmad
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Haekyoung Kim
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
15
|
Saisree S, Nair JSA, Sandhya KY. Variant solvothermal synthesis of N-GQD for colour tuning emissions and naked eye reversible shade tweaking pH sensing ability. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02376-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Liu Y, Chen X, Gao Y, Yu DG, Liu P. Elaborate design of shell component for manipulating the sustained release behavior from core–shell nanofibres. J Nanobiotechnology 2022; 20:244. [PMID: 35643572 PMCID: PMC9148457 DOI: 10.1186/s12951-022-01463-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Background The diversified combination of nanostructure and material has received considerable attention from researchers to exploit advanced functional materials. In drug delivery systems, the hydrophilicity and sustained–release drug properties are in opposition. Thus, difficulties remain in the simultaneous improve sustained–release drug properties and increase the hydrophilicity of materials. Methods In this work, we proposed a modified triaxial electrospinning strategy to fabricate functional core–shell fibres, which could elaborate design of shell component for manipulating the sustained-release drug. Cellulose acetate (CA) was designed as the main polymeric matrix, whereas polyethylene glycol (PEG) was added as a hydrophilic material in the middle layer. Cur, as a model drug, was stored in the inner layer. Results Scanning electron microscopy (SEM) results and transmission electron microscopy (TEM) demonstrated that the cylindrical F2–F4 fibres had a clear core–shell structure. The model drug Cur in fibres was verified in an amorphous form during the X-ray diffraction (XRD) patterns, and Fourier transformed infrared spectroscopy (FTIR) results indicated good compatibility with the CA matrix. The water contact angle test showed that functional F2–F4 fibres had a high hydrophilic property in 120 s and the control sample F1 needed over 0.5 h to obtain hydrophilic property. In the initial stage of moisture intrusion into fibres, the quickly dissolved PEG component guided the water molecules and rapidly eroded the internal structure of functional fibres. The good hydrophilicity of F2–F4 fibres brought relatively excellent swelling rate around 4600%. Blank outer layer of functional F2 fibres with 1% PEG created an exciting opportunity for providing a 96 h sustained-release drug profile, while F3 and F4 fibres with over 3% PEG provided a 12 h modified drug release profile to eliminate tailing–off effect. Conclusion Here, the functional F2–F4 fibres had been successfully produced by using the advanced modified triaxial electrospinning nanotechnology with different polymer matrices. The simple strategy in this work has remarkable potential to manipulate hydrophilicity and sustained release of drug carriers, meantime it can also enrich the preparation approaches of functional nanomaterials. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01463-0.
Collapse
|
17
|
IAEA Contribution to Nanosized Targeted Radiopharmaceuticals for Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14051060. [PMID: 35631646 PMCID: PMC9146346 DOI: 10.3390/pharmaceutics14051060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/23/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
The rapidly growing interest in the application of nanoscience in the future design of radiopharmaceuticals and the development of nanosized radiopharmaceuticals in the late 2000′s, resulted in the creation of a Coordinated Research Project (CRP) by the International Atomic Energy Agency (IAEA) in 2014. This CRP entitled ‘Nanosized delivery systems for radiopharmaceuticals’ involved a team of expert scientist from various member states. This team of scientists worked on a number of cutting-edge areas of nanoscience with a focus on developing well-defined, highly effective and site-specific delivery systems of radiopharmaceuticals. Specifically, focus areas of various teams of scientists comprised of the development of nanoparticles (NPs) based on metals, polymers, and gels, and their conjugation/encapsulation or decoration with various tumor avid ligands such as peptides, folates, and small molecule phytochemicals. The research and development efforts also comprised of developing optimum radiolabeling methods of various nano vectors using diagnostic and therapeutic radionuclides including Tc-99m, Ga-68, Lu-177 and Au-198. Concerted efforts of teams of scientists within this CRP has resulted in the development of various protocols and guidelines on delivery systems of nanoradiopharmaceuticals, training of numerous graduate students/post-doctoral fellows and publications in peer reviewed journals while establishing numerous productive scientific networks in various participating member states. Some of the innovative nanoconstructs were chosen for further preclinical applications—all aimed at ultimate clinical translation for treating human cancer patients. This review article summarizes outcomes of this major international scientific endeavor.
