1
|
Xu X, Guo Y, Liu Y, Liu Z, Zhang L. Rapid and enhanced detection of sulfonamide antibiotic using task-specific ionic liquids nanoconfined in tunable nanoporous carbons. Talanta 2025; 285:127396. [PMID: 39708566 DOI: 10.1016/j.talanta.2024.127396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/07/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
The development of a novel multifunctional adsorbent for the sensitive detection and capture of antibiotic residues in environmental and food samples presents a significant challenge. In this study, we synthesized a pioneering nanocomposite, ILs@PC, by encapsulating task-specific ionic liquids (ILs) within nitrogen-doped porous carbon (PC) derived from metal-triazolate frameworks. This ILs@PC nanocomposite functions as a multifunctional adsorbent in dispersive solid-phase extraction (DSPE), enabling simultaneous sorptive removal, sensitive detection, and molecular sieve selection. The ILs@PC demonstrated enhanced adsorption efficiency and sensitivity for sulfonamide antibiotics (SAs) compared to the pristine PC, attributed to the nanoconfinement effect of the ILs and the influence of pore volume on this effect. When integrated with high-performance liquid chromatography (HPLC), the ILs@PC-based DSPE method achieved a detection limit of 0.75-1.88 μg L-1 for SAs, along with satisfactory recoveries of 86.0 %-111.9 %. Additionally, a portable syringe device was developed to facilitate rapid on-site extraction and enrichment of SAs. The practicality of this method was validated through its successful application in detecting SAs in real samples, including lake water and milk. This approach highlights its potential for efficient and rapid monitoring of antibiotic residues in both environmental and food systems.
Collapse
Affiliation(s)
- Xu Xu
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Yuhan Guo
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Yuchi Liu
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Zhuang Liu
- College of Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Lei Zhang
- College of Chemistry, Liaoning University, Shenyang, 110036, China.
| |
Collapse
|
2
|
Lu XF, Nan ZX, Li XY, Zhao M, Ma JP, Ji W, Guo DS. Large-pore covalent organic framework as solid phase extraction absorbentforefficientdetermination of polypeptide antibiotics in animal-derived foods. J Chromatogr A 2024; 1730:465150. [PMID: 38991603 DOI: 10.1016/j.chroma.2024.465150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/23/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
The precise determination of polypeptide antibiotics (PPTs) in foods has been always challenging because of the interference of various endogenous peptides in complex matrix. Herin, a novel large-pore covalent organic framework (TABPT-SPDA-COF) with accessible pore size of 7.9 nm was synthesized as a solid phase extraction (SPE) absorbent for efficiently enriching four PPTs existed in foods originating from animals. The parameters of SPE process were systematically optimized. Subsequently, four PPTs were determined by UHPLC-MS/MS. Under the optimal conditions, TABPT-SPDA-COF shows outstanding enrichment capacity for PPTs in contrast to commercial absorbents ascribed to size selectivity and multiple interaction effects. The method exhibits excellent linear range (0.005-100 ng mL-1), satisfactory limits of detection (0.1 pg mL-1) as well as relative recoveries (86.2-116 %). This work offers a practicable platform to monitor trace PPTs from complex animal-derived foodstuffs.
Collapse
Affiliation(s)
- Xiao-Fan Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China
| | - Zi-Xuan Nan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China
| | - Xin-Yu Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China
| | - Mei Zhao
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, PR China
| | - Jian-Ping Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China.
| | - Wenhua Ji
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, PR China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, PR China.
| | - Dian-Shun Guo
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
3
|
Zhang M, Yang H, Yang K, Yang Q, Liu W, Yang X. Determination of sulfonamide antibiotics by magnetic porous carbon solid-phase extraction coupled with capillary electrophoresis. J Chromatogr A 2024; 1725:464926. [PMID: 38678693 DOI: 10.1016/j.chroma.2024.464926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/06/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
Sulfonamide antibiotics (SAs) have been widely used as antibacterial drugs for the prevention and treatment of livestock and poultry diseases, but they seriously threaten human health because they can accumulate in humans. Therefore, it is highly important to develop methods for monitoring sulfonamide residues in aquaculture and food. In this research, based on the generation of porous carbon (PC) by the pyrolysis of sodium citrate, magnetic porous carbon (PC@Fe3O4) was synthesized by a solvothermal method and used as an adsorbent for the magnetic solid-phase extraction of SAs. The effects of the proportion of PC in PC@Fe3O4, adsorbent dosage, adsorption time, eluent type, extraction pH, salt concentration and eluent dosage on the extraction efficiency were systematically studied. The adsorption performance and behavior of PC@Fe3O4 on SAs were evaluated using adsorption kinetics and adsorption isotherms, and the adsorption mechanism was preliminarily discussed. Under optimal conditions, combined with capillary electrophoresis diode array detection, a sensitive detection method for SAs was developed. The proposed method can be used for the determination of six SAs in fishpond water and milk samples, with a linear range of 0.5-200 ng mL-1, detection limits of 0.24-0.34 ng mL-1, and spiked recoveries of 85.9-109.0 %.
