1
|
Hu J, Li J, Guo Q, Du G, Li C, Li R, Zhou R, He H. Visual Detection of Dopamine with CdS/ZnS Quantum Dots Bearing by ZIF-8 and Nanofiber Membranes. Int J Mol Sci 2024; 25:10346. [PMID: 39408675 PMCID: PMC11476674 DOI: 10.3390/ijms251910346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Dopamine (DA) is a widely present, calcium cholinergic neurotransmitter in the body, playing important roles in the central nervous system and cardiovascular system. Developing fast and sensitive DA detection methods is of great significance. Fluorescence-based methods have attracted much attention due to their advantages of easy operation, a fast response speed, and high sensitivity. This study prepared hydrophilic and high-performance CdS/ZnS quantum dots (QDs) for DA detection. The waterborne CdS/ZnS QDs were synthesized in one step using the amphiphilic polymer PEI-g-C14, obtained by grafting tetradecane (C14) to polyethyleneimine (PEI), as a template. The polyacrylonitrile nanofiber membrane (PAN-NFM) was prepared by electrospinning (e-spinning), and a metal organic frame (ZIF-8) was deposited in situ on the surface of the PAN-NFM. The CdS/ZnS QDs were loaded onto this substrate (ZIF-8@PAN-NFM). The results showed that after the deposition of ZIF-8, the water contact angle of the hydrophobic PAN-NFM decreased to within 40°. The nanofiber membrane loaded with QDs also exhibited significant changes in fluorescence in the presence of DA at different concentrations, which could be applied as a fast detection method of DA with high sensitivity. Meanwhile, the fluorescence on this PAN-NFM could be visually observed as it transitioned from a blue-green color to colorless, making it suitable for the real-time detection of DA.
Collapse
Affiliation(s)
- Jiadong Hu
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (J.H.); (R.Z.)
| | - Jiaxin Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (J.L.); (Q.G.); (G.D.); (R.L.)
| | - Qunqun Guo
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (J.L.); (Q.G.); (G.D.); (R.L.)
| | - Guicai Du
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (J.L.); (Q.G.); (G.D.); (R.L.)
| | - Changming Li
- Schneider Institute of Industrial Technology, Qingdao University, Qingdao 266071, China
| | - Ronggui Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (J.L.); (Q.G.); (G.D.); (R.L.)
| | - Rong Zhou
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (J.H.); (R.Z.)
| | - Hongwei He
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (J.H.); (R.Z.)
| |
Collapse
|
2
|
Kong W, Liu M, Zhang J, Wu H, Wang Y, Su Q, Li Q, Zhang J, Wu C, Zou WS. Room-temperature phosphorescence and fluorescence nanocomposites as a ratiometric chemosensor for high-contrast and selective detection of 2,4,6-trinitrotoluene. Anal Chim Acta 2023; 1282:341930. [PMID: 37923408 DOI: 10.1016/j.aca.2023.341930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
Reports on using complementary colours for high-contrast ratiometric assays are limited to date. In this work, graphitized carbon nitride (g-C3N4) nanosheets and mercaptoethylamine (MEA) capped Mn-doped ZnS QDs were fabricated by liquid exfoliation of bulk g-C3N4, and by a coprecipitation and postmodification strategies, respectively. Mn-doped ZnS quantum dots were deposited onto g-C3N4 nanosheets through an electrostatic self-assembly to form new nanocomposites (denoted as Mn-ZnS QDs@g-C3N4). Mn-ZnS QDs@g-C3N4 can emit a pair of complementary colour light, namely, orange room-temperature phosphorescence (RTP) at 582 nm and blue fluorescence at 450 nm. After 2,4,6-trinitrotoluene (TNT) dosing into Mn-ZnS QDs@g-C3N4 aqueous solution, and pairing with MEA to generate TNT anions capable of quenching the emission of Mn-doped ZnS QDs, the fluorescence colours of the solution changed from orange to blue across white, exhibiting unusual high-contrast fluorescence images. The developed ratiometric chemosensor showed very good linearity in the range of 0-12 μM TNT with a limit of detection of 0.56 μM and an RSD of 6.4 % (n = 5). Also, the ratiometric probe had an excellent selectivity for TNT over other nitroaromatic compounds, which was applied in the ratiometric test paper to image TNT in water, and TNT sensing under phosphorescence mode to efficiently avoid background interference. A high-contrast dual-emission platform for selective ratiometric detection of TNT was therefore established.
