1
|
Jiao Y, Miao X, Wang L, Hong S, Gao Y, Wang X. The Engineered Synthesis and Enhancement of Nitrogen and Chlorine Co-Doped Fluorescent Carbon Dots for the Sensitive Detection of Quercetin. MATERIALS (BASEL, SWITZERLAND) 2025; 18:2669. [PMID: 40508665 PMCID: PMC12155965 DOI: 10.3390/ma18112669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/29/2025] [Revised: 05/25/2025] [Accepted: 06/03/2025] [Indexed: 06/16/2025]
Abstract
Flavonoid alcohols, particularly quercetin, as emerging antioxidants, demand advanced detection methodologies to comprehensively explore and evaluate their potential environmental and health risks. In this study, nitrogen-chlorine co-doped carbon dots (N, Cl-CDs), featuring an extended wavelength emission at 625 nm, were synthesized via the reaction of 4-chloro-1,2-phenylenediamine with polyethyleneimine. The engineered N, Cl-CDs exhibit superior photostability, exceptional aqueous dispersibility, and anti-interference capability in complex matrices. Leveraging static electron transfer mechanisms, the N, Cl-CDs demonstrate selective fluorescence quenching toward quercetin with an ultralow detection limit of 60.42 nM. Validation through rigorous spiked recovery assays in apple peel and red wine has been proficiently performed with satisfactory accuracy, highlighting the significant prospect of the constructed N, Cl-CDs for quercetin identification in real samples. This study provides valuable insights into the analytical determination of flavonoid compounds in complex environmental matrices, highlighting the potential of N, Cl-CDs for environmental and food safety monitoring.
Collapse
Affiliation(s)
- Yuan Jiao
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; (Y.J.); (L.W.)
- Wanli Energy Technology Development Co., Ltd., Zhejiang Wanli University, Ningbo 315100, China
- College of Environment and Ecology, Taiyuan University of Technology, Jinzhong 030600, China;
| | - Xuewen Miao
- College of Environment and Ecology, Taiyuan University of Technology, Jinzhong 030600, China;
| | - Lizhang Wang
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; (Y.J.); (L.W.)
| | - Shasha Hong
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan 030031, China;
| | - Yifang Gao
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; (Y.J.); (L.W.)
| | - Xin Wang
- Wanli Energy Technology Development Co., Ltd., Zhejiang Wanli University, Ningbo 315100, China
| |
Collapse
|
2
|
Nsanzamahoro S, Bezuneh TT, Nan F, Wu Z, Iradukunda Y, Shen L, Li B, Yu WW. In-situ formed silicon nanoparticles as high-fidelity fluorometric probe for sulfatase activity assay. Talanta 2025; 295:128314. [PMID: 40378763 DOI: 10.1016/j.talanta.2025.128314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/28/2025] [Accepted: 05/12/2025] [Indexed: 05/19/2025]
Abstract
Analyte-triggered fluorometric nanosensors is desirable for establishing novel analytical tools with better sensing responses. In this study, we illustrated that pyrocatechol (PCT) easily reacted with (N-[3-(trimethoxysilyl) propyl]-ethylenediamine) (DAMO) to generate strong yellow fluorescent silicon nanoparticles (Si NPs). Based on this and the sulfatase-activated conversion of pyrocatechol sulfate (PCTS) into PCT, we designed a sensing approach using PCTS/DAMO encountered fluorescence turn-on for sulfatase activity assay. Through such simple and accessible sensing method with clear reaction mechanism, the designed probe revealed high detection performance with excellent sensitivity and selectivity towards sulfatase compared to the rest of enzymes. The sulfatase activity was measured in a linear range of 0.2-60 U/L, with a detection limit of 0.12 U/L. For real samples study, sulfatase activity was measured in fetal bovine serum and human serum albumin with successful recoveries. Furthermore, the designed sensing method was used for sulfatase inhibitor screening using estrone-3-O-sulfamate (EMATE) as a model.