Collapse
Affiliation(s)
- Maosen Zhang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, PR China
| | - Hanyu Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, PR China
| | - Kaijing Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, PR China
| | - Qiang Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, PR China
| | - Wei Liu
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, PR China.
| | - Xiupei Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, PR China.
| |
Collapse
|
4
|
Zhang M, Wang W, Wu L, Zhang Z, Wang H, Guo L, Cheng R. Fabrication and characterization of magnetic mesoporous nanoparticles for efficient determination and magnetic separation of sulfonamides in food samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3587-3596. [PMID: 38804081 DOI: 10.1039/d4ay00590b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
A magnetic, mesoporous core/shell structured Fe3O4@SiO2@mSiO2 nanocomposite was synthesized and employed as a magnetic solid phase extraction (MSPE) sorbent for the determination of trace sulfonamides (SAs) in food samples. The synthesized nanocomposite was characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis, X-ray diffraction, N2 sorption analysis and vibrating sample magnetometry. The results showed that Fe3O4@SiO2@mSiO2 possessed a mesoporous structure with a large surface area. Batch experiments were carried out to investigate the adsorption ability for SAs. Fe3O4@SiO2@mSiO2 showed fast kinetics and high adsorption capacity, and the pseudo-second-order model and Langmuir adsorption isotherm are well fitted with the experimental data, indicating that chemical adsorption might be the rate-limiting step. Moreover, the high adsorption capacity can be maintained for at least 8 runs, indicating excellent stability and reusability. The proposed method exhibited good linearity in the range of 0.2-500 μg L-1, the R2 values of all the analytes were greater than 0.99 and the LODs were all lower than 0.2 μg L-1. Furthermore, real food samples were successfully analyzed with Fe3O4@SiO2@mSiO2 and high recoveries varying from 89.7% and 110.6% were obtained with low relative standard deviations ranging from 1.78% to 6.91%. The Fe3O4@SiO2@mSiO2 magnetic nanocomposite is a promising sorbent for the efficient extraction of SAs from complex food samples.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Comprehensive Technology and Service Center of Jiaxing Customs, Jiaxing 314001, China
| | - Wei Wang
- Analytical & Testing Center, Jiaxing University, Jiaxing 314001, China.
- School of Biology and Chemical Engineering, Jiaxing University, Jiaxing 314001, China
| | - Lili Wu
- Comprehensive Technology and Service Center of Jiaxing Customs, Jiaxing 314001, China
| | - Zulei Zhang
- Analytical & Testing Center, Jiaxing University, Jiaxing 314001, China.
- School of Biology and Chemical Engineering, Jiaxing University, Jiaxing 314001, China
| | - Hongmei Wang
- School of Biology and Chemical Engineering, Jiaxing University, Jiaxing 314001, China
| | - Liping Guo
- School of Biology and Chemical Engineering, Jiaxing University, Jiaxing 314001, China
| | - Ruobing Cheng
- Analytical & Testing Center, Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
5
|
Gao SW, Chen LH, Cui YY, Yang CX. Sacrificial template synthesis of hollow sulfonate group functionalized microporous organic network for efficient solid phase extraction of sulfonamide antibiotics from milk and honey samples. J Chromatogr A 2024; 1721:464844. [PMID: 38547678 DOI: 10.1016/j.chroma.2024.464844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
The highly conjugated and hydrophobic characteristics of microporous organic networks (MONs) have largely impeded their broad applications in sample pretreatment especially for the polar or ionic analytes. In this work, a novel uniform hollow shaped sulfonate group functionalized MON (H-MON-SO3H-2) was synthesized via the sacrificial template method for the efficient solid phase extraction (SPE) of sulfonamides (SAs) from environmental water, milk, and honey samples prior to HPLC analysis. H-MON-SO3H-2 exhibited large specific surface area, penetrable space, good stability, and numerous hydrogen bonding, electrostatic, hydrophobic and π-π interaction sites, allowing sensitive SPE of SAs with wide linear range (0.150-1000 μg L-1), low limit of detection (0.045-0.188 μg L-1), good precisions (intra-day and inter-day RSD < 7.3%, n = 5), large enrichment factors (95.7-98.5), high adsorption capacities (250.4-545.0 mg g-1), and satisfactory reusability (more than 80 times). Moreover, the established method was successfully applied to extract SAs from spiked samples with the recoveries of 86.1-104.3%. This work demonstrated the great potential of H-MON-SO3H-2 in the efficient SPE of trace SAs in complex environmental water and food samples and revealed the prospect of hollow MONs in sample pretreatment.
Collapse
Affiliation(s)
- Shuo-Wen Gao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Li-Hua Chen
- The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Yuan-Yuan Cui
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| | - Cheng-Xiong Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
6
|
Dong Y, Chen Y, Wang R, Hong Z, Fan W, Huang Z, Wang G. Exploration of porous imine-based covalent organic framework for solid-phase extraction of five trace sulfonamides in food samples. J Sep Sci 2024; 47:e2300535. [PMID: 37933692 DOI: 10.1002/jssc.202300535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
In this article, a highly crystalline porous imine-based covalent organic framework was synthesized at room temperature and used as solid-phase extraction (SPE) adsorbent for the purification and enrichment of trace sulfonamides (SAs) from food samples. The structure of the obtained material was characterized and studied in detail. The extraction process was optimized and the final elution was determined by the ultra-high-performance liquid chromatography-quadrupole time of flight mass spectrometry method. Low limits of detection (0.02-0.19 μg/kg) were obtained under optimal conditions, with the recoveries ranging from 70.5% to 105.3% when spiked at different levels. The adsorption process of the material for SAs was fitted by the Langmuir and Freundlich adsorption isotherm model, and the extraction capacity for Nitrofuran metabolites from food samples was also investigated for comparison. The results demonstrated that the framework was a good candidate SPE adsorbent that can be used for the enrichment of drug residues in complex matrix, and the work may provide a systematic study method for the development of porous adsorbents.