Collapse
|
18
|
PtNPs/Short MWCNT-PEDOT: PSS-Modified Microelectrode Array to Detect Neuronal Firing Patterns in the Dorsal Raphe Nucleus and Hippocampus of Insomnia Rats. MICROMACHINES 2022; 13:mi13030488. [PMID: 35334780 PMCID: PMC8950864 DOI: 10.3390/mi13030488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023]
Abstract
Research on the intracerebral mechanism of insomnia induced by serotonin (5-HT) deficiency is indispensable. In order to explore the effect of 5-HT deficiency-induced insomnia on brain regions related to memory in rats, we designed and fabricated a microelectrode array that simultaneously detects the electrical activity of the dorsal raphe nucleus (DRN) and hippocampus in normal, insomnia and recovery rats in vivo. In the DRN and hippocampus of insomnia rats, our results showed that the spike amplitudes decreased by 40.16 and 57.92%, the spike repolarization slope decreased by 44.64 and 48.59%, and the spiking rate increased by 66.81 and 63.40%. On a mesoscopic scale, the increased firing rates of individual neurons led to an increased δ wave power. In the DRN and hippocampus of insomnia rats, the δ wave power increased by 57.57 and 67.75%. Furthermore, two segments’ δ wave slopes were also increased in two brain regions of the insomnia rats. Our findings suggest that 5-HT deficiency causes the hyperactivity of neurons in the hippocampus and DRN; the DRN’s firing rate and the hippocampal neuronal amplitude reflect insomnia in rats more effectively. Further studies on alleviating neurons affected by 5-HT deficiency and on achieving a highly effective treatment for insomnia by the microelectrode array are needed.
Collapse
|
19
|
Rattanaumpa T, Maensiri S, Ngamchuea K. Microporous carbon in the selective electro-oxidation of molecular biomarkers: uric acid, ascorbic acid, and dopamine. RSC Adv 2022; 12:18709-18721. [PMID: 35873328 PMCID: PMC9235059 DOI: 10.1039/d2ra03126d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 12/13/2022] Open
Abstract
Herein, we demonstrate the superior electrocatalytic activities of microporous carbon in the oxidation of three molecular biomarkers, ascorbic acid (AA), dopamine (DA), and uric acid (UA), which are co-present in biological fluids.
Collapse
Affiliation(s)
- Tidapa Rattanaumpa
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima, 30000, Thailand
| | - Santi Maensiri
- School of Physics, Institute of Science, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima, 30000, Thailand
| | - Kamonwad Ngamchuea
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima, 30000, Thailand
| |
Collapse
|
20
|
Nataraj N, Chen TW, Chen SM, Tseng TW, Bian Y, Sun TT, Jiang J. Metal-organic framework (ZIF-67) interwoven multiwalled carbon nanotubes as a sensing platform for rapid administration of serotonin. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.09.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Moslah M, Fredj Z, Dridi C. Development of a new highly sensitive serotonin sensor based on green synthesized silver nanoparticle decorated reduced graphene oxide. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5187-5194. [PMID: 34672314 DOI: 10.1039/d1ay01532j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrochemical detection of serotonin (5-hydroxytryptamine, 5-HT) is proposed for the first time using a cost-effective and eco-friendly nanocomposite of AgNPs and rGO which is synthesized through an in situ green reduction process using rosemary leaf extract. The synthesized nanocomposite and the elaborate thin layers have been characterized using UV-Vis, FTIR, TEM, and EIS. The sensitivity of the developed sensor was evaluated by differential pulse voltammetry. The peak current measured at a voltage of 420 mV (vs. Ag/AgCl) increased linearly in the 0.1 nM to 100 µM concentration range. A very low limit of detection of 78 pM compared to those in recent studies reported in the literature was obtained. The innovative approach was successfully applied to the determination of serotonin in spiked artificial urine samples.