Collapse
Affiliation(s)
- Stanislas Nsanzamahoro
- School of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan, 250100, China; Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, Qingdao, 266237, China
| | - Terefe Tafese Bezuneh
- School of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan, 250100, China; Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, Qingdao, 266237, China
| | - Fuchun Nan
- School of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan, 250100, China; Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, Qingdao, 266237, China
| | - Zilong Wu
- School of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan, 250100, China; Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, Qingdao, 266237, China
| | - Yves Iradukunda
- Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Lanbo Shen
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Bin Li
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China.
| | - William W Yu
- School of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan, 250100, China; Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
3
|
Yu L, Jiang Q, Yang X, Liu F, Zhang Q, Han W, Liu G, Li H, Xu Y, Sun S. A self-calibrated tri-emission fluorescent probe based on carbon dots assembly for in vitro pepsin detection. Mikrochim Acta 2025; 192:282. [PMID: 40198397 DOI: 10.1007/s00604-025-07119-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/17/2025] [Indexed: 04/10/2025]
Abstract
A novel self-calibrating triple-emission fluorescent probe (CDs/BSA-SQ-Cy7) was engineered through the strategic integration of blue-emitting carbon dots (CDs) with covalently assembled near-infrared fluorescent dyes (BSA-SQ and BSA-SQ-Cy7) for accurate in vitro pepsin detection. To validate the enhanced performance of the tri-emissive design, a dual-emission control probe (CDs/BSA-SQ) was developed. BSA-SQ-Cy7 undergoes hydrolysis upon interaction with pepsin, resulting in concentration-dependent quenching of the red fluorescence, where the blue CDs serve as a reference emission during the process. The CDs/BSA-SQ-Cy7 probe demonstrated a robust linear correlation with pepsin concentrations ranging from 0.018 to 30 μg/mL (determined by the lowest detection limit). The detection limits were found to be 0.182 μg/mL (I495/I659), 0.033 μg/mL (I495/I808), and 0.018 μg/mL ((I495-I808)/I659), respectively. Additionally, the probe displayed excellent stability and reproducibility over a 72-h period, and its three-channel emission signal ratios can be utilized for self-calibration, thereby improving assay accuracy. This self-calibrated tri-emission probe is distinguished by its stability, reproducibility and high selectivity, offering an effective method for the accurate in vitro detection of pepsin.
Collapse
Affiliation(s)
- Lan Yu
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest a&F University, Yangling, 712100, Shaanxi, China
| | - Qinan Jiang
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest a&F University, Yangling, 712100, Shaanxi, China
| | - Xiao Yang
- College of Natural Resources and Environment, Northwest a&F University, Yangling, 712100, Shaanxi, China
| | - Fengyu Liu
- School of Chemistry, Ganjingzi District, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116023, China.
| | - Qi Zhang
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest a&F University, Yangling, 712100, Shaanxi, China
| | - Weiqiang Han
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest a&F University, Yangling, 712100, Shaanxi, China
| | - Guoxin Liu
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest a&F University, Yangling, 712100, Shaanxi, China
| | - Hongjuan Li
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest a&F University, Yangling, 712100, Shaanxi, China
| | - Yongqian Xu
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest a&F University, Yangling, 712100, Shaanxi, China
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest a&F University, Yangling, 712100, Shaanxi, China.
- Shenzhen Research Institute, Northwest a&F University, Shenzhen, 518000, China.
| |
Collapse
|
4
|
Wang GH, Kuo JT, Cheng CY, Chung YC. Single-Chamber Microbial Fuel Cell with an Innovative Sensing Component for Real-Time Continual Monitoring of a Wide Range of Cr(VI) Concentrations in Wastewater. BIOSENSORS 2025; 15:158. [PMID: 40136955 PMCID: PMC11940674 DOI: 10.3390/bios15030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/27/2025]
Abstract
Hexavalent chromium (Cr(VI)) is toxic, carcinogenic, and harmful to biological systems. Common detection methods, such as colorimetry, atomic absorption spectrometry, ion chromatography, and biological systems, can only be used in the laboratory and do not provide real-time feedback. To address these limitations, the current study cloned the ChrB gene, which exhibits high specificity in detecting Cr(VI), and the ChrA gene, which exhibits high Cr(VI) tolerance, into Escherichia coli. This recombinant strain, ChrA-ChrB-E. coli, was integrated into a single-chamber microbial fuel cell for accurate continual monitoring over a wide range of Cr(VI) concentrations. ChrA-ChrB-E. coli thrived in temperatures from 25 °C to 45 °C and pH levels between 5 and 8. Its ability to reduce Cr(VI) remained consistent across Cr(VI) forms, carbon sources, and oxyanions. Cyclic voltammetry was employed to verify the electrical activity of the biosensor. The biosensor exhibited a detection limit of 0.0075 mg/L. Under conditions simulating the regulatory emission limit for Cr(VI) of 0.5 mg/L in industrial wastewater, the biosensor achieved a response time of 20 s during continual operation. When tested with synthetic wastewater containing Cr(VI) concentrations from 0.02 to 150 mg/L, the system exhibited high adaptability and facilitated stable monitoring (relative standard deviation ≤ 2.7%). Additionally, the biosensor's accuracy (-1.73% to 2.5%) matched that of traditional batch methods, highlighting its suitability for real-time Cr(VI) monitoring in aquatic environments.