Collapse
Affiliation(s)
- Yingjiao Dong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Yao Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Ruijie Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Zhikai Hong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Weiqiang Fan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Zhenzhen Huang
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Guanhua Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| |
Collapse
|
7
|
Synthesis of a magnetic covalent organic framework as sorbents for solid-phase extraction of aflatoxins in food prior to quantification by liquid chromatography-mass spectrometry. Food Chem 2022; 387:132821. [DOI: 10.1016/j.foodchem.2022.132821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022]
|
8
|
LI H, REN G, LI H, CHEN X, ZHANG Z, ZHAO Y. Imine-linked porous covalent organic framework used for the solid-phase extraction of estrogens from honey prior to liquid chromatography-tandem mass spectrometry. Se Pu 2022; 40:704-711. [PMID: 35903837 PMCID: PMC9404133 DOI: 10.3724/sp.j.1123.2022.03017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
以亚胺连接的多孔共价有机骨架材料(IL-COF-1)作为固相萃取的吸附剂,建立了液相色谱-串联质谱快速检测蜂蜜样品中痕量雌激素的方法。该研究选择雌二醇、己烯雌酚、雌三醇、β-雌二醇和炔雌醇5种雌激素作为目标分析物。在蜂蜜样品中添加雌激素,采用单因素优化法对影响萃取效果的重要因素进行优化,获得最佳条件:IL-COF-1用量为30 mg,样品流速为3 mL/min,样品溶液pH值为7,以5 mL的1%(v/v)氨水-甲醇溶液进行洗脱,流速为0.4 mL/min,萃取过程中不添加NaCl。采用高效液相色谱-三重四极杆质谱联用技术对提取物中的雌激素进行定量分析。以乙腈和5 mmol/L的乙酸铵溶液作为流动相进行梯度洗脱,经C18色谱柱分离,采用电喷雾离子源、质谱多反应监测和负离子扫描模式,实现了蜂蜜样品中5种雌激素的快速定性定量分析。在最佳条件下,方法验证结果中雌三醇、β-雌二醇和炔雌醇的线性范围为1~500 ng/g,雌二醇和己烯雌酚的线性范围为0.1~100 ng/g,相关系数(r)为0.9934~0.9972。检出限(S/N=3)为0.01~0.30 ng/g,定量限(S/N=10)为0.05~0.95 ng/g。添加50 ng/g 5种雌激素进行重复性实验,日内精密度相对标准偏差(RSD)为3.2%~6.6%,日间精密度RSD为4.2%~7.9%。基于IL-COF-1的固相萃取-液相色谱-串联质谱法具有快速准确、灵敏度高等特点,适用于蜂蜜中雌激素的分析和检测。将该方法应用于4个实际蜂蜜样品中雌激素的检测,均未检出目标物;在低中高3个水平下,5种雌激素的加标回收率为80.1%~115.2%,结果令人满意。
Collapse
|
9
|
ZHANG W, LIU G, MA W, FANG M, ZHANG L. [Application progress of covalent organic framework materials in extraction of toxic and harmful substances]. Se Pu 2022; 40:600-609. [PMID: 35791598 PMCID: PMC9404040 DOI: 10.3724/sp.j.1123.2021.12004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 12/03/2022] Open
Abstract
Toxic and hazardous substances constitute a category of compounds that are potentially hazardous to humans, other organisms, and the environment. These substances include pesticides (benzoylureas, pyrethroids, neonicotinoids), persistent organic pollutants (polycyclic aromatic hydrocarbons, polychlorinated biphenyls, perfluorinated compounds), plasticizers (phthalate esters, phenolic endocrine disruptors), medicines (sulfonamides, non-steroid anti-inflammatory drugs, tetracyclines, fluoroquinone antibiotics), heterocyclic aromatic amines, algal toxins, and radioactive substances. Discharge of these toxic and harmful substances, as well as their possible persistence and bioaccumulation, pose a major risk to human health, often to the extent of being life-threatening. Therefore, it is important to analyze and detect toxic and hazardous substances in the environment, drinking water, food, and daily commodities. Sample pretreatment is an imperative step in most of the currently used analytical methods, especially in the analysis of trace toxic and harmful substances in complex samples. An efficient and fast sample pretreatment technology not only helps improve the sensitivity, selectivity, reproducibility, and accuracy of analytical methods, but also avoids contamination of the analytical instruments and even damages the performance and working life of instruments. Sample pretreatment techniques widely used in the extraction of toxic and hazardous substances include solid-phase extraction (SPE), solid-phase microextraction (SPME), and dispersed solid-phase extraction (DSPE). The adsorbent material plays a key role in these pretreatment techniques, thereby determining their selectivity and efficiency. In recent years, covalent organic frameworks (COFs) have attracted increasing attention in sample pretreatment. COFs represent an exciting new class of porous crystalline materials constructed via the strong covalent bonding of organic building units through a reversible condensation reaction. COFs present four advantages: (1) precise control over structure type and pore size by consideration of the target molecular structure based on the connectivity and shape of the building units; (2) post-synthetic modification for chemical optimization of the pore interior toward optimized interaction with the target; (3) straightforward scalable synthesis; (4) feasible formation of composites with magnetic nanoparticles, carbon nanotubes, graphene, silica, etc., which is beneficial to enhance the performance of COFs and meet the requirement of diverse pretreatment technologies. Because of the well-defined crystalline porous structures and tailored functionalities, COFs have excellent potential for use in target extraction. However, some issues need to be addressed for the application of COFs in the extraction of toxic and hazardous substances. (1) For the sample matrix, most of the reported COFs are highly hydrophobic, which