Collapse
Affiliation(s)
- Maroua Moslah
- NANOMISENE Laboratory, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse (CRMN), Technopole of Sousse B. P. 334, Sahloul, Sousse 4034, Tunisia.
- University of Sousse, Higher School of Science and Technology of Hammam Sousse, 4011, Tunisia
| | - Zina Fredj
- NANOMISENE Laboratory, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse (CRMN), Technopole of Sousse B. P. 334, Sahloul, Sousse 4034, Tunisia.
| | - Chérif Dridi
- NANOMISENE Laboratory, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse (CRMN), Technopole of Sousse B. P. 334, Sahloul, Sousse 4034, Tunisia.
| |
Collapse
|
22
|
Liu X, Huang L, Qian K. Nanomaterial‐Based Electrochemical Sensors: Mechanism, Preparation, and Application in Biomedicine. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Xun Liu
- State Key Laboratory for Oncogenes and Related Genes Division of Cardiology Renji Hospital School of Medicine Shanghai Jiao Tong University 160 Pujian Road Shanghai 200127 P.R. China
- School of Biomedical Engineering Institute of Medical Robotics and Med-X Research Institute Shanghai Jiao Tong University Shanghai 200030 P.R. China
| | - Lin Huang
- Stem Cell Research Center Renji Hospital School of Medicine Shanghai Jiao Tong University 160 Pujian Road Shanghai 200127 P.R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes Division of Cardiology Renji Hospital School of Medicine Shanghai Jiao Tong University 160 Pujian Road Shanghai 200127 P.R. China
- School of Biomedical Engineering Institute of Medical Robotics and Med-X Research Institute Shanghai Jiao Tong University Shanghai 200030 P.R. China
| |
Collapse
|
23
|
Li J, Si Y, Park YE, Choi JS, Jung SM, Lee JE, Lee HJ. A serotonin voltammetric biosensor composed of carbon nanocomposites and DNA aptamer. Mikrochim Acta 2021; 188:146. [PMID: 33792757 DOI: 10.1007/s00604-021-04798-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/19/2021] [Indexed: 01/10/2023]
Abstract
A sensitive and selective voltammetric biosensor composed of layer-by-layer (LbL) self-assembly of positively charged poly(diallyldimethylammonium)-wrapped oxidized single-walled carbon nanotubes (PDDA-oSWCNTs), negatively charged serotonin (5-hydroxytryptamine, 5-HT)-specific aptamer, and tyrosinase on Au nanoparticles deposited screen printed carbon electrode was developed for measurement of 5-HT. Surface characteristics of 5-HT biosensor were explored using scanning electron microscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. The respective effects of 5-HT-specific aptamer and oSWCNTs on the detection of 5-HT were investigated by differential pulse voltammetry (DPV). The peak current at the potential of 0.29 V (vs. Ag/AgCl) increased with respect to 5-HT concentration resulting in two dynamic ranges from 0.05 to 0.5 and 1 to 20 μM with a limit of detection of 2 nM from the LbL biosensor in buffer solution, which were better than those without the LbL of aptamer and oSWCNTs. The developed biosensor was applied to the direct determination of 5-HT concentrations in undiluted healthy control and Internet gaming disorder serum samples. The results were verified by comparison with those from liquid chromatography-mass spectrometric analyses.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city, 41566, Republic of Korea
| | - Yunpei Si
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city, 41566, Republic of Korea
| | - Yae Eun Park
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jung-Seok Choi
- Department of Psychiatry, SMG-SNU Boramae Medical Center, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea
| | - Sung Mi Jung
- Environmental Fate & Exposure Research Group, Korea Institute of Toxicology (KIT), Jinju, Gyeongsangnam-do, 52834, Republic of Korea
| | - Ji Eun Lee
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | - Hye Jin Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city, 41566, Republic of Korea.
