1
|
Yuan J, Feng Y, Ma X, Yang X, Cheng Z. Detection of ag + and cysteine using rapid synthesis of copper nanoclusters with dual ligands. Food Chem 2025; 477:143616. [PMID: 40023952 DOI: 10.1016/j.foodchem.2025.143616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/09/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
In this work, the copper nanoclusters with red fluorescence (CuNCs@DAMP) were prepared with 4,6-diamino-2-mercaptopyrimidine (DAMP) as a ligand by a simple one-pot method, but the CuNCs@DAMP couldn't respond to silver ions (Ag+) and L-cysteine (Cys). Then glutathione (GSH) modified CuNCs@DAMP (GSH-CuNCs@DAMP) with short preparation time (10 min) was found that not only its maximum emission peak underwent a significant blue-shift (from 705 to 605 nm), but also it could selectively detect Ag+ and Cys with LOD (limit of detection) of 0.018 and 0.19 μM and the linear ranges of 0.05-10.0 and 0.6-73.0 μM. Meanwhile, the synthetic conditions of GSH-CuNCs@DAMP and the fluorescence quenching mechanisms of GSH-CuNCs@DAMP by Ag+ and Cys were studied intensively. Furthermore, the CuNCs was successfully employed to monitor Ag+ and Cys in real samples with good recoveries, which hinted that a simple, fast and sensitive method was provided for Ag+ and Cys assays.
Collapse
Affiliation(s)
- Jingxue Yuan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Yao Feng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Xue Ma
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Xin Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Zhengjun Cheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China; Institute of Applied Chemistry, China West Normal University, Nanchong 637002, China.
| |
Collapse
|
2
|
Xue Y, Bao C, Liu H, Ma F, Yang M, Li X. BSA-Assisted Synthesis of Au Nanoclusters/MnO 2 Nanosheets for Fluorescence "Switch-On" Detection of Alkaline Phosphatase. BIOSENSORS 2025; 15:49. [PMID: 39852099 PMCID: PMC11763645 DOI: 10.3390/bios15010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
A fluorescence probe for "switch-on" detection of alkaline phosphatase (ALP) was developed based on Au nanoclusters anchored MnO2 nanosheets (Au NCs-MnO2 NSs), which were synthesized using bovine serum albumin (BSA) as template through a simple one-pot approach. In the sensing system, MnO2 NSs function as both energy acceptors and target identifiers, effectively quenches the fluorescence of Au NCs via fluorescence resonance energy transfer (FRET). The presence of ALP catalyzes the hydrolysis of L-ascorbic acid-2-phosphate (AAP) to ascorbic acid (AA), reducing MnO2 NSs to Mn2+ and facilitate the fluorescence recovery of Au NCs. The fluorescence assay offers the advantages of facile preparation, cost-effectiveness, good specificity, and high sensitivity. Moreover, the assay exhibits a broad linear range (0.005 U/mL to 8 U/mL) for ALP detection with a remarkable limit of detection of 0.0015 U/mL. Notably, this assay demonstrates promising applicability for detection ALP in human serum samples, thereby providing valuable potential for clinical applications.
Collapse
Affiliation(s)
- Yijiong Xue
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; (Y.X.); (C.B.); (H.L.); (F.M.)
- Xia Duopu Health Center of Ningxiang, Changsha 410605, China
| | - Chengqi Bao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; (Y.X.); (C.B.); (H.L.); (F.M.)
| | - Hui Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; (Y.X.); (C.B.); (H.L.); (F.M.)
| | - Fanghui Ma
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; (Y.X.); (C.B.); (H.L.); (F.M.)
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; (Y.X.); (C.B.); (H.L.); (F.M.)
- Furong Labratory, Changsha 410083, China
| | - Xiaoqing Li
- Furong Labratory, Changsha 410083, China
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
3
|
Barnwal N, Nandi N, Sarkar P, Sahu K. White Light Emission from Zn(II) and DMSO-Induced Copper Nanocluster Assembly. Chem Asian J 2024; 19:e202400633. [PMID: 39031487 DOI: 10.1002/asia.202400633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/05/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
An assembly of metal nanoclusters driven by appropriate surface ligands and solvent environment may engender entirely new photoluminescence (PL). Herein, we first synthesize histidine (His) stabilized copper nanoparticles (CuNPs) and, subsequently, copper nanoclusters (CuNCs) from it using 3-mercaptopropionic acid (MPA) as an etchant. The CuNCs originally emit bluish-green (λem=470 nm) PL with a low quantum yield (QY∼1.8 %). However, it transformed into a dual-emissive nanocluster assembly (Zn-CuNCs) in the presence of Zn(II) salt, having a distinct blue emission band (λem=420 nm) and a red emission band (λem=615 nm) with eight times QY (∼9.1 %) enhancement. The temperature-dependent emission spectra of Zn-CuNCs depicted that the blue emission band persists for all the temperature ranges (0-80 °C) while the red emission band vanishes at high temperatures (70-80 °C). Thus, the blue emission may originate from the locally excited state (LES) emission of the nanoclusters, while the red emission originates from through-space interaction (TSI) and Cu(I)…Cu(I) interaction within the assembly. Adding dimethyl sulfoxide (DMSO) further modifies the emission intensities; the red band was amplified four times, while the blue band was diminished by 2.5 times. The transmission electron microscopy (TEM) images unveiled that the Zn-CuNCs are a large assembly of tiny nanoclusters, which become more compact in DMSO. The blue emission possesses steady-state fluorescence anisotropy, while the red emission shows no anisotropy. Further, near-perfect white light emission(WLE) was rendered with CIE coordinates of (0.33, 0.32) by combining the dual emission of the Zn-CuNCs with the original green emission of the CuNCs.