limits their dispersibility in water-based samples, leading to poor extraction performance. COFs with good dispersibility in water-based samples are urgently required. (2) Besides, COFs rely on hydrophobic interaction, size repulsion, π-π stacking, and Van der Waals forces to extract target substances, but they are not effective for some polar targets. Thus, it is necessary to develop COFs with high affinity for polar toxic and hazardous substances. (3) Methods for the synthesis of COFs have evolved from solvothermal methods to room-temperature methods, mechanical grinding, microwave-assisted synthesis, ion thermal methods, etc. Most of the existing methods are time-consuming, laborious, and environmentally unfriendly. The starting materials are too expensive to prepare COFs in large quantities. More effort is required to improve the synthesis efficiency and overcome the obstacles in the application of COFs for extraction. This article summarizes and reviews the research progress in COFs toward the extraction of toxic and hazardous substances in recent years. Finally, the application prospects of COFs in this field are summarized, which serves as a reference for further research into pretreatment technologies based on COFs.
Collapse
|
10
|
Bagheri AR, Aramesh N, Liu Z, Chen C, Shen W, Tang S. Recent Advances in the Application of Covalent Organic Frameworks in Extraction: A Review. Crit Rev Anal Chem 2022; 54:565-598. [PMID: 35757859 DOI: 10.1080/10408347.2022.2089838] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covalent organic frameworks (COFs) are a class of emerging materials that are synthesized based on the covalent bonds between different building blocks. COFs possess unique attributes in terms of high porosity, tunable structure, ordered channels, easy modification, large surface area, and great physical and chemical stability. Due to these features, COFs have been extensively applied as adsorbents in various extraction modes. Enhanced extraction performance could be reached with modified COFs, where COFs are presented as composites with other materials including nanomaterials, carbon and its derivatives, silica, metal-organic frameworks, molecularly imprinted polymers, etc. This review article describes the recent advances, developments, and applications of COF-based materials being utilized as adsorbents in the extraction methods. The COFs, their properties, their synthesis approaches as well as their composite structures are reviewed. Most importantly, suggested mechanisms for the extraction of analyte(s) by COF-based materials are also discussed. Finally, the current challenges and future prospects of COF-based materials in extraction methods are summarized and considered in order to provide more insights into this field.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - Zhiqiang Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Chengbo Chen
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
11
|
Synthesis of the Magnetically Nanoporous Organic Polymer Fe3O4@SiO2-NH2-COP and Its Application in the Determination of Sulfonamide Residues in Surface Water Surrounding a Cattle Farm. Bioinorg Chem Appl 2022; 2022:6453609. [PMID: 35502220 PMCID: PMC9056257 DOI: 10.1155/2022/6453609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/28/2022] [Indexed: 11/25/2022] Open
Abstract
Efficient extractions of trace antibiotic residues in the environment are a key factor for accurate quantification of the residues. A new nanoporous material, namely, magnetically covalent organic polymer (MCOP, Fe3O4@SiO2-NH2-COP) was synthesized in this work and was used for magnetic solid-phase extraction (MSPE). The combination of MSPE with high-performance liquid chromatography separation together with ultraviolet detection (HPLC-UV) was established as an effective method for the determination of four sulfonamide (SA) residues in surface water surrounding a cattle farm. The synthesized magnetic material was characterized by SEM, TEM, FT-IR, magnetic properties measurement system (MPMS), and nitrogen gas porosimetry. The material possessed many attractive features, such as a unique microporous structure, a larger specific surface area (137.93 m2·g−1) than bare Fe3O4 (24.84 m2·g−1), high saturation magnetization (50.5 emu·g−1), open adsorption sites, and high stability. The influencing parameters, including pH, the used amount of MCOPs, the type of eluent, adsorption solution, and desorption time, were optimized. Under the optimized conditions, the method conferred good linearity ranges (R2 ≥ 0.9990), low detection limits (S/N = 3, LOD, 0.10–0.25 μg·L−1), and satisfactory recoveries (79.7% to 92.2%). The enrichment factor (EF) for the four SAs was 34.13–38.86. The relative standard deviations of intraday (n = 5) and of interday (n = 3) were less than 4.8% and 8.9%, respectively. The equilibria between extraction and desorption for SAs could be reached within 150 s. The proposed method was sensitive and convenient for detecting SA residues in complex environmental matrices, and the successful application of the new MCOPs as an adsorbent was demonstrated.