Collapse
Affiliation(s)
- Guey-Horng Wang
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, Xiamen 361008, China
| | - Jong-Tar Kuo
- Department of Biological Science and Technology, China University of Science and Technology, Taipei 115, Taiwan
| | - Chiu-Yu Cheng
- Department of Biological Science and Technology, China University of Science and Technology, Taipei 115, Taiwan
| | - Ying-Chien Chung
- Department of Biological Science and Technology, China University of Science and Technology, Taipei 115, Taiwan
| |
Collapse
|
5
|
Luo Y, Yuan S, Zhu M, Zhang Z, Cheng B, Xu W, Peng Z. Poria cocos-derived carbon dots for parallel detection of Cr 6+/Fe 3+ in complex environments with superior sensitivity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125346. [PMID: 39488910 DOI: 10.1016/j.saa.2024.125346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Multifunctional sensor capable of parallel sensing is of great importance thanks to their wide applications and great practicality. In this report, Poria cocos-derived carbon dots (CDs) were adopted for the development of multifunctional sensor for the parallel detection of Cr6+ and Fe3+ with superior sensitivity and applicability. Specifically, extremely low limit of detection (LOD) of 1.07 × 10-3 nM and 1.98 × 10-3 nM were achieved for Cr6+ and Fe3+, respectively. Systematic mechanism explorations revealed that the highly sensitive detection of Cr6+ was attributed to an efficient inner filter effect (IFE), while the sensing of Fe3+ was realized due to a strong static quenching process. Furthermore, the assay was found to be extremely versatile, achieving the reliable detection of Cr6+ and Fe3+ in multiple natural water environments and even biological environment. Utilizing the different reactions of Cr6+ and Fe3+ towards masking reagents, a logic gate that could effectively eliminate the mutual interference of Cr6+ and Fe3+ was successfully designed.
Collapse
Affiliation(s)
- Yuanping Luo
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China; Electron Microscopy Center, Yunnan University, Kunming 650091, China
| | - Song Yuan
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Minjie Zhu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Zongwen Zhang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Beijun Cheng
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Wenjun Xu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Zhili Peng
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China.
| |
Collapse
|
6
|
Zeng J, Zhang T, Liang G, Mo J, Zhu J, Qin L, Liu X, Ni Z. A "turn off-on" fluorescent sensor for detection of Cr(Ⅵ) based on upconversion nanoparticles and nanoporphyrin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:124002. [PMID: 38364512 DOI: 10.1016/j.saa.2024.124002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/16/2024] [Accepted: 02/04/2024] [Indexed: 02/18/2024]
Abstract
Hexavalent chromium (Cr(Ⅵ)) is a significant environmental pollutant because of its toxic and carcinogenic properties and wide use in various industries. Hence, there is an urgent need to develop accurate and selective approaches to detect the concentration of Cr(Ⅵ) in agricultural and aquaculture products to help humans avoid potential hazards of indirectly taking in Cr(Ⅵ). In this work, we report a "turn off-on" fluorescent sensor based on citric acid coated, 808 nm-excited core-shell upconversion nanoparticles (CA-UCNPs) and self-assembled copper porphyrin nanoparticles (nano CuTPyP) for sensitive and specific detection of Cr(Ⅵ). Nano copper 5, 10, 15, 20-tetra(4-pyridyl)-21H-23H- porphine obtained by acid-base neutralization micelle-confined self-assembly method function as an effective quencher due to its excellent optical property and water solubility. Through electrostatic interactions, positively charged nano CuTPyP are attracted to the surface of negatively charged CA-UCNPs, which can almost completely quench the fluorescence emission. In the presence of Cr(Ⅵ), nano CuTPyP can discriminatively interact with Cr(Ⅵ) and form nano CuTPyP/Cr(Ⅵ) complex, which separates nano CuTPyP from CA-UCNPs and restores the fluorescence. The sensing system exhibits a good linear response to Cr(Ⅵ) concentration in the range from 0.5 to 400 µM with a detection limit of 0.36 µM. The sensing method also displays high selectivity against other common ions including trivalent chromium and is applied to the analysis of Cr(Ⅵ) in actual rice and fish samples with satisfactory results.