Collapse
Affiliation(s)
- Weili Kong
- School of Materials and Chemical Engineering, Key Laboratory of Functional Molecule Design and Interface Procedure, Anhui Jianzhu University, Hefei, 230022, China
| | - Meina Liu
- School of Materials and Chemical Engineering, Key Laboratory of Functional Molecule Design and Interface Procedure, Anhui Jianzhu University, Hefei, 230022, China
| | - Jinhui Zhang
- School of Materials and Chemical Engineering, Key Laboratory of Functional Molecule Design and Interface Procedure, Anhui Jianzhu University, Hefei, 230022, China
| | - Hongbo Wu
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, 232001, China
| | - Yaqin Wang
- School of Materials and Chemical Engineering, Key Laboratory of Functional Molecule Design and Interface Procedure, Anhui Jianzhu University, Hefei, 230022, China.
| | - Qin Su
- School of Materials and Chemical Engineering, Key Laboratory of Functional Molecule Design and Interface Procedure, Anhui Jianzhu University, Hefei, 230022, China
| | - Qin Li
- School of Materials and Chemical Engineering, Key Laboratory of Functional Molecule Design and Interface Procedure, Anhui Jianzhu University, Hefei, 230022, China
| | - Jun Zhang
- School of Materials and Chemical Engineering, Key Laboratory of Functional Molecule Design and Interface Procedure, Anhui Jianzhu University, Hefei, 230022, China; New Energy Photovoltaic Industry Research Center, Qinghai University, Xining, 810016, China
| | - Chengli Wu
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Wen-Sheng Zou
- School of Materials and Chemical Engineering, Key Laboratory of Functional Molecule Design and Interface Procedure, Anhui Jianzhu University, Hefei, 230022, China.
| |
Collapse
|
3
|
Sreenan B, Lee B, Wan L, Zeng R, Zhao J, Zhu X. Review of Mn-Doped Semiconductor Nanocrystals for Time-Resolved Luminescence Biosensing/Imaging. ACS APPLIED NANO MATERIALS 2022; 5:17413-17435. [PMID: 36874078 PMCID: PMC9980291 DOI: 10.1021/acsanm.2c04337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Colloidal semiconductor nanocrystals (NCs) have been developed for decades and are widely applied in biosensing/imaging. However, their biosensing/imaging applications are mainly based on luminescence-intensity measurement, which suffers from autofluorescence in complex biological samples and thus limits the biosensing/imaging sensitivities. It is expected for these NCs to be further developed to gain luminescence features that can overcome sample autofluorescence. On the other hand, time-resolved luminescence measurement utilizing long-lived-luminescence probes is an efficient technique to eliminate short-lived autofluorescence of samples while recording time-resolved luminescence of the probes for signal measurement after pulsed excitation from a light source. Despite time-resolved measurement being very sensitive, the optical limitations of many of the current long-lived-luminescence probes cause time-resolved measurement to be generally performed in laboratories with bulky and costly instruments. In order to apply highly sensitive time-resolved measurement for in-field or point-of-care (POC) testing, it is essential to develop probes possessing high brightness, low-energy (visible-light) excitation, and long lifetimes of up to milliseconds. Such desired optical features can significantly simplify the design criteria of time-resolved measurement instruments and facilitate the development of low-cost, compact, sensitive instruments for in-field or POC testing. Mn-doped NCs have recently been in rapid development and provide a strategy to solve the challenges faced by both colloidal semiconductor NCs and time-resolved luminescence measurement. In this review, we outline the major achievements in the development of Mn-doped binary and multinary NCs, with emphasis on their synthesis approaches and luminescence mechanisms. Specifically, we demonstrate how researchers approached these obstacles to achieve the aforementioned desired optical properties on the basis of the progressive understanding of Mn emission mechanisms. Afterward, we review representative applications of Mn-doped NCs in time-resolved luminescence biosensing/imaging and present the potential of Mn-doped NCs in advancing time-resolved luminescence biosensing/imaging for in-field or POC testing.