Collapse
|
12
|
Li J, Xu X, Wang X, Li C, Feng X, Zhang Y, Zhang F. Construction of a magnetic covalent organic framework for magnetic solid-phase extraction of AFM1 and AFM2 in milk prior to quantification by LC-MS/MS. Mikrochim Acta 2022; 189:149. [PMID: 35303752 DOI: 10.1007/s00604-021-05090-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022]
Abstract
A magnetic covalent organic framework (M-COF) was designed and selected as sorbent for magnetic solid-phase extraction (MSPE) of AFM1 and AFM2 in milk, followed by LC-MS/MS analysis. The application of 2,5-Dihydroxy-1,4-benzenedicarboxaldehyde (Dt) and 4',5'-bis(4-aminophenyl)-[1,1':2',1″-terphenyl]-4,4″-diamine (BAPTPDA) as monomers endows M-COF excellent properties for adsorbing AFM1 and AFM2. The morphology, structure, stability, and magnetism of the Fe3O4@COF(BAPTPDA-Dt) were characterized by various techniques including scanning electron microscopy, transmission electron microscopy, FTIR, thermogravimetric analysis, and vibrating sample magnetometer. The Fe3O4 microspheres were covered by COF shells. Fe3O4@COF exhibited excellent magnetism and stability. Some parameters that may influence the adsorption efficiency of MSPE were also optimized, making the extraction process more effective, time-saving (about 3 min), and less organic-reagent-consuming (only 4 mL of acetonitrile required). It is noteworthy that the Fe3O4@COF(BAPTPDA-Dt) can be reutilized more than 8 times. The AFM1 and AFM2 were determined by LC-MS/MS. The LODs for AFM1 and AFM2 were in the range 0.0069 to 0.0078 μg kg-1. A wide linearity range (0.01-100 μg kg-1) with coefficients of determination (R2) ranging from 0.9998 to 0.9999 was obtained. The recoveries at four spiked concentrations (0.05, 0.5, 5, and 50 μg kg-1) in the milk matrix ranged from 85.2 to 106.5%. The intraday RSDs and the interday RSDs were in the range 1.74-4.58% and 2.65-6.69%, respectively. The matrix effect (9.3% for AFM1 and 6.7% for AFM2) was also significantly lower than that observed in other work . Overall, the established method has provided a powerful tool for rapid pretreatment and sensitive determination of AFM1 and AFM2 in milk with negligible matrix effect, presenting important value in toxicant determination.
Collapse
Affiliation(s)
- Jie Li
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.,School of Pharmacy, China Medical University, ShenyangLiaoning, 110122, China
| | - Xiuli Xu
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Xiujuan Wang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Chen Li
- Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xuesong Feng
- School of Pharmacy, China Medical University, ShenyangLiaoning, 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, ShenyangLiaoning, 110122, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| |
Collapse
|
13
|
Gong Z, Wan Q, Song J, Li M, He W, Zhou Z, Su P, Zhang C, Yang Y. Room temperature fabrication of magnetic covalent organic frameworks for analyzing sulfonamide residues in animal-derived foods. J Sep Sci 2022; 45:1514-1524. [PMID: 35178864 DOI: 10.1002/jssc.202100978] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 11/12/2022]
Abstract
A magnetic solid phase extraction method based on magnetic covalent organic frameworks (TpBD@Fe3 O4 ) combined with high performance liquid chromatography has been developed to detect the sulfonamides including sulfadiazine, sulfamerazine, sulfamethazine and sulfamethoxazole in milk and meat. TpBD@Fe3 O4 were synthesized at room temperature under mild reaction conditions with a simple and rapid operation. The TpBD@Fe3 O4 exhibited higher extraction efficiency because of the π-π and electrostatic interactions between the benzene ring structure of the TpBD and the SA molecules. The extraction conditions including the dosage of adsorbents, the type and dosage of eluent, the elution time and the pH of the sample solution were fully optimized. The detection results showed good linearity over a wide range (50-5×104 ng/mL) and low detection limits (3.39-5.77 ng/mL) for the SA targets. The practicability of this MSPE-HPLC method was further evaluated by analyzing milk and meat samples, with recoveries of the targets of 71.6%-110.8% in milk and 71.9%-109.7% in pork. The successful detection of SAs residues has demonstrated the TpBD@Fe3 O4 excellent practical potential for analyzing pharmaceutical residues in animal-derived foods. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhen Gong
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Qianqian Wan
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Jiayi Song
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Meng Li
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Wenting He
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Zixin Zhou
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Ping Su
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Chunting Zhang
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Yi Yang
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| |
Collapse
|
14
|
Lin S, Zhao Z, Lv YK, Shen S, Liang SX. Recent advances in porous organic frameworks for sample pretreatment of pesticide and veterinary drug residues: a review. Analyst 2021; 146:7394-7417. [PMID: 34783327 DOI: 10.1039/d1an00988e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rapid and accurate detection of pesticide and veterinary drug residues is a continuing challenge because of the complex matrix effects. Thus, appropriate sample pretreatment is a crucial step for the effective extraction of the analytes and removal of the interferences. Recently, the development of nanomaterial adsorbents has greatly promoted the innovation of food sample pretreatment approaches. Porous organic frameworks (POFs), including polymers of intrinsic microporosity, covalent organic frameworks, hyper crosslinked polymers, conjugated microporous polymers, and porous aromatic frameworks, have been widely utilized due to their tailorable skeletons and pores as well as fascinating features. This review summarizes the recent advances for POFs to be utilized in adsorption and sample preparation of pesticide and veterinary drug residues. In addition, future prospects and challenges are discussed, hoping to offer a reference for further study on POFs in sample pretreatment.