Collapse
Affiliation(s)
- Jiaying Zeng
- School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Ting Zhang
- School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Geyu Liang
- School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Jingwen Mo
- Engineering Research Center of New Light Sources Technology & Equipment-Ministry of Education, Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096, PR China.
| | - Jianxiong Zhu
- Engineering Research Center of New Light Sources Technology & Equipment-Ministry of Education, Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096, PR China
| | - Longhui Qin
- Engineering Research Center of New Light Sources Technology & Equipment-Ministry of Education, Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096, PR China
| | - Xiaojun Liu
- Engineering Research Center of New Light Sources Technology & Equipment-Ministry of Education, Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096, PR China.
| | - Zhonghua Ni
- Engineering Research Center of New Light Sources Technology & Equipment-Ministry of Education, Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096, PR China.
| |
Collapse
|
7
|
Al-Mashriqi HS, Sanga P, Chen J, Li X, Xiao J, Li Y, Qiu H. Green-emitting carbon dots as a "turn on" fluorescence bio-probe for highly sensitive and selective detection of lipase in human serum. Anal Bioanal Chem 2024; 416:971-981. [PMID: 38082135 DOI: 10.1007/s00216-023-05086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 01/23/2024]
Abstract
Enzyme activity assays play a crucial role in numerous fields, including biotechnology, the food industry, and clinical diagnostics. Lipases are particularly important enzymes due to their widespread use in lipid metabolism and esterification reactions. Here, we present a pioneering method for the sensitive and selective determination of lipase activity using green carbon dots (G-CDs) for first time. G-CDs are a fascinating class of carbon nanomaterials with unique optical properties and biocompatibility, making them ideal candidates for enzyme activity assays. This approach eliminates the need for traditional fluorophores or chromogenic substrates, reducing costs, fast response time (1 min), and environmental impact with a quantum yield (QY) of 7.42%. As designed, the G-CDs fluorescent probe turn-on demonstrated a reliable linear detection range from 0 to 9 mg/mL under ideal conditions, with detection limit of 0.01 mg/mL and limit of quantification (LOQ) of 0.045 mg/mL, respectively. Furthermore, the G-CDs system was thoroughly evaluated in human serum samples, showing recoveries ranging from 100.0 to 105.0%. These findings highlight the promising applicability of the G-CDs probe for lipase detection, yielding highly favorable results.
Collapse
Affiliation(s)
- Haitham Saad Al-Mashriqi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100039, China
| | - Pascaline Sanga
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100039, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Xinjiang Uygur Autonomous Product Quality Supervision and Inspection Institute, Urumqi, 830000, China.
| | - Xin Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100039, China
| | - Jing Xiao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100039, China
| | - Yan Li
- Xinjiang Uygur Autonomous Product Quality Supervision and Inspection Institute, Urumqi, 830000, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100039, China.
| |
Collapse
|
8
|
Jin L, Yang J, Zhang W, Liu H, Mou S, Hui Q. Carbon dots with aggregation-induced emission enhancement (AIEE) for detection of Zr 4+/ Hf 4+ and PTP1B activity. Talanta 2023; 259:124527. [PMID: 37080078 DOI: 10.1016/j.talanta.2023.124527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/22/2023]
Abstract
The frequent use of Zirconium (Zr) and Hafnium (Hf) in modern industries may result in serious environment issues, and thus developing analytical methods to facilitate the control of these two resembled metal elements is urgently needed. However, up to now, rapidly and conveniently detecting Zr4+ and Hf4+ is still full of challenge. In this study, nitrogen and sulfur co-doped carbon dots (N, S-Cdots) with aggregation-induced emission enhancement (AIEE) were prepared and used for turn-on detection of Zr4+ and Hf4+ within 10 min. The photoluminescent intensity of N, S-Cdots showed a good linear correlation with Zr4+ and Hf4+concentrations ranging from 0 to 30 μM with the limit of detection (LOD) of 0.47 and 0.53 μM, respectively. Furthermore, this fluorometric assay was successfully used for quantitative analysis of Zr4+ and Hf4+ in real water samples with satisfactory recoveries in the range of 91.16-108.50% and 90.28-106.49%, respectively. Finally, the developed N, S-Cdots sensing system was used for assay PTP1B activity and screening its inhibitor with Zr4+ as the medium. Our work demonstrated that the as-prepared N, S-Cdots with AIEE can offer a simple and reliable alternative for rapid detection of Zr4+ and Hf4+ in water samples, in addition to being potential useful in phosphatase analysis and drug discovery.