Collapse
Affiliation(s)
- Benjamin Sreenan
- Department of Electrical and Biomedical Engineering, University of Nevada-Reno, Reno, Nevada 89557, United States
| | - Bryan Lee
- Department of Electrical and Biomedical Engineering, University of Nevada-Reno, Reno, Nevada 89557, United States
| | - Li Wan
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| | - Ruosheng Zeng
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Jialong Zhao
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiaoshan Zhu
- Department of Electrical and Biomedical Engineering, University of Nevada-Reno, Reno, Nevada 89557, United States
| |
Collapse
|
4
|
Liu H, Xu H, Li H. Detection of Fe 3+ and Hg 2+ Ions by Using High Fluorescent Carbon Dots Doped With S And N as Fluorescence Probes. J Fluoresc 2022; 32:1089-1098. [PMID: 35303240 DOI: 10.1007/s10895-022-02921-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/01/2022] [Indexed: 11/28/2022]
Abstract
In this paper, carbon quantum dots (N-S-CDs) containing sulfur and nitrogen were synthesized using citric acid and thiourea. The average particle size of N-S-CDs is 8 nm. The N-S-CDs surface contains various of functional groups, which has good water solubility. The fluorescence quantum yield of N-S-CDs is as high as 36.8%. N-S-CDs emits strong blue fluorescence in aqueous solution and has good photostability in neutral and alkaline NaCl solution. N-S-CDs has unique selectivity and high sensitivity to Fe3+ and Hg2+ ions, and the lowest detection limits are 1.4 μM and 0.16 μM, respectively. Under the interference of other metal ions, Fe3+ and Hg2+ ions can still effectively and stably quench the fluorescence of N-S-CDs. In addition, in the detection of actual samples, N-S-CDs can effectively detect Fe3+ and Hg2+ ions in tap water and lake water.
Collapse
Affiliation(s)
- Huadong Liu
- School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| | - Haoxuan Xu
- School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Hewei Li
- School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
5
|
Zhao R, Wang Z, Tian X, Shu H, Yang Y, Xiao X, Wang Y. Excellent fluorescence detection of Cu 2+in water system using N-acetyl-L-cysteines modified CdS quantum dots as fluorescence probe. NANOTECHNOLOGY 2021; 32:405707. [PMID: 34192671 DOI: 10.1088/1361-6528/ac1016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/30/2021] [Indexed: 05/18/2023]
Abstract
View of the negative influence of metal ions on natural environment and human health, fast and quantitative detection of metals ions in water systems is significant. Ultra-small grain size CdS quantum dots (QDs) modified with N-acetyl-L-cysteines (NALC) (NALC-CdS QDs) are successfully prepared via a facile hydrothermal route. Based on the changes of fluorescence intensity of NALC-CdS QDs solution after adding metal ions, the fluorescence probe made from the NALC-CdS QDs is developed to detect metal ions in water systems. Among various metal ions, the fluorescence of NALC-CdS QDs effectively quenched by the addition of Cu2+, the probe shows high sensitivity and selectivity for detecting Cu2+in other interferential metal ions coexisted system. Importantly, the fluorescence intensity of NALC-CdS QDs changes upon the concentration of Cu2+, the probe displays an excellent linear relationship between the fluorescence quenching rate and the concentration of Cu2+in ranging from 1 to 25μM. Besides, the detected limitation of the probe towards Cu2+as low as 0.48μM. The measurement of Cu2+in real water sample is also carried out using the probe. The results indicate that NALC-CdS QDs fluorescence probe may be a promising candidate for quantitative Cu2+detection in practical application.