Collapse
Affiliation(s)
- Shumin Lin
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding, 071002, PR China. .,Analysis and Testing Center, Inner Mongolia University of Science and Technology, Baotou, 014010, PR China
| | - Zhe Zhao
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding, 071002, PR China.
| | - Yun-Kai Lv
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding, 071002, PR China.
| | - Shigang Shen
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding, 071002, PR China.
| | - Shu-Xuan Liang
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding, 071002, PR China.
| |
Collapse
|
15
|
Javanmardi H, Naderi M, Bagheri H. A stable nitrogen-rich zinc-based metal organic framework to investigate the structural similarity effect on the sorption efficiency of nitrogen-containing compounds. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Abstract
Antibiotics, nowadays, are not only used for the treatment of human diseases but also used in animal and poultry farming to increase production. Overuse of antibiotics leads to their circulation in the food chain due to unmanaged discharge. These circulating antibiotics and their residues are a major cause of antimicrobial resistance (AMR), so comprehensive and multifaceted measures aligning with the One Health approach are crucial to curb the emergence and dissemination of antibiotic resistance through the food chain. Different chromatographic techniques and capillary electrophoresis (CE) are being widely used for the separation and detection of antibiotics and their residues from food samples. However, the matrix present in food samples interferes with the proper detection of the antibiotics, which are present in trace concentrations. This review is focused on the scientific literature published in the last decade devoted to the detection of antibiotics in food products. Various extraction methods are employed for the enrichment of antibiotics from a wide variety of food samples; however, solid-phase extraction (SPE) techniques are often used for the extraction of antibiotics from food products and biological samples. In addition, this review has scrutinized how changing instrumental composition, organization, and working parameters in the chromatography and CE can greatly impact the identification and quantification of antibiotic residues. This review also summarized recent advancements in other detection methods such as immunological assays, surface-enhanced Raman spectroscopy (SERS)-based assays, and biosensors which have emerged as rapid, sensitive, and selective tools for accurate detection and quantification of traces of antibiotics.
Collapse
|
17
|
Qiao L, Yu C, Sun R, Tao Y, Li Y, Yan Y. Three-dimensional magnetic stannic disulfide composites for the solid-phase extraction of sulfonamide antibiotics. J Chromatogr A 2021; 1652:462372. [PMID: 34246058 DOI: 10.1016/j.chroma.2021.462372] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 01/06/2023]
Abstract
In the present work, three-dimensional (3D) and flower-like SnS2 materials were coated on the surface of Fe3O4@nSiO2 through an in-situ growth method. The 3D architecture could avoid the accumulation and reaggregation with better stability and was beneficial for the exposure of more active sites. The prepared magnetic SnS2 composites were used for the enrichment of sulfonamide antibiotics (SAs), and various experimental parameters affecting the extraction efficiency were investigated. The results showed the equilibrium of extraction and desorption towards target SAs could be reached within 3 min by using the Fe3O4@nSiO2-SnS2 composites. Under optimized conditions, the proposed approach possessed good linearity in the range of 0.1-200 ng·mL-1 with correlation coefficients r2 above 0.9964 and low limits of detection (LODs) from 0.025 to 0.250 ng·mL-1 for the five target SAs. Moreover, good repeatability was obtained with the intra-day and inter-day precision in terms of relative standard deviations (RSDs) within 1.1%-10.8% and 7.4%-13.1%, and the recoveries under three spiked concentrations were between 81.8% and 119.7% with adequate accuracy. Different samples including tap water, milk and honey were collected for magnetic solid-phase extraction and determination of target SAs by using the obtained Fe3O4@nSiO2-SnS2 composites to demonstrate the utility. All the results indicated that the proposed method had great potential for effective preconcentration and determination of SAs in complex samples.
Collapse
Affiliation(s)
- Lizhen Qiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China.
| | - Chunmei Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Ruiting Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Yuan Tao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Yumeng Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Yang Yan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China.
| |
Collapse
|
18
|
Sun H, Feng J, Han S, Ji X, Li C, Feng J, Sun M. Recent advances in micro- and nanomaterial-based adsorbents for pipette-tip solid-phase extraction. Mikrochim Acta 2021; 188:189. [PMID: 33991231 DOI: 10.1007/s00604-021-04806-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/21/2021] [Indexed: 11/30/2022]
Abstract
There are a lot of review papers of sample pretreatment, but the comprehensive review on pipette-tip solid-phase extraction (PT-SPE) is lacking. This review (133 references) is mainly devoted to the development of different types of micro- and nanosorbent-based PT-SPE, including silica materials, carbon materials, organic polymers, molecularly imprinted polymers, and metal-organic frameworks. Each section mainly introduces and discusses the preparation methods, advantages and limitations of adsorbents, and their applications to environmental, biological, and food samples. This review also demonstrates the advantages of PT-SPE like convenience, speed, less organic solvent, and low cost. Finally, the future application and development trend of PT-SPE are prospected.