Collapse
Affiliation(s)
- Lei Jin
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Jinmei Yang
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325001, China
| | - Wenfeng Zhang
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Huan Liu
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Senfeng Mou
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qi Hui
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
9
|
Liang W, Sonkar SK, Saini D, Sheriff K, Singh B, Yang L, Wang P, Sun YP. Carbon Dots: Classically Defined versus Organic Hybrids on Shared Properties, Divergences, and Myths. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206680. [PMID: 36932892 DOI: 10.1002/smll.202206680] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Carbon dots are defined as small carbon nanoparticles with effective surface passivation via organic functionalization. The definition is literally a description of what carbon dots are originally found for the functionalized carbon nanoparticles displaying bright and colorful fluorescence emissions, mirroring those from similarly functionalized defects in carbon nanotubes. In literature more popular than classical carbon dots are the diverse variety of dot samples from "one-pot" carbonization of organic precursors. On the two different kinds of samples from the different synthetic approaches, namely, the classical carbon dots versus those from the carbonization method, highlighted in this article are their shared properties and apparent divergences, including also explorations of the relevant sample structural and mechanistic origins for the shared properties and divergences. Echoing the growing evidence and concerns in the carbon dots research community on the major presence of organic molecular dyes/chromophores in carbonization produced dot samples, demonstrated and discussed in this article are some representative cases of dominating spectroscopic interferences due to the organic dye contamination that have led to unfound claims and erroneous conclusions. Mitigation strategies to address the contamination issues, including especially the use of more vigorous processing conditions in the carbonization synthesis, are proposed and justified.
Collapse
Affiliation(s)
- Weixiong Liang
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | - Sumit Kumar Sonkar
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Rajasthan, 302017, India
| | - Deepika Saini
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Rajasthan, 302017, India
| | - Kirkland Sheriff
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | - Buta Singh
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | - Liju Yang
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA
| | - Ping Wang
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | - Ya-Ping Sun
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
10
|
Zhou Y, Liu M, Liu X, Jiang R, He Y, Yao Q, Chen H, Fu C. Rapid and sensitifve fluorescence determination of oxytocin using nitrogen-doped carbon dots as fluorophores. J Pharm Biomed Anal 2023; 229:115344. [PMID: 36966622 DOI: 10.1016/j.jpba.2023.115344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
In this work, a novel nitrogen (N)-doped carbon dots (N-CDs) was prepared with quercetin as the carbon source and o-phenylenediamine as the nitrogen source by hydrothermal synthesis, and their application as fluorophores for selective and sensitive determination of oxytocin were reported. The fluorescence quantum yield of the as-prepared N-CDs, which exhibited good water solubility and photostability, was about 6.45 % using rhodamine 6 G as reference substance, and the maximum excitation (Ex) and emission (Em) wavelength were 460 nm and 542 nm, respectively. The results illustrated that the direct fluorescence quenching of N-CDs fluorophore for the detection of oxytocin achieved good linearity in the range of 0.2-5.0 IU/mL and 5.0-10.0 IU/mL, the correlation coefficients were 0.9954 and 0.9909, respectively, and the detection limit was 0.0196 IU/mL (S/N = 3). The recovery rates were 98.8∼103.8 % with RSD= 0.93 %. The interference experiments showed that common metal ions, possible impurities introduced in production and coexisting excipients in the preparation had little adverse influence on selective detection of oxytocin by the developed N-CDs based fluorescent detection method. The mechanism study on the fluorescence quenching of N-CDs by oxytocin concentrations under the given experimental conditions demonstrated that there were internal filtration effect and static quenching in the system. The developed fluorescence analysis platform for the detection of oxytocin had been proved to be rapid, sensitive, specific and accurate, and to be used for the quality inspection of oxytocin.