Collapse
Affiliation(s)
- Neha Barnwal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nilanjana Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Priyanka Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Kalyanasis Sahu
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
4
|
Yuan L, Zhang Q, Yu L, Wu Y, Wang C, Shao C, Lu S. Ligand-Induced Red-Emitting Copper Nanoclusters for Selective Fluorescence Determination of Aluminum Ions. Inorg Chem 2024; 63:16177-16185. [PMID: 39001841 DOI: 10.1021/acs.inorgchem.4c01683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Monitoring levels of excessive aluminum ions (Al3+) is crucial as it can harm the immune system, reduce enzyme activity, cause cell death, and damage environmental and biological systems. Developing a fast and efficient Al3+ ion determination method is the key to addressing this issue. In this work, red-emitting fluorescent copper nanoclusters (CuNCs) were synthesized using N-acetyl-l-cysteine (NAC) as a ligand and CuCl2·2H2O through a facile procedure. The NAC-CuNCs exhibited a large Stokes shift and displayed remarkable luminescence properties. A method for detecting Al3+ through a fluorescence probe was proposed. Its fluorescence mechanism was also explored. The probe showed rapid responsiveness (within 1 min) to Al3+ ion determination. The detection limit for Al3+ was found to be 19.7 nM, which is significantly lower than the WHO's value and most reports, with a linear range of 0-52.9 μM. The determination of Al3+ concentrations in actual water using the fluorescence probe yielded satisfactory outcomes. Moreover, the visual detection of Al3+ ions was also achieved through a smartphone, which can enhance its fast and practical detection.
Collapse
Affiliation(s)
- Lili Yuan
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, China
| | - Qian Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, China
| | - Lina Yu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, China
| | - Yanan Wu
- School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
| | - Caiyun Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, China
| | - Congying Shao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, China
| | - Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
5
|
Wang J, Ding X, Lan Z, Liu G, Hou S, Hou S. Imidazole Compounds: Synthesis, Characterization and Application in Optical Analysis. Crit Rev Anal Chem 2024; 54:897-922. [PMID: 35001757 DOI: 10.1080/10408347.2021.2023459] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Imidazole is a five-membered heterocyclic ring containing three carbon atoms, two nitrogen atoms, and two double bonds. Among two nitrogen atoms, one of which carries with a hydrogen atom is a pyrrole-type nitrogen atom, another is a pyridine type nitrogen atom. Hence, the imidazole ring belongs to the π electron-rich aromatic ring and can accept strong suction to the electronic group. Moreover, the nitrogen atom of the imidazole ring is coordinated with metal ions to form metal-organic frameworks. In recent years, because of imidazole compounds' unique optical properties, their applications have attracted more and more attention in optical analysis. Thus, this review has summarized the synthesis, characterization, and application with emphasis on the research progress of imidazole compounds in optical analysis, including fluorescence probe, colorimetric probe, electrochemiluminescence sensor, fiber optical sensor, surface plasmon resonance, etc. This paper will suggest the direction for the development of imidazole-containing sensors with high sensitivity and selectivity.
Collapse
Affiliation(s)
- Junjie Wang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P.R. China
| | - Xin Ding
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P.R. China
| | - Zhenni Lan
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P.R. China
| | - Guangyan Liu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P.R. China
| | - Shili Hou
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P.R. China
| | - Shifeng Hou
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P.R. China
- National Engineering and Technology Research Center for Colloidal Materials, Shandong University, Jinan, P.R. China
| |
Collapse
|
6
|
Wang T, Tan HS, Wang AJ, Li SS, Feng JJ. Fluorescent metal nanoclusters: From luminescence mechanism to applications in enzyme activity assays. Biosens Bioelectron 2024; 257:116323. [PMID: 38669842 DOI: 10.1016/j.bios.2024.116323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Metal nanoclusters (MNCs) have outstanding fluorescence property and biocompatibility, which show widespread applications in biological analysis. Particularly, evaluation of enzyme activity with the fluorescent MNCs has been developed rapidly within the past several years. In this review, we first introduced the fluorescent mechanism of mono- and bi-metallic nanoclusters, respectively, whose interesting luminescence properties are mainly resulted from electron transfer between the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels. Meanwhile, the charge migration within the structure occurs through ligand-metal charge transfer (LMCT) or ligand-metal-metal charge transfer (LMMCT). On such foundation, diverse enzyme activities were rigorously evaluated, including three transferases and nine hydrolases, in turn harvesting rapid research progresses within past 5 years. Finally, we summarized the design strategies for evaluating enzyme activity with the MNCs, presented the major issues and challenges remained in the relevant research, coupled by showing some improvement measures. This review will attract researchers dedicated to the studies of the MNCs and provide some constructive insights for their further applications in enzyme analysis.