| |
Collapse
|
24
|
Ashraf G, Asif M, Aziz A, Iftikhar T, Liu H. Rice-Spikelet-like Copper Oxide Decorated with Platinum Stranded in the CNT Network for Electrochemical In Vitro Detection of Serotonin. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6023-6033. [PMID: 33496593 DOI: 10.1021/acsami.0c20645] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The specific monitoring of serotonin (ST) has provoked massive interest in therapeutic and biological science since it has been recognized as the third most significant endogenous gastrointestinal neurotransmitter. Hence, there is a great need to develop a sensitive and low-cost sensing platform for the detection of a clinically relevant ST level in biological matrices. Herein, we develop a simple two-step approach for an ultrasensitive electrochemical (EC) sensor with the Cu2O metal oxide (MO)-incorporated CNT core that has been further deposited with a transitional amount of platinum nanoparticles (Pt NPs). We presented, for the first time, the deposition of Pt NPs on the (CNTs-Cu2O-CuO) nanopetal composite via the galvanic replacement method, where copper not only acts as a reductant but a sacrificial template as well. The electrocatalytic aptitude of the fabricated EC sensing platform has been assessed for the sensitive detection of ST as a proficient biomarker in early disease diagnostics. The synergy of improved active surface area, remarkable conductivity, polarization effect induced by Pt NPs on CNTs-Cu2O-CuO nanopetals, fast electron transfer, and mixed-valence states of copper boost up the redox processes at the electrode-analyte junction. The CNTs-Cu2O-CuO@Pt-modified electrode has unveiled outstanding electrocatalytic capabilities toward ST oxidation in terms of a low detection limit of 3 nM (S/N = 3), wide linear concentration range, reproducibility, and incredible durability. Owing to the amazing proficiency, the proposed EC sensor based on the CNTs-Cu2O-CuO@Pt heterostructure has been applied for ST detection in biotic fluids and real-time tracking of ST efflux released from various cell lines as early disease diagnostic approaches.
Collapse
Affiliation(s)
- Ghazala Ashraf
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Muhammad Asif
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ayesha Aziz
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Tayyaba Iftikhar
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
25
|
Khoshnevisan K, Baharifar H, Torabi F, Sadeghi Afjeh M, Maleki H, Honarvarfard E, Mohammadi H, Sajjadi-Jazi SM, Mahmoudi-Kohan S, Faridbod F, Larijani B, Saadat F, Faridi Majidi R, Khorramizadeh MR. Serotonin level as a potent diabetes biomarker based on electrochemical sensing: a new approach in a zebra fish model. Anal Bioanal Chem 2021; 413:1615-1627. [PMID: 33501550 DOI: 10.1007/s00216-020-03122-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
Serotonin (5-HT) levels have been associated with several exclusively metabolic disorders. Herein, a new approach for 5-HT level as a novel biomarker of diabetes mellitus is considered using a simple nanocomposite and HPLC method. Reduced graphene oxide (rGO) comprising gold nanoparticles (AuNPs) was decorated with 18-crown-6 (18.Cr.6) to fabricate a simple nanocomposite (rGO-AuNPs-18.Cr.6). The nanocomposite was positioned on a glassy carbon electrode (GCE) to form an electrochemical sensor for the biomarker 5-HT in the presence of L-tryptophan (L-Trp), dopamine (DA), ascorbic acid (AA), urea, and glucose. The nanocomposite exhibited efficient catalytic activity for 5-HT detection by square-wave voltammetry (SWV). The proposed sensor displayed high selectivity, excellent reproducibility, notable anti-interference ability, and long-term stability even after 2 months. SWV defined a linear range of 5-HT concentration from 0.4 to 10 μg L-1. A diabetic animal model (diabetic zebrafish model) was then applied to investigate 5-HT as a novel biomarker of diabetes. A limit of detection (LOD) of about 0.33 μg L-1 was found for the diabetic group and 0.15 μg L-1 for the control group. The average levels of 5-HT obtained were 9 and 2 μg L-1 for control and diabetic groups, respectively. The recovery, relative standard deviation (RSD), and relative error (RE) were found to be about 97%, less than 2%, and around 3%, respectively. The significant reduction in 5-HT level in the diabetic group compared to the control group proved that the biomarker 5-HT can be applied for the early diagnosis of diabetes mellitus.