Collapse
|
11
|
Xu X, Guo J, Lei Z. Ultrafast colorimetric detection of Cr(VI) using Fe 3O 4@polydopamine/Prussian blue composites as a highly efficient peroxidase mimic. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:221-227. [PMID: 36541424 DOI: 10.1039/d2ay01849g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A recyclable peroxidase mimic Fe3O4@polydopamine/Prussian blue (Fe3O4@PDA/PB) composite was facilely prepared by coating PDA on an Fe3O4 nanoparticle core and in situ growth of PB nanoparticles on a PDA shell. The prepared Fe3O4@PDA/PB composite exhibited excellent peroxidase-like activity and can catalytically oxidize the colorless colorimetric substrate 3,3',5,5'-tetramethylbenzidine (TMB) into a blue colored product in the presence of H2O2 at 30 °C in 1 min. The catalytic mechanism was deduced to be the nanozyme-promoted generation of a hydroxyl radical (·OH), and the catalytic behavior followed the typical Michaelis-Menten kinetics. Based on Cr(VI)-boosted peroxidase-like activity of Fe3O4@PDA/PB, a simple and fast colorimetric method for detection of Cr(VI) was developed. Under the optimum conditions, the colorimetric method exhibited wider linear range (100 nM to 140 μM), low LOD (51.1 nM), good selectivity and short detection time (1 min). Moreover, the feasibility of the proposed colorimetric method was evaluated by determination of Cr(VI) in spiked tap water and lake water samples. Good recoveries (95.2-102.9%) and low relative standard deviations (RSDs) (1.6-4.4%) were obtained, showing great promise for practical use.
Collapse
Affiliation(s)
- Xianyuan Xu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| | - Jingfang Guo
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| | - Zhen Lei
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| |
Collapse
|
12
|
Li J, Wang X, Yu J, Wang H, Wang X. Facile Synthesis of Carbon Dots from Amido Black 10b for Sensing in Real Samples. ACS OMEGA 2022; 7:47002-47008. [PMID: 36570244 PMCID: PMC9773358 DOI: 10.1021/acsomega.2c06047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Herein, a one-step hydrothermal synthesis method was adopted to fabricate carbon dots (CDs) from amido black 10b in a sodium hydroxide solution. The morphology and composition of the CDs were investigated by XRD, FTIR TEM, XPS, UV-vis, and fluorescence spectroscopy. The obtained CDs (AB-CDs) with an average diameter of 19.4 nm displayed a well-dispersed characteristic in aqueous solutions. The as-prepared CDs showed bright blue fluorescence and good photostability, with a high quantum yield of 24.1%. AB-CDs displayed a selective and noticeable turn-off response to Fe3+. Accordingly, the quantitative detection of Fe3+ was achieved in the range of 5-200 μmol L-1 with a detection limit of 1.84 μmol L-1. The fluorescence response mechanism of Fe3+ to AB-CDs was ascribed to static quenching due to the emergence of the ground-state complex. Moreover, ascorbic acid could restore the fluorescence of AB-CDs quenched by Fe3+ by reducing Fe3+ to Fe2+. The developed nanoprobe was used to detect ascorbic acid with a limit of detection of 7.26 μmol L-1 in the range of 20-300 μmol L-1. Furthermore, the developed sensing system was successfully applied for an Fe3+ assay in a lake water sample and ascorbic acid detection in a human urine sample. The AB-CD-based analytical system showed its latent practical value in the chemical analysis and bioanalytical fields.
Collapse
Affiliation(s)
- Jin Li
- Reproductive
Medicine Center, Suizhou Hospital, Hubei
University of Medicine, Suizhou, Hubei441300, People’s Republic of China
| | - Xiaoyan Wang
- Reproductive
Medicine Center, Suizhou Hospital, Hubei
University of Medicine, Suizhou, Hubei441300, People’s Republic of China
| | - Jianxin Yu
- Center
for Translational Medicine, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei441300, People’s Republic of China
| | - Hanqin Wang
- Center
for Translational Medicine, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei441300, People’s Republic of China
| | - Xiaobo Wang
- Reproductive
Medicine Center, Suizhou Hospital, Hubei
University of Medicine, Suizhou, Hubei441300, People’s Republic of China
- Center
for Translational Medicine, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei441300, People’s Republic of China
| |
Collapse
|
13
|
Wang Y, Ding Y, Tan Y, Fu L, Qing W. Preparation of transition metal ions (Fe2+, Co2+ and Ni2+) doped carbon nanoparticles from biowaste for cystine and Cr(VI) detection and fluorescence ink. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Inner-filter Effect Induced Fluorescence Quenching of Carbon Dots for Cr(VI) Detection with High Sensitivity. J Fluoresc 2022; 32:2343-2350. [PMID: 36156168 DOI: 10.1007/s10895-022-03028-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022]
Abstract
Carbon dots (CDs) were used to develop a sensitive sensing technique for detecting Cr(VI). CDs were made using a hydrothermal technique from citric acid and glutamic acid. These prepared CDs emitted blue fluorescence under excitation of 350 nm (λem = 420 nm), and the fluorescence quantum yield was 48.41%. Transmission electron microscope was used to examine the morphology of the CDs, which had an average size of 2.21 ± 0.39 nm. The elementary composition and bonding structure of the CDs were conducted by XPS and FT-IR spectrum. Cr(VI) quenched the fluorescence of CDs through a static quenching effect and an inner filter effect, allowing Cr(VI) to be detected quantitatively. This approach was used to detect Cr(VI) in two samples of water, with the findings demonstrating that it is reliable and accurate. The fluorescence intensity change was linearly related to the concentration of Cr(VI) in the range from 0.5 to 400 μM, with the detection limit being 0.10 μM. This approach has the virtues of wide detection range, low cost and fast response. The strategy has a great application prospect for detecting Cr(VI) in practical samples.