Collapse
Affiliation(s)
- Tong Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Hong-Sheng Tan
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Shan-Shan Li
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
7
|
Wang X, Yin Z, Liu H, Wang Z, Zhu X, Ye Y. A Novel NIR Fluorescence Probe with AIE Property to Image Viscosity in Nystatin-Induced Cell Model. J Fluoresc 2024:10.1007/s10895-024-03706-9. [PMID: 38676771 DOI: 10.1007/s10895-024-03706-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024]
Abstract
As one of the most significant parameters in cellular microenvironment, viscosity levels could be used to determine the metabolic process of bioactive substances within cells. Abnormal viscosity levels are closely associated with a series of diseases. Therefore, the design and synthesis of fluorescent probes that can monitor changes of intracellular viscosity in real-time is of great significance for the study of disease development process. Here, a new viscosity-recognized NIR fluorescence probe W1 based on quinoline-malonitrile is synthesized, and it is not susceptible to interference substances. Besides, AIE probe W1 shows fast response, excellent photostability, low cytotoxicity, good linear relationship between fluorescence intensity value and viscosity. Based on the above advantages, probe W1 is used to image the change of viscosity level in the cell model induced by nystatin.
Collapse
Affiliation(s)
- Xiaokai Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhan Yin
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Haoran Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Ziming Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaofei Zhu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yong Ye
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
8
|
Cheng B, Xia X, Han Z, Yu H, Xie Y, Guo Y, Yao W, Qian H, Cheng Y. A ratiometric fluorescent "off-on" sensor for acrylamide detection in toast based on red-emitting copper nanoclusters stabilized by bovine serum albumin. Food Chem 2024; 437:137878. [PMID: 37913709 DOI: 10.1016/j.foodchem.2023.137878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
Acrylamide, as a Class 2A carcinogen, poses serious threats to human health. To achieve rapid and accurate determination of acrylamide in food, a ratiometric fluorescent "off-on" sensor was designed by incorporating red-emitting copper nanoclusters and glutathione. Copper nanoclusters with bimodal emission at 395 nm and 650 nm (excited at 310 nm) were synthesized by using bovine serum albumin as the ligand and ascorbic acid as the reductant. With glutathione addition, the fluorescence intensity at 650 nm gradually decreased, while the case at 395 nm slightly increased. The quenched fluorescence at 650 nm was subsequently restored by acrylamide through thiol-ene Michael addition reaction between acrylamide and glutathione. The constructed sensor showed excellent performance towards acrylamide detection in the range of 5-300 μM with a detection limit of 1.48 μM, and was further applied to real-sample detection of acrylamide in toast and exhibited good recoveries (90.29-101.30 %), indicating potential applications of this sensor.
Collapse
Affiliation(s)
- Baoxin Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiuhua Xia
- Wuxi Vocational Institute of Commerce, Wuxi 214122, China
| | - Zhiqiang Han
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Hang Yu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yufei Xie
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yahui Guo
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Weirong Yao
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - He Qian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
9
|
Meng Z, Sun S, Pu X, Wang J, Liao X, Huang Z, Deng Y, Yin G. Ratiometric fluorescence detection of dopamine based on copper nanoclusters and carbon dots. NANOTECHNOLOGY 2024; 35:235502. [PMID: 38417161 DOI: 10.1088/1361-6528/ad2e49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/28/2024] [Indexed: 03/01/2024]
Abstract
Nanoclusters for fluorescence detection are generally comprised of rare and expensive noble metals, and the nanoclusters based on more affordable transition metal have attracted increasing attention. This study designed a ratiometric fluorescent probe to detect dopamine (DA), an important neurotransmitter. With carbon dots encapsulated within silica (CDs@SiO2) as the reference, the emitted reference signal was almost unchanged due to the protection of inert silicon shell. Meanwhile, copper nanoclusters modified with 3-aminophenyl boronic acid (APBA-GSH-CuNCs) provided the sensing signal, in which the phenylboric acid could specifically recognize the cis-diol structure of DA, and caused the fluorescence quenching by photoinduced electron transfer. This dual emission ratiometric fluorescent probe exhibited high sensitivity and anti-interference, and was able to selectively responded to DA with a linear range of 0-1.4 mM, the detection limit of 5.6 nM, and the sensitivity of 815 mM-1. Furthermore, the probe successfully detected DA in human serum samples, yielding recoveries ranging from 92.5% to 102.7%. Overall, this study highlights the promising potential of this ratiometric probe for detecting DA.