Collapse
Affiliation(s)
- Haili Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Sen Han
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Xiangping Ji
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Chunying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Jiaqing Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| |
Collapse
|
19
|
Liu L, Wang XX, Wang X, Xu GJ, Zhao YF, Wang ML, Lin JM, Zhao RS, Wu Y. Triazine-cored covalent organic framework for ultrasensitive detection of polybrominated diphenyl ethers from real samples: Experimental and DFT study. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123917. [PMID: 33264969 DOI: 10.1016/j.jhazmat.2020.123917] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 06/12/2023]
Abstract
Food and environmental safety issues attributable to the polybrominated diphenyl ethers (PBDEs) are gaining increasing attention, and these urge us to establish a high-performance sample-handling technique. In this study, an outstanding adsorption performance with short adsorption time (10 min) was achieved for PBDEs using a novel synthesized dispersive solid-phase extraction adsorbent, a reticulated covalent organic framework with N/O functional groups (i.e., imine linkage, triazine, and methoxy) (TAPT-DMTA-COF). By conducting sufficient experimentation and theoretical simulation on adsorption mechanism, the halogen bond between electronegative N/O atoms of TAPT-DMTA-COF and the electropositive Br atoms of PBDEs were observed to play a more pivotal role than π-π, C-H…π interactions, and hydrophobic effects. Furthermore, the positive linear relation between calculated adsorption energy and Br content directly clarified that enrichment behavior of PBDEs can be attributed to halogen bonding. These data implied that integrated nanostructure (i.e., N/O functional groups and reticulated architecture) effectively enhanced adsorption capacity. In case of PBDE analysis, this approach achieved excellent results with low limits of detection (0.03-0.13 ng L-1). Finally, the promising potential applications of aforementioned method were verified by spiking water, fish, and milk samples with PBDEs; good PBDEs recoveries were obtained.
Collapse
Affiliation(s)
- Lu Liu
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Xiao-Xing Wang
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Xia Wang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan 250014, China
| | - Gui-Ju Xu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan 250014, China
| | - Yan-Fang Zhao
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan 250014, China
| | - Ming-Lin Wang
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Jing-Ming Lin
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ru-Song Zhao
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan 250014, China; School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Yongning Wu
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Centre for Food Safety Risk Assessment, Beijing 100022, China.
| |
Collapse
|
20
|
Wang G, Hong Z, Lei Y. The fabrication of a covalent triazine-based organic framework for the solid-phase extraction of fourteen kinds of sulfonamides from meat samples. RSC Adv 2020; 10:35941-35948. [PMID: 35517064 PMCID: PMC9056977 DOI: 10.1039/d0ra04101g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/15/2020] [Indexed: 11/21/2022] Open
Abstract
A novel covalent triazine-based organic framework (CTF), SCAU-2, was fabricated and used as an adsorbent for the solid-phase extraction of fourteen kinds of sulfonamides (SAs) from meat. Another CTF, SCAU-1, was adopted as a comparison material, as it has a similar motif. A series of structural characterization steps was carried out on the synthesized materials and several parameters were investigated during the extraction process, including the amount of adsorbent, the dilution ratio, the pH of the sample, and the washing and elution solvents. After detection with UHPLC-Q/TOF-MS/MS, the results revealed that SCAU-2 showed high extraction efficiencies towards the selected SAs. The LOD values are from 0.05 to 0.54 ng g-1, and the recoveries are from 84.1% to 91.9%, with RSDs ranging from 3.2% to 4.8% for SCAU-2 when spiked at 50 ng g-1. The results demonstrated that the proposed method has good applicability for the determination of SAs in complicated samples.
Collapse
Affiliation(s)
- Guanhua Wang
- College of Veterinary Medicine, South China Agricultural University Guangzhou 510642 Guangdong PR China +86-02085280234
| | - Zhikai Hong
- College of Veterinary Medicine, South China Agricultural University Guangzhou 510642 Guangdong PR China +86-02085280234
| | - Yongqian Lei
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Engineering Technology Research Center of On-line Monitoring of Water Environmental Pollution, Guangdong Institute of Analysis Guangzhou 510070 PR China +86-02037656885
| |
Collapse
|
21
|
Xie X, Huang S, Zheng J, Ouyang G. Trends in sensitive detection and rapid removal of sulfonamides: A review. J Sep Sci 2020; 43:1634-1652. [PMID: 32043724 DOI: 10.1002/jssc.201901341] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/15/2022]
Abstract
Sulfonamides in environmental water, food, and feed are a major concern for both aquatic ecosystems and public health, because they may lead to the health risk of drug resistance. Thus, numerous sensitive detection and rapid removal methodologies have been established. This review summarizes the sample preparation techniques and instrumental methods used for sensitive detection of sulfonamides. Additionally, adsorption and photocatalysis for the rapid removal of sulfonamides are also discussed. This review provides a comprehensive perspective on future sulfonamide analyses that have good performance, and on the basic methods for the rapid removal of sulfonamides.