Collapse
|
15
|
Diana FRM, Suratman A, Wahyuni ET, Mudasir M, Suherman S. Development of N,S-CDs fluorescent probe method for early detection of Cr(VI) in the environment. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Mei X, Wang D, Wang S, Li J, Dong C. Synthesis of intrinsic dual-emission type N,S-doped carbon dots for ratiometric fluorescence detection of Cr (VI) and application in cellular imaging. Anal Bioanal Chem 2022; 414:7253-7263. [PMID: 35980424 DOI: 10.1007/s00216-022-04277-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022]
Abstract
In this paper, intrinsic dual-emission fluorescent carbon dots (CDs) doped with N and S atoms have been firstly fabricated. The characterization results show that CDs are successfully synthesized with two separate fluorescence emissions at 468 nm and 628 nm, respectively. The strong and selective interaction of Cr (VI) ions with CDs lead to obvious fluorescence decrease of CDs at 468 nm, which is caused by a mixed quenching mechanism. At the same time, the fluorescence at 628 nm increase. Interestingly, the CDs solution show obvious color change under the daylight and UV light, so visualization detection of Cr (VI) can be realized in water samples. Based on the data of the emission intensity ratios of F468/F628, Cr (VI) can be detected from 3.8 to 38.9 μM combined with the linear correlation coefficient of 0.998, and the lowest detection concentration is 47.2 nM. The platform is satisfactorily applied to the detection of Cr (VI) ions in water samples. In addition, the CDs could be applied as fluorescent probes for cell imaging with dual fluorescent emission.
Collapse
Affiliation(s)
- Xiping Mei
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Dongxiu Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Songbai Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Junfen Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
17
|
Xu G, Guo N, Zhang Q, Wang T, Song P, Xia L. A sensitive surface-enhanced resonance Raman scattering sensor with bifunctional negatively charged gold nanoparticles for the determination of Cr(VI). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154598. [PMID: 35307417 DOI: 10.1016/j.scitotenv.2022.154598] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Hexavalent chromium (Cr(VI)) pollution in the water system has seriously endangered human health and the environment. Herein, we propose a rapid, simple and sensitive surface-enhanced resonance Raman scattering (SERRS) sensor with the bifunctional negatively charged gold nanoparticles ((-)AuNPs) which employ as not only the oxidoreductase-like nanozyme but also the substrate to determine Cr(VI). (-)AuNPs effectively promoted the conversion of 3,3',5,5'-tetramethylbenzidine (TMB) into the blue product of 3,3',5,5'-tetramethylbenzidine diamine (oxTMB) in the presence of Cr(VI) and generated a strong SERRS signal at 1611 cm-1. According to this principle, the Raman intensity difference at 1611 cm-1 exhibited a satisfactory linear relationship with the logarithm of the Cr(VI) concentration from 10-5 to 10-9 M with a low limit of detection (LOD) of 0.4 nM. In addition, the possible SERRS enhancement mechanism, selectivity and reproducibility were also investigated. What's more, the SERRS platform was successfully applied in the complicated water samples, which was anticipated to become a promising analytical method for monitoring of Cr(VI) in the environment.