Collapse
Affiliation(s)
- Zhihan Meng
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Shupei Sun
- College of Optoelectronics Engineering, Chengdu University of Information Technology, Chengdu 610225, Sichuan, People's Republic of China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Juang Wang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Xiaoming Liao
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Yi Deng
- College of Chemical Engineering, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| |
Collapse
|
10
|
Guo Z, Zhou L, Chen X, Song Q. Carbon-coated copper nanocrystals with enhanced peroxidase-like activity for sensitive colorimetric determination of 2,4-dinitrophenylhydrazine. Mikrochim Acta 2023; 191:37. [PMID: 38110783 DOI: 10.1007/s00604-023-06127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023]
Abstract
Carbon-coated copper nanocrystals (CuNCs) with peroxidase-like activity were hydrothermally prepared by using copper acetate, citric acid (CA) and histidine (His) as the precursors. Various shaped CuNCs, including urchin-like, slab-like and spherical appearance were facilely prepared by addition of different amount of NaNO2 in the precursor solutions. When 3,3',5,5'-tetramethylbenzidine (TMB) was used as the substrate, the CuNCs with urchin-like appearance have greatest peroxidase-like activity and their Michaelis-Menten constant (Km) and the maximum rate constant (νmax) are respectively 8.8 and 1.2 times higher than that obtained from horseradish peroxidase (HRP). The production of reactive oxygen species (ROS) was confirmed by radical quenching and electron spin resonance (ESR) tests. Subsequent studies have found that the CuNCs catalyzed color reaction of TMB can be selectively quenched by the environmental pollutant 2,4-dinitrophenylhydrazine (2,4-DNPH). Thus a new colorimetric method for the determination of 2,4-DNPH with a linear range of 0.60-20 µM was developed and a limit of detection (LOD) as low as 0.166 µM was achieved. The results obtained not only reveal the tunability of the peroxidase-like activity of Cu-based nanomaterials, but also provide a new method for the sensitive determination of environmental contaminate.
Collapse
Affiliation(s)
- Zhanghong Guo
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Lin Zhou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xuan Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Qijun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
11
|
Yue JY, Pan ZX, Song LP, Yu WJ, Zheng H, Wang JC, Yang P, Tang B. Mixed-Linkage Donor-Acceptor Covalent Organic Framework as a Turn-On Fluorescent Sensor for Aliphatic Amines. Anal Chem 2023; 95:17400-17406. [PMID: 37967038 DOI: 10.1021/acs.analchem.3c03985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Amine determination is crucial to our daily life, including the prevention of pollution, the treatment of certain disorders, and the evaluation of food quality. Herein, a mixed-linkage donor-acceptor covalent organic framework (named DSE-COF) was first constructed by the polymerization between 2,4-dihydroxybenzene-1,3,5-tricarbaldehyde (DTA) and 4,4'-(benzo[c][1,2,5]selenadiazole-4,7-diyl)dianiline (SEZ). DSE-COF displayed superior turn-on fluorescent responses to primary, secondary, and tertiary aliphatic amines, such as cadaverine, isopropylamine, sec-butylamine, cyclohexylamine, hexamethylenediamine, di-n-butylamine, and triethylamine in absolute acetonitrile than other organic species. Further experiments and theoretical calculations demonstrated that the combination of intramolecular charge transfer (ICT) and photoinduced electron transfer (PET) effects between the DSE-COF and aliphatic amines resulted in enhanced fluorescence. Credibly, DSE-COF can quantitatively detect cadaverine content in actual pork samples with satisfactory results. In addition, DSE-COF-based test papers could rapidly monitor cadaverine from real pork samples, manifesting the potential application of COFs in food quality inspection.
