1
|
Wang C, Lei Y, Zhang S, Wang Z, Wang M, Ming Z, Liu R, Yang D, Zhang Z, Wang P, Wan F, Chen W. Dual LSPR and CT synergy: 3D urchin-like Au@W 18O 49 enables highly sensitive in-situ SERS detection of dissolved furfural in insulating oils. Talanta 2025; 281:126854. [PMID: 39260253 DOI: 10.1016/j.talanta.2024.126854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/26/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Assessing the levels of furfural in insulating oils is a crucial technical method for evaluating the degree of aging and mechanical deterioration of oil-paper insulation. The surface-enhanced Raman spectroscopy (SERS) technique provides an effective method for enhancing the sensitivity of in-situ detection of furfural. In this study, a homogeneous three-dimensional (3D) urchin-like Au@W18O49 heterostructure was synthesized as a SERS substrate using a straightforward hydrothermal method. The origin of the superior Raman enhancement properties of the 3D urchin-like heterostructures formed by the noble metal Au and the plasmonic semiconductor W18O49, which is rich in oxygen vacancies, is analyzed experimentally in conjunction with density-functional theory (DFT) calculations. The Raman enhancement is further amplified by the remarkable dual localized surface plasmon resonance (LSPR) effect, which generates a strong local electric field and creates numerous "hot spots," in addition to the interfacial charge transport (CT). The synergistic effect of these factors results in the 3D urchin-like Au@W18O49 heterostructure exhibiting exceptionally high SERS activity. Testing the rhodamine 6G (R6G) probe resulted in a Raman enhancement factor of 3.41 × 10-8, and the substrate demonstrated excellent homogeneity and stability. Furthermore, the substrate was effectively utilized to achieve highly sensitive in-situ surface-enhanced Raman scattering (SERS) detection of dissolved furfural in complex plant insulating oils. The development of the 3D urchin-like Au@W18O49 heterostructure and the exploration of its enhancement mechanism provide theoretical insights for the advancement of high-performance SERS substrates.
Collapse
Affiliation(s)
- Changding Wang
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing, 400044, China; National Innovation Center for Industry-Education Integration of Energy Storage Technology, Chongqing University, Chongqing, 400044, China
| | - Yu Lei
- State Grid Gansu Power Company Wuwei Power Supply Company, Wuwei, 733000, China
| | - Sida Zhang
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing, 400044, China
| | - Ziyi Wang
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing, 400044, China
| | - Miaolin Wang
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing, 400044, China
| | - Zifeng Ming
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing, 400044, China
| | - Ruiqi Liu
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing, 400044, China
| | - Da Yang
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing, 400044, China
| | - Zhixian Zhang
- School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Pinyi Wang
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing, 400044, China
| | - Fu Wan
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing, 400044, China
| | - Weigen Chen
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing, 400044, China; National Innovation Center for Industry-Education Integration of Energy Storage Technology, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
2
|
Khataee S, Dehghan G, Shaghaghi Z, Khataee A. An enzyme-free sensor based on La-doped CoFe-layered double hydroxide decorated on reduced graphene oxide for sensitive electrochemical detection of urea. Mikrochim Acta 2024; 191:152. [PMID: 38388755 DOI: 10.1007/s00604-024-06221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
The successful synthesis of La-doped CoFe LDH@rGO nanocomposite is reported combining the advantages of LDH and rGO and shows promising performances in electrochemical sensors. The structure of the obtained nanocomposite was investigated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction pattern (XRD), and field emission scanning electron microscope images (FE-SEM). Then, it was directly utilized to construct a carbon paste electrode (CPE) for urea detection. The electrochemical performance of the sensor was evaluated by various electrochemical methods. The La-CoFe LDH@rGO electrode exhibited excellent electrocatalytic properties, including a wide linear working range of 0.001-23.5 mM, very high sensitivity of 1.07 ± 0.023 µA µM-1 cm-2, a low detection limit of 0.33 ± 0.11 µM, and rapid response time of 5 s towards urea detection at the working potential of 0.4 V. Furthermore, the sensor displayed a high selectivity in different matrices, appropriate reproducibility, and long shelf life without activity loss during 3 months of storage under ambient conditions. Further tests were performed on serum and milk samples to confirm the capability of the proposed sensor for practical applications, demonstrating a reasonable recovery of 94.8 to 102% with an RSD value below 3%. Consequently, the synergistic effect of each component led to the good electrocatalytic activity of the modified electrode towards urea.