Collapse
Affiliation(s)
- Kamyar Khoshnevisan
- Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran. .,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran. .,Zebrafish Core Facility, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran.
| | - Hadi Baharifar
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Farzad Torabi
- School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran.,Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran
| | - Mahsa Sadeghi Afjeh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| | - Hassan Maleki
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Elham Honarvarfard
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699-5810, USA
| | - Hassan Mohammadi
- Zebrafish Core Facility, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| | - Sayed Mahmoud Sajjadi-Jazi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran.,Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| | - Sadegh Mahmoudi-Kohan
- School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran.,Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran
| | - Farnoush Faridbod
- School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran.,Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| | - Farshid Saadat
- Department of Immunology, School of Medicine, Guilan University of Medical Sciences, Rasht, 41887-94755, Iran
| | - Reza Faridi Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Mohammad Reza Khorramizadeh
- Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran. .,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran. .,Zebrafish Core Facility, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran.
| |
Collapse
|
26
|
Chaudhary C, Kumar S, Chandra R. Hierarchical structure of molybdenum disulfide-reduced graphene oxide nanocomposite for the development of a highly efficient serotonin biosensing platform. NEW J CHEM 2021. [DOI: 10.1039/d1nj03534g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molybdenum disulfide-reduced graphene oxide nanocomposite based immunosensor for the serotonin detection.
Collapse
Affiliation(s)
- Chhaya Chaudhary
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Suveen Kumar
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi-110007, India
- Dr B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi-110007, India
| |
Collapse
|
27
|
Joseph T, Thomas J, Thomas T, Thomas N. Selective nanomolar electrochemical detection of serotonin, dopamine and tryptophan using TiO 2/RGO/CPE – influence of reducing agents. NEW J CHEM 2021. [DOI: 10.1039/d1nj03697a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
TiO2/RGO nanocomposites were synthesised via a simple one-pot hydrothermal method and used as a modifier in carbon paste electrode for the sensitive determination of serotonin.
Collapse
Affiliation(s)
- Teena Joseph
- Department of Chemistry, Nirmalagiri College, Kannur, Kerala, India
| | - Jasmine Thomas
- Department of Chemistry, Nirmalagiri College, Kannur, Kerala, India
| | - Tony Thomas
- Department of Chemistry, Deva Matha College, Kuravilangad, Kottayam, Kerala, India
| | - Nygil Thomas
- Department of Chemistry, Nirmalagiri College, Kannur, Kerala, India
| |
Collapse
|
28
|
Monophasic molybdenum selenide-reduced graphene oxide nanocomposite sheets based immunosensing platform for ultrasensitive serotonin detection. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105344] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Wu Y, Yang X, Liu S, Xing Y, Peng J, Peng Y, Ni G, Jin X. One-step synthesis of Ni(OH) 2/MWCNT nanocomposites for constructing a nonenzymatic hydroquinone/O 2 fuel cell. RSC Adv 2020; 10:39447-39454. [PMID: 35515406 PMCID: PMC9057427 DOI: 10.1039/d0ra00622j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 10/19/2020] [Indexed: 01/01/2023] Open
Abstract
In this work, a H-type hydroquinone/O2 fuel cell was assembled and shows high energy density in neutral phosphate buffer solution at moderate temperature. The anodic material, Ni(OH)2/MWCNTs, was synthesized by a one-step hydrothermal synthesis method to oxidize hydroquinone. The cathode material, Pt/MWCNTs, was obtained by an electrodeposition method, and shows great oxygen reduction reaction (ORR) activity. The properties and the morphology of Ni(OH)2/MWCNT nanocomposites were characterized by TEM, XPS, EDS-mapping and electrochemical methods, like cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results show that Ni(OH)2/MWCNTs can effectively oxidize hydroquinone and play a dominant role in enhancing the fuel cell performance. The nonenzymatic fuel cell possesses a high power density of 0.24 mW cm-2 at a cell potential of 0.49 V.