Collapse
Affiliation(s)
- Jie-Yu Yue
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Zi-Xian Pan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Li-Ping Song
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Wen-Jiang Yu
- Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Institute for Food and Drug Control, Jinan 250101, P. R. China
| | - Hong Zheng
- Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Institute for Food and Drug Control, Jinan 250101, P. R. China
| | - Jian-Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Peng Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
- Laoshan Laboratory, Qingdao 266200, P. R. China
| |
Collapse
|
12
|
Based on intervening PCR for detection of alkaline phosphatase and zearalenone. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Huang X, Zhang S, Liu Z, Cao W, Li G, Gao W, Tang B. Novel AIE Probe for In Situ Imaging of Protein Sulfonation to Assess Cigarette Smoke-Induced Inflammatory Damage. Anal Chem 2023; 95:1967-1974. [PMID: 36625168 DOI: 10.1021/acs.analchem.2c04267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cysteine sulfonic acid, a product of protein oxidative damage, is an important sign by which the body and cells sense oxidative stress. Cigarette smoke (CS) can trigger inflammatory reactions in humans that lead to higher levels of oxidative stress and reactive oxygen species (ROS) in the body. Available evidence indicates a possible relationship between protein oxidative damage and cigarette smoke, which is poorly understood due to the limitations of analytical techniques. Herein, we developed a donor-acceptor structured aggregation-induced emission (AIE) fluorescence probe H-1, which exhibited excellent optical properties for the highly sensitive and specific detection of sulfonic acid biomacromolecules. The probe could be easily synthesized by click chemistry conjugating triazole heterocycles onto a triphenylamine fluorophore, followed by a cationization reaction. Due to low cytotoxity, the probe was successfully applied for in situ imaging of intracellular protein sulfonation, achieving visualization of protein sulfonation in cigarette smoke stimulation-induced inflammatory RAW264.7 cell models. Moreover, an immunofluorescence study of the aorta and lung revealed that significant blue fluorescence signals could be observed only in CS-stimulated vascular. It indicated that CS-stimulated vascular sulfonation injury can be monitored using H-1. This study will provide an efficient method for revealing CS-induced oxidative damage-relevant diseases.
Collapse
Affiliation(s)
- Xiaoqing Huang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Shengyue Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Zhenhua Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Wenhua Cao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Guanghan Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Wen Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
14
|
Yang P, Xiang S, Li R, Ruan H, Chen D, Zhou Z, Huang X, Liu Z. Highly Stretchable and Sensitive Flexible Strain Sensor Based on Fe NWs/Graphene/PEDOT:PSS with a Porous Structure. Int J Mol Sci 2022; 23:8895. [PMID: 36012160 PMCID: PMC9408232 DOI: 10.3390/ijms23168895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
With the rapid development of wearable smart electronic products, high-performance wearable flexible strain sensors are urgently needed. In this paper, a flexible strain sensor device with Fe NWs/Graphene/PEDOT:PSS material added under a porous structure was designed and prepared. The effects of adding different sensing materials and a different number of dips with PEDOT:PSS on the device performance were investigated. The experiments show that the flexible strain sensor obtained by using Fe NWs, graphene, and PEDOT:PSS composite is dipped in polyurethane foam once and vacuum dried in turn with a local linearity of 98.8%, and the device was stable up to 3500 times at 80% strain. The high linearity and good stability are based on the three-dimensional network structure of polyurethane foam, combined with the excellent electrical conductivity of Fe NWs, the bridging and passivation effects of graphene, and the stabilization effect of PEDOT:PSS, which force the graphene-coated Fe NWs to adhere to the porous skeleton under the action of PEDOT:PSS to form a stable three-dimensional conductive network. Flexible strain sensor devices can be applied to smart robots and other fields and show broad application prospects in intelligent wearable devices.
Collapse
Affiliation(s)
- Ping’an Yang
- School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Sha Xiang
- School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Rui Li
- School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Haibo Ruan
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Dachao Chen
- School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Zhihao Zhou
- School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xin Huang
- School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Zhongbang Liu
- School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
15
|
Zhang CX, Wang Y, Duan X, Chen K, Li HW, Wu Y. Development of cytidine 5′-monophosphate-protected gold-nanoclusters to be a direct luminescent substrate via aggregation-induced emission enhancement for ratiometric determination of alkaline phosphatase and inhibitor evaluation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Gao S, Wu R, Zhang Q. A novel strategy for programmable DNA tile self-assembly with a DNAzyme-mediated DNA cross circuit. NEW J CHEM 2022. [DOI: 10.1039/d1nj06012k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The proposed strategy promotes the controllability and modularization of trigger elements, realizes programmable molecular self-assembly, and has broad applications for the construction of DNA nanodevices.
Collapse
Affiliation(s)
- Siqi Gao
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Ministry of Education, Dalian 116622, China
| | - Ranfeng Wu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qiang Zhang
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Ministry of Education, Dalian 116622, China
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
17
|
Yan F, Yi C, Sun J, Zang Y, Wang Y, Xu M, Xu J. Self-quenching-resistant solid-state carbon dots for mechanism and applications. Mikrochim Acta 2021; 188:412. [PMID: 34741664 DOI: 10.1007/s00604-021-05068-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022]
Abstract
Solid-state carbon dots (SCDs) have been widely investigated by scholars owing to their stability, environmental friendliness, and their good optical properties. The current studies on carbon dots (CDs) are mainly focused on the solutions of CDs, while the researches on SCDs are relatively few in comparison. Nowadays, the fabrication and design of high-performance SCDs have attracted much interest. However, due to resonance energy transfer and π-π interactions, CDs undergo aggregation-induced quenching (ACQ) phenomena. This poses an obstacle to the acquisition of SCDs and affects their luminescence performance. Publications of the past 5 years are reviewed on how to suppress the ACQ phenomenon and improve the fluorescence and phosphorescence emission of CDs (Ref. 87) and about the mechanism of achieving the luminescence of SCDs. Then, the applications of SCDs in the fields of luminescent devices, anti-counterfeiting, and detection are outlined. The concluding section analyzes the current challenges faced by SCDs and provides an outlook. Mechanism of photoluminescence from solid state carbon dots.