Collapse
Affiliation(s)
- Simin Khataee
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, 51666-16471, Iran
| | - Gholamrez Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, 51666-16471, Iran.
| | - Zohreh Shaghaghi
- Coordination Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 51666-16471, Iran.
- Department of Chemical Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| |
Collapse
|
3
|
Płócienniczak-Bywalska P, Rębiś T, Leda A, Milczarek G. Lignosulfonate-Assisted In Situ Deposition of Palladium Nanoparticles on Carbon Nanotubes for the Electrocatalytic Sensing of Hydrazine. Molecules 2023; 28:7076. [PMID: 37894555 PMCID: PMC10609262 DOI: 10.3390/molecules28207076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
This paper presents a novel modified electrode for an amperometric hydrazine sensor based on multi-walled carbon nanotubes (MWCNTs) modified with lignosulfonate (LS) and decorated with palladium nanoparticles (NPds). The MWCNT/LS/NPd hybrid was characterized by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). The electrochemical properties of the electrode material were evaluated using cyclic voltammetry and chronoamperometry. The results showed that GC/MWCNT/LS/NPd possesses potent electrocatalytic properties towards the electro-oxidation of hydrazine. The electrode demonstrated exceptional electrocatalytic activity coupled with a considerable sensitivity of 0.166 μA μM-1 cm-2. The response was linear from 3.0 to 100 µM L-1 and 100 to 10,000 µM L-1, and the LOD was quantified to 0.80 µM L-1. The efficacy of the modified electrode as an electrochemical sensor was corroborated in a study of hydrazine determination in water samples.
Collapse
Affiliation(s)
| | - Tomasz Rębiś
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland;
| | - Amanda Leda
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland;
| | - Grzegorz Milczarek
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland;
| |
Collapse
|
4
|
Nde DT, Park J, Lee SH, Lee J, Lee HJ. Ultrawide Hydrazine Concentration Monitoring Sensor Comprising Ir-Ni Nanoparticles Decorated with Multi-Walled Carbon Nanotubes in On-Site Alkaline Fuel Cell Operation. CHEMSUSCHEM 2023; 16:e202201608. [PMID: 36480310 DOI: 10.1002/cssc.202201608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/21/2022] [Indexed: 06/17/2023]
Abstract
A highly sensitive amperometric hydrazine monitoring sensor offering an ultrawide dynamic range of 5 μM to 1 M in alkaline media (e. g., 1 M KOH) was developed via co-electrodepositing iridium-nickel alloy nanoparticles (NPs) functionalized with multi-walled carbon nanotubes (Ir-Ni-MWCNTs) on a disposable screen-printed carbon electrode. The synergistic interaction of MWCNTs with Ir-Ni alloy NPs resulted in enlarged active surface area, rapid electron transfer, and alkaline media stability with an onset potential of -0.12 V (vs. Ag/AgCl) toward hydrazine oxidation. A limit of detection for hydrazine was 0.81 μM with guaranteed reproducibility, repeatability, and storage stability alongside a superb selectivity toward ethanolamine, urea, dopamine, NaBH4 , NH4 OH, NaNO2 , and Na2 CO3 . The sensor was finally applied to on-site monitoring of the carbon-free hydrazine concentration at the anode and cathode of a hydrazine fuel cell, providing more insight into the hydrazine oxidation process during cell operation.
Collapse
Affiliation(s)
- Dieudonne Tanue Nde
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city, 41566, Republic of Korea
| | - Jihyeon Park
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- International Future Research Center of Chemical Energy Storage and Conversion Processes (iFRC-CHESS), Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Sang Hyuk Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city, 41566, Republic of Korea
| | - Jaeyoung Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- International Future Research Center of Chemical Energy Storage and Conversion Processes (iFRC-CHESS), Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- Ertl Center for Electrochemical and Catalysis, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hye Jin Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city, 41566, Republic of Korea
| |
Collapse
|
5
|
Electrochemical Sensors Based on Au Nanoparticles Decorated Pyrene-Reduced Graphene Oxide for Hydrazine, 4-Nitrophenol and Hg 2+ Detection in Water. Molecules 2022; 27:molecules27238490. [PMID: 36500583 PMCID: PMC9738402 DOI: 10.3390/molecules27238490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022] Open
Abstract
Monitoring hazardous chemical compounds such as hydrazine (N2H4), 4-nitrophenol (4-NP) and Hg2+ in natural water resources is a crucial issue due to their toxic effects on human health and catastrophic impact on the environment. Electrochemical nanostructured platforms integrating hybrid nanocomposites based on graphene derivatives and inorganic nanoparticles (NPs) are of great interest for such a purpose. In this work, disposable screen-printed carbon electrodes (SPCEs) have been modified with a hybrid nanocomposite formed by reduced graphene oxide (RGO), functionalized by 1-pyrene carboxylic acid (PCA), and decorated by colloidal Au NPs. These hybrid platforms have been tested for the electrocatalytic detection of N2H4 and 4-NP by differential pulse voltammetry and have been modified with an electropolymerized film of Hg2+ ions imprinted polycurcumin for the electroanalytical detection of Hg2+ by DPV. LODs, lower and in line with the lowest ones reported for state-of-the-art electrochemical sensors, integrating similar Au-graphene < nanocomposites, have been estimated. Additionally, good repeatability, reproducibility, and storage stability have been assessed, as well as a high selectivity in the presence of a 100-fold higher concentration of interfering species. The applicability of the proposed platforms for the detection of the compounds in real complex matrices, such as tap and river water samples, has been effectively demonstrated.