Collapse
Affiliation(s)
- Yuan Wu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University Yinchuan 750021 China
- National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Xiaonan Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University Yinchuan 750021 China
- National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Shuhui Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University Yinchuan 750021 China
- National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Yonglei Xing
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University Yinchuan 750021 China
- National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Juan Peng
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University Yinchuan 750021 China
- National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Yage Peng
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University Yinchuan 750021 China
- National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Gang Ni
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University Yinchuan 750021 China
- National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Xiaoyong Jin
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University Yinchuan 750021 China
- National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| |
Collapse
|
30
|
Shahmoradi L, Ramezani A, Atlasi R, Namazi N, Larijani B. Visualization of knowledge flow in interpersonal scientific collaboration network endocrinology and metabolism research institute. J Diabetes Metab Disord 2020; 20:815-823. [PMID: 34222091 DOI: 10.1007/s40200-020-00644-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
Purpose Research collaborations can help to increase scientific productivity. The purpose of the present study was to draw up the knowledge flow network of the Endocrinology and Metabolism Research Institute (EMRI) affiliated to Tehran University of Medical Sciences. Methods The present study is a descriptive cross-sectional study on the publications of the EMRI. Web of Science Core collection databases were searched for the EMRI publications between 2002 to November 2019. Besides, publications were classified and visualized based on authorships (institutes and country of affiliation), and keywords (co-occurrence and trend). Scientometric methods including VOSviewer and HistCite were used for descriptive statistics and data analysis. Results Total citations to the records were 47,528 and papers were published in 916 journals. The annual growth rate of publications and the citation was 14.2% and 18.9%, respectively. A total of 9466 authors from 136 countries collaborated in the publications. The co-authorship patterns showed that the average co-authorship and collaboration coefficient was 3.3 and 0.19. Conclusion Knowledge flow between EMRI researchers with international collaborations, engagement with leading countries, and interdisciplinary collaborations have an increasing trend. To develop a full picture of co-authorship, using social network analysis indicators are suggested for future studies.
Collapse
Affiliation(s)
- Leila Shahmoradi
- Halal Research Center of IRI, FDA, Tehran, Iran.,Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Aboozar Ramezani
- Department of Medical Library and Information Sciences, Virtual School, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasha Atlasi
- Evidence Based Practice Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazli Namazi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Yaqoob AA, Ahmad H, Parveen T, Ahmad A, Oves M, Ismail IMI, Qari HA, Umar K, Mohamad Ibrahim MN. Recent Advances in Metal Decorated Nanomaterials and Their Various Biological Applications: A Review. Front Chem 2020; 8:341. [PMID: 32509720 PMCID: PMC7248377 DOI: 10.3389/fchem.2020.00341] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Nanoparticles (nanoparticles) have received much attention in biological application because of their unique physicochemical properties. The metal- and metal oxide-supported nanomaterials have shown significant therapeutic effect in medical science. The mechanisms related to the interaction of nanoparticles with animal and plant cells can be used to establish its significant role and to improve their activity in health and medical applications. Various attempts have been made to discuss the antibiotic resistance and antimicrobial activity of metal-supported nanoparticles. Despite all these developments, there is still a need to investigate their performance to overcome modern challenges. In this regard, the present review examines the role of various types of metal-supported nanomaterials in different areas such as antibacterial, antifungal, anticancer, and so on. Based on the significant ongoing research and applications, it is expected that metal-supported nanomaterials play an outstanding role not only in medical but also in other important areas.