Collapse
Affiliation(s)
- Fanyong Yan
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, People's Republic of China.
| | - Chunhui Yi
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, People's Republic of China.,School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Jingru Sun
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Yueyan Zang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Yao Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Ming Xu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Jinxia Xu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, People's Republic of China
| |
Collapse
|
18
|
Zhu X, Xu H, Zhan Y, Li W, Dong Y, Yu L, Chi Y, Ye H. A simple enzyme-catalyzed reaction induced "switch" type fluorescence biosensor based on carbon nitride nanosheets for the assay of alkaline phosphatase activity. Analyst 2021; 145:6277-6282. [PMID: 32940263 DOI: 10.1039/d0an01224f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An enzyme-catalyzed fluorescence "switch" type sensor was constructed for the determination of alkaline phosphatase (ALP) activity by combining the fluorescence quenching effect of Ag+ on ultrathin g-C3N4 nanosheets (CNNSs) with the simple redox reaction of AA and Ag+. Briefly, Ag+ exhibits a significant quenching effect on the fluorescence of CNNSs. Thus the fluorescence signal of the CNNS-Ag+ system is extremely weak even in the presence of l-ascorbic acid-2-phosphate (AAP) ("off" state). When ALP coexists in the system, the enzyme can specifically catalyze the hydrolysis of AAP to form ascorbic acid (AA), which reduces Ag+ to Ag0. In this case, the fluorescence signal of the system is recovered ("on" state). Based on this principle, a signal-enhanced CNNS fluorescence sensor was developed to determine the activity of alkaline phosphatase. The experimental results show that the detection range of alkaline phosphatase is 0.5-20 U L-1, and the detection limit is 0.05 U L-1 (S/N = 3). Meanwhile, this method was used to assay ALP in serum samples.
Collapse
Affiliation(s)
- Xi Zhu
- College of Life Sciences, Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Baghdasaryan A, Bürgi T. Copper nanoclusters: designed synthesis, structural diversity, and multiplatform applications. NANOSCALE 2021; 13:6283-6340. [PMID: 33885518 DOI: 10.1039/d0nr08489a] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Atomically precise metal nanoclusters (MNCs) have gained tremendous research interest in recent years due to their extraordinary properties. The molecular-like properties that originate from the quantized electronic states provide novel opportunities for the construction of unique nanomaterials possessing rich molecular-like absorption, luminescence, and magnetic properties. The field of monolayer-protected metal nanoclusters, especially copper, with well-defined molecular structures and compositions, is relatively new, about two to three decades old. Nevertheless, the massive progress in the field illustrates the importance of such nanoobjects as promising materials for various applications. In this respect, nanocluster-based catalysts have become very popular, showing high efficiencies and activities for the catalytic conversion of chemical compounds. Biomedical applications of clusters are an active research field aimed at finding better fluorescent contrast agents, therapeutic pharmaceuticals for the treatment and prevention of diseases, the early diagnosis of cancers and other potent diseases, especially at early stages. A huge library of structures and the compositions of copper nanoclusters (CuNCs) with atomic precisions have already been discovered during last few decades; however, there are many concerns to be addressed and questions to be answered. Hopefully, in future, with the combined efforts of material scientists, inorganic chemists, and computational scientists, a thorough understanding of the unique molecular-like properties of metal nanoclusters will be achieved. This, on the other hand, will allow the interdisciplinary researchers to design novel catalysts, biosensors, or therapeutic agents using highly structured, atomically precise, and stable CuNCs. Thus, we hope this review will guide the reader through the field of CuNCs, while discussing the main achievements and improvements, along with challenges and drawbacks that one needs to face and overcome.