Collapse
Affiliation(s)
- Rongjun Zhao
- School of Materials and Energy, Yunnan University, 650091 Kunming, People's Republic of China
| | - Zhezhe Wang
- School of Materials and Energy, Yunnan University, 650091 Kunming, People's Republic of China
| | - Xu Tian
- School of Materials and Energy, Yunnan University, 650091 Kunming, People's Republic of China
| | - Hui Shu
- School of Materials and Energy, Yunnan University, 650091 Kunming, People's Republic of China
| | - Yue Yang
- Department of Physics, Yunnan University, 650091 Kunming, People's Republic of China
| | - Xuechun Xiao
- School of Materials and Energy, Yunnan University, 650091 Kunming, People's Republic of China
| | - Yude Wang
- Key Lab of Quantum Information of Yunnan Province, Yunnan University, 650091 Kunming, People's Republic of China
| |
Collapse
|
6
|
Man Y, Zou WS, Kong WL, Li W, Dong W, Zhao D, Qu Q, Wang Y. Brightly blue triazine-doped carbon dots for selective determination of Cu(II) in environment and imaging in cell. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
7
|
Xie T, Zhong X, Liu Z, Xie C. Silica-anchored cadmium sulfide nanocrystals for the optical detection of copper(II). Mikrochim Acta 2020; 187:323. [PMID: 32394197 DOI: 10.1007/s00604-020-04295-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022]
Abstract
A fluorometric assay was developed for the determination of copper(II) ion based on its quenching effect on the green fluorescent probe of SiO2-anchored CdS nanocrystals (SiO2/CdS NCs). The fluorescent probe was prepared by a surface ion-directing strategy for homogeneous precipitation of CdS NCs onto the carboxyl-capped SiO2 core surfaces. In comparison to CdS NCs, the SiO2/CdS NCs has strong fluorescence emission and good photostability. Moreover, SiO2/CdS NCs show higher fluorescence selectivity for copper(II) ions than for other common metal ions because copper(II) ions have a strong fluorescence quenching effect on SiO2/CdS NCs. At excitation/emission wavelengths of 300/516 nm, the resulting fluorescent probe shows wide linear ranges from 0.01 to 2 μM with a detection limit of 6.3 nM for copper(II) ions. The method has been applied to the determination of trace copper(II) ions in tea infusions with satisfactory results. Graphical abstract.
Collapse
Affiliation(s)
- Tao Xie
- Institute of Physical Science and Information Technology, School of Chemical and Chemical Engineering, School of Life Science, Anhui University, Hefei, 230601, Anhui, China
| | - Xufeng Zhong
- Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an, 237012, Anhui, China
| | - Zhengjie Liu
- Institute of Physical Science and Information Technology, School of Chemical and Chemical Engineering, School of Life Science, Anhui University, Hefei, 230601, Anhui, China
| | - Chenggen Xie
- Institute of Physical Science and Information Technology, School of Chemical and Chemical Engineering, School of Life Science, Anhui University, Hefei, 230601, Anhui, China. .,Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an, 237012, Anhui, China.
| |
Collapse
|
8
|
Ratiometric Detection of Rifampin by Using Self‐Assembled Nanocomposites with Dual Fluorescence Emissions and Analysis of Two‐Dimensional Correlation Spectroscopy. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.11987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Wang Y, Man Y, Li S, Wu S, Zhao X, Xie F, Qu Q, Zou WS. Pesticide-derived bright chlorine-doped carbon dots for selective determination and intracellular imaging of Fe(III). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 226:117594. [PMID: 31629278 DOI: 10.1016/j.saa.2019.117594] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/06/2019] [Accepted: 10/02/2019] [Indexed: 05/20/2023]
Abstract
Inspired by the conversion from organics or biomass to fluorescent carbon dots (C-dots), the use of pesticide 4-chlorophenol (4-CP) as a precursor to prepare C-dots has been reported. The as-prepared chlorine-doped C-dots display a brightly blue emission at ∼445 nm with ∼22.8% quantum yield. Also, the surface of C-dots enriches functional groups, such as phenolic hydroxyl and carboxylic acid, etc., which can capture ferric ion (Fe(III)), resulting in the quenching of blue fluorescence of C-dots through an inner filter effect. The quantitative assay for Fe(III) was therefore realized by this probe with a 0.36 μM detection limit in the 0.6-25 μM concentration range. Most significantly, the cytotoxicity on Hela cells indicates the 4-CP-derived C-dots have a negligible cytotoxicity. The C-dots were applied in detection in environmental samples and imaging in Hela cells of Fe(III), demonstrating their good applicability, low toxicity and good biocompatibility, and providing an alterative approach to totally eliminate the harm of chlorophenols (CPs).