Collapse
Affiliation(s)
- Xintong Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Shuyao Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Juan Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
22
|
Modified layered bimetallic compound used as a novel adsorbent for the solid-phase extraction of monoaromatic hydrocarbons from water samples prior to gas chromatography–mass spectrometry. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
23
|
Wang XM, Ji WH, Chen LZ, Lin JM, Wang X, Zhao RS. Nitrogen-rich covalent organic frameworks as solid-phase extraction adsorbents for separation and enrichment of four disinfection by-products in drinking water. J Chromatogr A 2020; 1619:460916. [PMID: 32037072 DOI: 10.1016/j.chroma.2020.460916] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 12/31/2022]
Abstract
Disinfection by-products (DBPs) in drinking water can pose a health risk to humans. In this work, a new nitrogen-rich covalent organic frameworks (TpTt-COFs) was synthesized and applied firstly as a novel solid-phase extraction (SPE) trapping media for four ultra-trace levels of DBPs in drinking water samples. Under the optimal conditions, these DBPs were absorbed on a SPE cartridge; then, the DBPs were eluted with the optimized volume of eluent. The concentrated elution was detected and quantified by gas chromatography-mass spectrometry. Low limits of detection (0.0004-0.0063 ng mL-1), wide linearity (0.002-50 µg L-1), good reproducibility (1.54-2.88%) and repeatability (1.28-3.40%) were obtained. This novel method has been successfully applied to the analysis of ultra-trace levels DBPs in real drinking water samples. These accurate experimental results by this method indicated that the novel TpTt-COFs as a SPE trapping material was an attractive option for efficient and effective analysis of ultra-trace levels DBPs in future.
Collapse
Affiliation(s)
- Xin-Mei Wang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Public Analytical Platform of Emerging Organic Pollutants, Shandong Analysis and Test Center, Jinan 250014, China; College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Wen-Hua Ji
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Public Analytical Platform of Emerging Organic Pollutants, Shandong Analysis and Test Center, Jinan 250014, China
| | - Li-Zong Chen
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Public Analytical Platform of Emerging Organic Pollutants, Shandong Analysis and Test Center, Jinan 250014, China
| | - Jin-Ming Lin
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xia Wang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Public Analytical Platform of Emerging Organic Pollutants, Shandong Analysis and Test Center, Jinan 250014, China.
| | - Ru-Song Zhao
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Public Analytical Platform of Emerging Organic Pollutants, Shandong Analysis and Test Center, Jinan 250014, China
| |
Collapse
|
24
|
Wang G, Zhou T, Lei Y. Exploration of a novel triazine-based covalent organic framework for solid-phase extraction of antibiotics. RSC Adv 2020; 10:11557-11564. [PMID: 35496593 PMCID: PMC9050495 DOI: 10.1039/c9ra10846g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/02/2020] [Indexed: 11/21/2022] Open
Abstract
A novel COF was synthesized, which has a similar structure to SNW-1 but different selectivity towards antibiotics.
Collapse
Affiliation(s)
- Guanhua Wang
- College of Veterinary Medicine
- South China Agricultural University
- Guangzhou 510642
- PR China
| | - Tong Zhou
- College of Veterinary Medicine
- South China Agricultural University
- Guangzhou 510642
- PR China
| | - Yongqian Lei
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals
- Guangdong Engineering Technology Research Center of On-line Monitoring of Water Environmental Pollution
- Guangdong Institute of Analysis
- Guangzhou
- China
| |
Collapse
|
25
|
Liu J, Li G, Wu D, Zhang X, Hu L, Liu J. Fabrication of a functionalized magnetic covalent organic framework composite as an efficient adsorbent for sulfonamide extraction from food samples. NEW J CHEM 2020. [DOI: 10.1039/d0nj02849e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A carboxyl group functionalized magnetic covalent organic framework as an adsorbent to extract sulfonamides from meat samples was proposed.
Collapse
Affiliation(s)
- Jichao Liu
- School of Food and Biological Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- China
| | - Guoliang Li
- School of Food and Biological Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- China
| | - Di Wu
- Institute for Global Food Security
- School of Biological Sciences
- Queen's University Belfast
- Belfast
- UK
| | - Xianlong Zhang
- School of Food and Biological Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- China
| | - Liangbin Hu
- School of Food and Biological Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- China
| | - Jianghua Liu
- School of Food and Biological Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- China
| |
Collapse
|
26
|
Li C, Sun M, Ji X, Han S, Feng J, Guo W, Feng J. Triazine‐based organic polymers@SiO
2
nanospheres for sensitive solid‐phase microextraction of polycyclic aromatic hydrocarbons. J Sep Sci 2019; 43:622-630. [DOI: 10.1002/jssc.201900941] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Chunying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P.R. China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P.R. China
| | - Xiangping Ji
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P.R. China
| | - Sen Han
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P.R. China
| | - Jiaqing Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P.R. China
| | - Wenjuan Guo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P.R. China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P.R. China
| |
Collapse
|