Collapse
Affiliation(s)
- Ani Baghdasaryan
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
20
|
Wang K, Wang W, Zhang XY, Jiang AQ, Yang YS, Zhu HL. Fluorescent probes for the detection of alkaline phosphatase in biological systems: Recent advances and future prospects. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116189] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Specific and visual assay of iodide ion in human urine via redox pretreatment using ratiometric fluorescent test paper printed with dimer DNA silver nanoclusters and carbon dots. Anal Chim Acta 2020; 1138:99-107. [DOI: 10.1016/j.aca.2020.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 01/22/2023]
|
22
|
Huang X, Lan M, Wang J, Guo L, Lin Z, Zhang F, Zhang T, Wu C, Qiu B. A dual-mode strategy for sensing and bio-imaging of endogenous alkaline phosphatase based on the combination of photoinduced electron transfer and hyperchromic effect. Anal Chim Acta 2020; 1142:65-72. [PMID: 33280705 DOI: 10.1016/j.aca.2020.09.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 01/21/2023]
Abstract
Benefit from the additional correction of the output signal in dual-mode detection, traditional dual signal readout strategies are performed by constructing the ratiometric fluorescent probe through excitation energy transfer (EET) or fluorescence resonance energy transfer (FRET). To avoid the complicated modification process and obtain the results rapidly, a simple dual-mode sensing strategy based on the electronic effects of p-nitrophenol (PNP) is described to monitor the activities of alkaline phosphatase (ALP). In the sensing platform, p-nitrophenylphosphate was used as a substrate to produce the PNP using ALP as the catalyst. Due to the PNP possesses negative effect of induction and conjugation, photoinduced electron transfer and hyperchromic effect have been achieved between PNP and polyethyleneimine-protected copper nanoclusters (PEI-Cu NCs), which caused the changes of the fluorescence intensity and UV-visible absorption. The dual-mode signal sensing system showed the satisfactory linear results of ALP from 1 to 100 U/L for fluorescent sensing strategy and 1-70 U/L for the absorption method with a competitive LOD of 0.27 and 0.87 U/L (signal-to-noise ratio of 3). This strategy detected biological ALP in human serum and bio-imaging of endogenous ALP in A549 cells successfully, which verifies a certain potential of the strategy for the practical applications.
Collapse
Affiliation(s)
- Xuemin Huang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Maojin Lan
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Jian Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Longhua Guo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Fan Zhang
- Department of Neurosurgery, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, 350007, PR China.
| | - Tao Zhang
- Central Laboratory, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, 350007, PR China.
| | - Cuimin Wu
- Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350108, China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China.
| |
Collapse
|
23
|
Fluorescence detection of protamine, heparin and heparinase II based on a novel AIE molecule with four carboxyl. Int J Biol Macromol 2020; 156:1153-1159. [PMID: 31756489 DOI: 10.1016/j.ijbiomac.2019.11.150] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 11/23/2022]
Abstract
In this research, a new DSA (Distyryl-anthracene) derivative with four carboxyl groups was designed and synthesized. This molecule exhibits aggregation-induced emission property (AIE). With the AIE character, a convenient and sensitive fluorescent probe for the detection of protamine, heparin and heparinase has been developed. The protamine can directly induce the aggregation of probe, which caused by electrostatic attraction. In this way, the turn-on detection of protamine is achieved, and the detection limit is as low as 30 ng mL-1. When heparin appears, the probes will be redisperse in solution, which causes a decrease in fluorescence intensity. Besides, this method also shows good selectivity and sensitivity, and the linear range of heparin is from 0.08 to 8 μg mL-1 with detection limit of 37 ng mL-1. After hydrolyzing heparin by heparinase, the probes rebind with protamine and the fluorescence enhance. The fluorescence enhancement was linearly related to the concentration of heparinase in the range of 0.02-2.0 μg mL-1 and detection limit as low as 143.7 ng mL-1. In addition, the results exhibited that the recovery percentage of heparinase in bovine samples reached to 96-101%.
Collapse
|
24
|
Zhao Z, Li Y. Developing fluorescent copper nanoclusters: Synthesis, properties, and applications. Colloids Surf B Biointerfaces 2020; 195:111244. [PMID: 32682274 DOI: 10.1016/j.colsurfb.2020.111244] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/13/2022]
Abstract
Metal nanoclusters exhibit strong fluorescence emission, providing immense potential for developments in biological labeling and imaging. Copper nanoclusters in particular, due to their unique optical properties such as molecular-like absorption and strong luminescence, represent a novel fluorescent nanomaterial for sensing and bioimaging applications. This review describes research progress on Cu nanoclusters in recent years, investigating the synthesis techniques, their properties, and their promising applications. A concluding summary provides an outlook on the future research challenges for Cu nanoclusters and their corresponding synthesis techniques.