Collapse
|
6
|
Costa ÍA, Gross MA, D. O. Alves E, Fonseca FJ, Paterno LG. An impedimetric e-tongue based on CeO2-graphene oxide chemical sensors for detection of glyphosate and its potential interferents. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Gowthaman N, Mohapatra D, Arul P, Chang WS. Ultrasonic-assisted decoration of AuNPs on carbon nano-onions as robust electrochemical scaffold for sensing of carcinogenic hydrazine in industrial effluents. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Rahmani M, Dehghani A, Bahlakeh G, Ramezanzadeh B. Introducing GO-based 2D-platform modified via Phytic acid molecules decorated by zeolite imidazole ZIF-9 MOFs for designing multi-functional polymeric anticorrosive system; DFT-D computations and experimental studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Nde DT, Jhung SH, Lee HJ. Electrocatalytic Determination of Hydrazine Concentrations with Polyelectrolyte Supported AuCo Nanoparticles on Carbon Electrodes. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Electrocatalytic oxidation and determination of hydrazine in alkaline medium through in situ conversion thin film nanostructured modified carbon ceramic electrode. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Bharti K, Sadhu KK. Syntheses of metal oxide-gold nanocomposites for biological applications. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
12
|
Ternary NiO/Ag/reduced graphene oxide nanocomposites as, a sensitive electrochemical sensor for nanomolarity detection of sunset yellow in soft drinks. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
|
14
|
Promsuwan K, Thongtawat J, Limbut W. Porous palladium-poly(3,4-ethylenedioxythiophene)-coated carbon microspheres/graphene nanoplatelet-modified electrode for flow-based-amperometric hydrazine sensor. Mikrochim Acta 2020; 187:539. [PMID: 32876787 DOI: 10.1007/s00604-020-04470-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 08/02/2020] [Indexed: 12/30/2022]
Abstract
A highly stable flow-injection amperometric hydrazine sensor was developed based on a glassy carbon electrode modified with palladium-poly(3,4-ethylene dioxythiophene) coated on carbon microspheres/graphene nanoplatelets (Pd-PEDOT@CM/GNP/GCE). The Pd-PEDOT@CM/GNP composite was characterized by scanning electron microscopy and energy-dispersive x-ray analysis (SEM/EDX). The modified GCE was electrochemically characterized using cyclic voltammetry and chronoamperometry. The electrocatalytic activity of the Pd-PEDOT@CM/GNP/GCE toward hydrazine oxidation was significantly better than the activity of a bare GCE, a CM/GCE, a GNP/GCE, a Pd-PEDOT/GCE, and a Pd-PEDOT@CM/GCE. The sensor operated best at a low working potential of + 0.10 V (vs. Ag/AgCl). Under optimal conditions, sensitivity toward hydrazine detection and operational stability (601 injections/one electrode preparation) were excellent. The response was linear from 1.0 to 100 μmol L-1 and from 100 to 5000 μmol L-1 with a detection limit of 0.28 ± 0.02 μmol L-1 and high sensitivity of 0.200 μA μM-1 cm-2. The sensor showed good repeatability (relative standard deviation (RSD) < 1.4%, n = 15), reproducibility (RSD < 2.7%, n = 6), and anti-interference characteristics toward hydrazine detection. The feasibility of the electrochemical sensor was proved by the successful determination of hydrazine in water samples, and the results were in good agreement with those obtained from spectrophotometric analysis. Graphical abstract.