Collapse
Affiliation(s)
- Yaqin Wang
- School of Materials and Chemical Engineering, Anhui Jianzhu University, 292 Ziyun Road, Hefei, Anhui, 230022, China
| | - Yun Man
- School of Food and Biological Engineering, Bengbu University, 1866 Caoshan Road, Bengbu, Anhui, 233030, China.
| | - Sisheng Li
- Hefei Center for Disease Control and Prevention, 218 North Susong Road, Hefei, Anhui, 230061, China
| | - Shibiao Wu
- School of Materials and Chemical Engineering, Anhui Jianzhu University, 292 Ziyun Road, Hefei, Anhui, 230022, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Fazhi Xie
- School of Materials and Chemical Engineering, Anhui Jianzhu University, 292 Ziyun Road, Hefei, Anhui, 230022, China
| | - Qishu Qu
- School of Materials and Chemical Engineering, Anhui Jianzhu University, 292 Ziyun Road, Hefei, Anhui, 230022, China
| | - Wen-Sheng Zou
- School of Materials and Chemical Engineering, Anhui Jianzhu University, 292 Ziyun Road, Hefei, Anhui, 230022, China.
| |
Collapse
|
10
|
Wang Z, Xiao X, Yang Y, Zou T, Xing X, Zhao R, Wang Z, Wang Y. L-Aspartic Acid Capped CdS Quantum Dots as a High Performance Fluorescence Assay for Sliver Ions (I) Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1165. [PMID: 31416227 PMCID: PMC6724099 DOI: 10.3390/nano9081165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 01/31/2023]
Abstract
A new high performance fluorescence assay for detection of Ag+ based on CdS quantum dots (QDs) using L-Aspartic acid (L-Asp) as a stabilizer was proposed in this work. The CdS quantum dots conjugation with L-Aspartic acid (L-Asp@CdS QDs) were successfully synthesized via a simple hydrothermal process. The QDs have a fluorescence emission band maximum at 595 nm with a quantum yield of 11%. The obtained CdS QDs exhibit a particle size of 1.63 ± 0.28 nm and look like quantum dot flowers. Basically, the fluorescence intensity of L-Asp@CdS QDs can be enhanced only upon addition of Ag+ and a redshift in the fluorescence spectrum was observed. Under optimum conditions, the fluorescence enhancement of L-Asp@CdS QDs appeared to exhibit a good linear relationship in between 100-7000 nM (R2 = 0.9945) with the Ag+ concentration, with a detection limit of 39 nM. The results indicated that the L-Asp@CdS QDs were well used in detection for Ag+ as fluorescence probe in aqueous solution with high sensitivity and selectivity. Moreover, the sensing system has been applied in detection Ag+ in real water samples. The recovery test results were 98.6%~113%, and relative standard deviation (n = 5) is less than 3.6%, which was satisfactory.
Collapse
Affiliation(s)
- Zhezhe Wang
- School of Materials Science and Engineering, Yunnan University, Kunming 650091, China
- Department of Physics, Yunnan University, Kunming 650091, China
| | - Xuechun Xiao
- Department of Physics, Yunnan University, Kunming 650091, China.
| | - Yue Yang
- Department of Physics, Yunnan University, Kunming 650091, China
| | - Tong Zou
- School of Materials Science and Engineering, Yunnan University, Kunming 650091, China
| | - Xinxin Xing
- Department of Physics, Yunnan University, Kunming 650091, China
| | - Rongjun Zhao
- School of Materials Science and Engineering, Yunnan University, Kunming 650091, China
- Department of Physics, Yunnan University, Kunming 650091, China
| | - Zidong Wang
- School of Materials Science and Engineering, Yunnan University, Kunming 650091, China
| | - Yude Wang
- School of Materials Science and Engineering, Yunnan University, Kunming 650091, China.
- Key Lab of Quantum Information of Yunnan Province, Yunnan University, Kunming 650091, China.
| |
Collapse
|
11
|
Xiong H, Wang B, Wen W, Zhang X, Wang S. Fluorometric determination of copper(II) by using 3-aminophenylboronic acid-functionalized CdTe quantum dot probes. Mikrochim Acta 2019; 186:392. [DOI: 10.1007/s00604-019-3515-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/17/2019] [Indexed: 11/30/2022]
|