Collapse
Affiliation(s)
- Zhiyuan Zhao
- Institute of New Energy on Chemical Storage and Power Sources, College of Applied Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224000, China.
| | - Yitong Li
- Meteorological Station of Jilin Province, Changchun, 130062, China
| |
Collapse
|
25
|
An Y, Ren Y, Bick M, Dudek A, Hong-Wang Waworuntu E, Tang J, Chen J, Chang B. Highly fluorescent copper nanoclusters for sensing and bioimaging. Biosens Bioelectron 2020; 154:112078. [DOI: 10.1016/j.bios.2020.112078] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/22/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
|
26
|
Huang Y, Zhu L, Ji J, Li Y, Liu T, Lei J. Cleancap-Regulated Aggregation-Induced Emission Strategy for Highly Specific Analysis of Enzyme. Anal Chem 2020; 92:4726-4730. [DOI: 10.1021/acs.analchem.0c00217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yuanyuan Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Longyi Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jiahao Ji
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Tianrui Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
27
|
Qi W, Fu Y, Zhao M, He H, Tian X, Hu L, Zhang Y. Electrochemiluminescence resonance energy transfer immunoassay for alkaline phosphatase using p-nitrophenyl phosphate as substrate. Anal Chim Acta 2020; 1097:71-77. [DOI: 10.1016/j.aca.2019.10.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/11/2019] [Accepted: 10/31/2019] [Indexed: 10/25/2022]
|
28
|
β-Cyclodextrin modified silver nanoclusters for highly sensitive fluorescence sensing and bioimaging of intracellular alkaline phosphatase. Talanta 2020; 207:120315. [DOI: 10.1016/j.talanta.2019.120315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022]
|
29
|
Yamada S, Mitsuda A, Adachi K, Hara M, Konno T. Development of light-emitting liquid-crystalline polymers with a pentafluorinated bistolane-based luminophore. NEW J CHEM 2020. [DOI: 10.1039/d0nj00659a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Light-emitting liquid-crystalline polymers showing PL in the pristine solid state can control their PL color from blue to light-blue via a thermal phase transition to LC phases, which originates from a dynamic change of aggregated structures.
Collapse
Affiliation(s)
- Shigeyuki Yamada
- Faculty of Molecular Chemistry and Engineering
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - Akira Mitsuda
- Faculty of Molecular Chemistry and Engineering
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - Kaoru Adachi
- Faculty of Molecular Chemistry and Engineering
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - Mitsuo Hara
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Tsutomu Konno
- Faculty of Molecular Chemistry and Engineering
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| |
Collapse
|
30
|
Nitrogen doped carbon dots for turn-off fluorescent detection of alkaline phosphatase activity based on inner filter effect. Talanta 2019; 204:74-81. [DOI: 10.1016/j.talanta.2019.05.099] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/16/2019] [Accepted: 05/24/2019] [Indexed: 01/10/2023]
|
31
|
Recent progress in copper nanocluster-based fluorescent probing: a review. Mikrochim Acta 2019; 186:670. [PMID: 31489488 DOI: 10.1007/s00604-019-3747-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/10/2019] [Indexed: 10/26/2022]
Abstract
Copper nanoclusters (CuNCs) are an attractive alternative to other metal nanoclusters. The synthesis of CuNCs is highly efficient and fast, with low-cost and without any complicated manipulation. Because of their tunable fluorescence and low toxicity, CuNCs have been highly exploited for biochemical sensing. This review (with 172 refs.) summarizes the progress that has been made in the field in the past years. Following an introduction into the fundamentals of CuNCs, the review first focuses on synthetic methods and the fluorescence properties of CuNCs (with subsections on the use of proteins, peptides, DNA and other molecules as templates). This is followed by a section on the use of CuNCs in fluorometric assays, with subsections on the detection of small molecules, proteins, nucleic acids, various other biomolecules including drugs, and of pH values. A further large chapter summarizes the work related to environmental analyses, specifically on determination of metal ions, anions and pollutants. Graphical abstract Schematic representation of the synthesis and potential applications of copper nanocluster (CuNCs) in biochemical analysis, emphatically reflected in some vital areas such as small molecule analysis, biomacromolecule monitoring, cell imaging, ions detection, toxic pollutant, etc.
Collapse
|
32
|
Niu X, Ye K, Wang L, Lin Y, Du D. A review on emerging principles and strategies for colorimetric and fluorescent detection of alkaline phosphatase activity. Anal Chim Acta 2019; 1086:29-45. [PMID: 31561792 DOI: 10.1016/j.aca.2019.07.068] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 12/24/2022]
Abstract
Alkaline phosphatase (ALP) is a natural enzyme that is able to catalyze the dephosphorylation of phosphate esters. It participates in a great number of biological processes ranging from various metabolisms to signal transduction and cellular regulation. Since the abnormality of ALP activity in body is closely associated with many diseases, it has become an important biomarker for clinical diagnosis and treatment. Besides, it is often utilized in enzyme-linked immunosorbent assays. Given these demands, in the last few years considerable interest has been focused on exploring new materials and methods for ALP activity detection. In this review, we first made a clear classification on the principles that could be used for ALP activity determination. After that, emerging colorimetric and fluorescent strategies designed on the basis of these principles were systematically summarized. Finally, some perspectives on ALP activity analysis were discussed, hoping to inspire future efforts in the field.
Collapse
Affiliation(s)
- Xiangheng Niu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China; School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA.
| | - Kun Ye
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Linjie Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|