Collapse
Affiliation(s)
- Kiattisak Promsuwan
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Jariya Thongtawat
- Division of Health and Applied Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand. .,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand. .,Division of Health and Applied Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.
| |
Collapse
|
15
|
Tajik S, Beitollahi H, Mohammadi SZ, Azimzadeh M, Zhang K, Van Le Q, Yamauchi Y, Jang HW, Shokouhimehr M. Recent developments in electrochemical sensors for detecting hydrazine with different modified electrodes. RSC Adv 2020; 10:30481-30498. [PMID: 35516027 PMCID: PMC9056357 DOI: 10.1039/d0ra03288c] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
The detection of hydrazine (HZ) is an important application in analytical chemistry. There have been recent advancements in using electrochemical detection for HZ. Electrochemical detection for HZ offers many advantages, e.g., high sensitivity, selectivity, speed, low investment and running cost, and low laboriousness. In addition, these methods are robust, reproducible, user-friendly, and compatible with the concept of green analytical chemistry. This review is devoted to the critical comparison of electrochemical sensors and measuring protocols used for the voltammetric and amperometric detection of the most frequently used HZ in water resources with desirable recovery. Attention is focused on the working electrode and its possible modification which is crucial for further development.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences Kerman Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology Kerman Iran
| | | | - Mostafa Azimzadeh
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences PO Box 89195-999 Yazd Iran
| | - Kaiqiang Zhang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University Seoul 08826 Republic of Korea
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
| | - Yusuke Yamauchi
- School of Chemical Engineering, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland 4072 Australia
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) Tsukuba 3050044 Japan
- Department of Plant and Environmental New Resources, Kyung Hee University 1732 Deogyeong-daero, Giheung-gu Yongin-si Gyeonggi-do 446-701 Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University Seoul 08826 Republic of Korea
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
16
|
Srinidhi G, Sudalaimani S, Giribabu K, Basha SJS, Suresh C. Amperometric determination of hydrazine using a CuS-ordered mesoporous carbon electrode. Mikrochim Acta 2020; 187:359. [PMID: 32468290 DOI: 10.1007/s00604-020-04325-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/14/2020] [Indexed: 02/08/2023]
Abstract
An electrocatalytic sensor for hydrazine using copper sulfide-ordered mesoporous carbon (CuS-OMC) is described. A facile solvothermal synthetic strategy was adopted for CuS-OMC and the ordered mesoporous carbon was obtained through nanocasting method. The synthesized CuS-OMC was characterized using microscopic and spectrochemical techniques. CuS-OMC was immobilized on GCE and evaluated for its electrochemical sensing of hydrazine using cyclic voltammetry and amperometry. CuS-OMC modified GCE exhibited better hydrazine sensing at an optimized pH 7.4 in terms of oxidation potential and current compared with that of GCE, CuS, and OMC. The observed sensing performance of CuS-OMC was attributed to the presence of Cu (I/II) in CuS dispersed in OMC which acts as an electrocatalytic center for the sensing of hydrazine. Amperometry under optimized experimental condition with an applied potential of 270 mV was employed to obtain a linear calibration plot in the range 0.25 to 40 μM (R2 = 0.9908) with a detection limit of 0.10 μM with a sensitivity of 0.915 (± 0.02) μA cm-2 μM-1. Real sample analyses were carried out by spiking of hydrazine in different water samples and the recoveries were in the range of 97 ± 2.1% (n = 3). Graphical abstract.
Collapse
Affiliation(s)
- G Srinidhi
- Department of Nanoscience and Nanotechnology, Anna University Regional Campus, Coimbatore, Tamil Nadu, 641 046, India
| | - S Sudalaimani
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, 630 003, India
| | - K Giribabu
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, 630 003, India.
| | - S J Sardhar Basha
- Department of Nanoscience and Nanotechnology, Anna University Regional Campus, Coimbatore, Tamil Nadu, 641 046, India
| | - C Suresh
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, 630 003, India.
| |
Collapse
|
17
|
Dong Y, Luo J, Li S, Liang C. CeO2 decorated Au/CNT catalyst with constructed Au-CeO2 interfaces for benzyl alcohol oxidation. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2019.105843] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
18
|
Sha T, Liu J, Sun M, Li L, Bai J, Hu Z, Zhou M. Green and low-cost synthesis of nitrogen-doped graphene-like mesoporous nanosheets from the biomass waste of okara for the amperometric detection of vitamin C in real samples. Talanta 2019; 200:300-306. [DOI: 10.1016/j.talanta.2019.03.071] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/13/2019] [Accepted: 03/16/2019] [Indexed: 12/28/2022]
|