Collapse
Affiliation(s)
- Asim Ali Yaqoob
- School of Chemical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Hilal Ahmad
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi, India
| | | | - Akil Ahmad
- School of Industrial Technology, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Iqbal M. I. Ismail
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda A. Qari
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid Umar
- School of Chemical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | | |
Collapse
|
32
|
Determination of the biomarker L-tryptophan level in diabetic and normal human serum based on an electrochemical sensing method using reduced graphene oxide/gold nanoparticles/18-crown-6. Anal Bioanal Chem 2020; 412:3615-3627. [DOI: 10.1007/s00216-020-02598-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/02/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
|
33
|
Hosseini S, Azari P, Cardenas-Benitez B, Martínez-Guerra E, Aguirre-Tostado FS, Vázquez-Villegas P, Pingguan-Murphy B, Madou MJ, Martinez-Chapa SO. A LEGO inspired fiber probe analytical platform for early diagnosis of Dengue fever. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110629. [DOI: 10.1016/j.msec.2020.110629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/18/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022]
|
34
|
Wang X, Zhang Q, Kang Q, Zou G, Shen D. A high sensitive single luminophore ratiometric electrochemiluminescence immunosensor in combined with anodic stripping voltammetry. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Khoshnevisan K, Honarvarfard E, Torabi F, Maleki H, Baharifar H, Faridbod F, Larijani B, Khorramizadeh MR. Electrochemical detection of serotonin: A new approach. Clin Chim Acta 2019; 501:112-119. [PMID: 31715139 DOI: 10.1016/j.cca.2019.10.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 11/24/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is an important neurotransmitter which plays a significant role in various functions in the body, such as appetite, emotions, and autonomic functions. It is well known that biomarker 5-HT levels can be correlated to several diseases and disorders such as depression, anxiety, irritable bowel, and sleep trouble. Among various methods for detecting the 5-HT biomarker, electrochemical techniques have attracted great interest due to their low cost and ease of operation. However, sensitive and precise electrochemical detection of 5-HT levels is not possible using bare electrodes, thus requiring electrode modification. The present review aims to describe the different electroanalytical methods for 5-HT detection using various surface-modified electrodes such as glassy carbon, carbon fiber, diamond, graphite, and metal electrodes modified with conductive polymers. Perspectives and the modification of electrode surface using applied polymers for 5-HT detection have also been presented.
Collapse
Affiliation(s)
- Kamyar Khoshnevisan
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Elham Honarvarfard
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Farzad Torabi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran; Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Hassan Maleki
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Baharifar
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farnoush Faridbod
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Khorramizadeh
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Liang W, Rong Y, Fan L, Zhang C, Dong W, Li J, Niu J, Yang C, Shuang S, Dong C, Wong WY. Simultaneous electrochemical sensing of serotonin, dopamine and ascorbic acid by using a nanocomposite prepared from reduced graphene oxide, Fe3O4 and hydroxypropyl-β-cyclodextrin. Mikrochim Acta 2019; 186:751. [DOI: 10.1007/s00604-019-3861-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/19/2019] [Indexed: 11/28/2022]
|
37
|
Recent Advances of Cellulase Immobilization onto Magnetic Nanoparticles: An Update Review. MAGNETOCHEMISTRY 2019. [DOI: 10.3390/magnetochemistry5020036] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cellulosic enzymes, including cellulase, play an important role in biotechnological processes in the fields of food, cosmetics, detergents, pulp, paper, and related industries. Low thermal and storage stability of cellulase, presence of impurities, enzyme leakage, and reusability pose great challenges in all these processes. These challenges can be overcome via enzyme immobilization methods. In recent years, cellulase immobilization onto nanomaterials became the focus of research attention owing to the surface features of these materials. However, the application of these nanomaterials is limited due to the efficacy of their recovery process. The application of magnetic nanoparticles (MNPs) was suggested as a solution to this problem since they can be easily removed from the reaction mixture by applying an external magnet. Recently, MNPs were extensively employed for enzyme immobilization owing to their low toxicity and various practical advantages. In the present review, recent advances in cellulase immobilization onto functionalized MNPs is summarized. Finally, we discuss enhanced enzyme reusability, activity, and stability, as well as improved enzyme recovery. Enzyme immobilization techniques offer promising potential for industrial applications.
Collapse
|