Collapse
Affiliation(s)
- Guangda Xu
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Na Guo
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Qijia Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Tongtong Wang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Peng Song
- College of Physics, Liaoning University, Shenyang 110036, China.
| | - Lixin Xia
- College of Chemistry, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
18
|
Wang L, Fan X, Gonzalez Moreno M, Tkhilaishvili T, Du W, Zhang X, Nie C, Trampuz A, Haag R. Photocatalytic Quantum Dot-Armed Bacteriophage for Combating Drug-Resistant Bacterial Infection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105668. [PMID: 35434949 PMCID: PMC9189633 DOI: 10.1002/advs.202105668] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/11/2022] [Indexed: 05/09/2023]
Abstract
Multidrug-resistant (MDR) bacterial infection is one of the greatest challenges to public health, a crisis demanding the next generation of highly effective antibacterial agents to specifically target MDR bacteria. Herein, a novel photocatalytic quantum dot (QD)-armed bacteriophage (QD@Phage) is reported for combating green fluorescent protein-expressing Pseudomonas aeruginosa (GFP-P. aeruginosa) infection. The proposed QD@Phage nanosystem not only specifically binds to the host GFP-P. aeruginosa while preserving the infectivity of the phage itself, but also shows a superior capacity for synergistic bacterial killing by phage and by the photocatalytic localized reactive oxygen species (ROS) generated from anchored QD components. Notably, this highly targeted QD@Phage nanosystem achieves robust in vitro antibacterial elimination for both planktonic (over 99.9%) and biofilm (over 99%) modes of growth. In a mouse wound infection model, this system also shows remarkable activity in eliminating the wound infection and promoting its recovery. These results demonstrate that the novel QD@Phage nanosystem can diversify the existing pool of antibacterial agents and inspire the development of promising therapeutic strategies against MDR bacterial infection.
Collapse
Affiliation(s)
- Lei Wang
- Centre for Musculoskeletal SurgeryCharité – Universitätsmedizin BerlinCorporate Member of Freie Universität BerlinHumboldt‐Universität zu Berlinand Berlin Institute of HealthBerlin10117Germany
- BIH Center for Regenerative Therapies (BCRT)Berlin Institute of Health (BIH)Berlin13353Germany
| | - Xin Fan
- BIH Center for Regenerative Therapies (BCRT)Berlin Institute of Health (BIH)Berlin13353Germany
- Department of Chemistry and BiochemistryFreie Universität BerlinTakustraße 3Berlin14195Germany
| | - Mercedes Gonzalez Moreno
- Centre for Musculoskeletal SurgeryCharité – Universitätsmedizin BerlinCorporate Member of Freie Universität BerlinHumboldt‐Universität zu Berlinand Berlin Institute of HealthBerlin10117Germany
- BIH Center for Regenerative Therapies (BCRT)Berlin Institute of Health (BIH)Berlin13353Germany
| | - Tamta Tkhilaishvili
- Centre for Musculoskeletal SurgeryCharité – Universitätsmedizin BerlinCorporate Member of Freie Universität BerlinHumboldt‐Universität zu Berlinand Berlin Institute of HealthBerlin10117Germany
- Department of Tropical Medicine and Infectious DiseasesUniversity of RostockRostock18057Germany
| | - Weijie Du
- BIH Center for Regenerative Therapies (BCRT)Berlin Institute of Health (BIH)Berlin13353Germany
| | - Xianlong Zhang
- Department of OrthopedicsShanghai Sixth People's HospitalShanghai Jiao Tong UniversityShanghai200233China
| | - Chuanxiong Nie
- BIH Center for Regenerative Therapies (BCRT)Berlin Institute of Health (BIH)Berlin13353Germany
| | - Andrej Trampuz
- Centre for Musculoskeletal SurgeryCharité – Universitätsmedizin BerlinCorporate Member of Freie Universität BerlinHumboldt‐Universität zu Berlinand Berlin Institute of HealthBerlin10117Germany
- BIH Center for Regenerative Therapies (BCRT)Berlin Institute of Health (BIH)Berlin13353Germany
| | - Rainer Haag
- Department of Chemistry and BiochemistryFreie Universität BerlinTakustraße 3Berlin14195Germany
| |
Collapse
|
19
|
Dual Fluorometric Detection of Fe 3+ and Hg 2+ Ions in an Aqueous Medium Using Carbon Quantum Dots as a "Turn-off" Fluorescence Sensor. J Fluoresc 2022; 32:1143-1154. [PMID: 35318547 DOI: 10.1007/s10895-022-02922-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
The present study aimed to develop a carbon dots-based fluorescence (FL) sensor that can detect more than one pollutant simultaneously in the same aqueous solution. The carbon dots-based FL sensor has been prepared by employing a facile hydrothermal method using citric acid and ethylenediamine as precursors. The as-synthesized CDs displayed excellent hydrophilicity, good photostability and blue fluorescence under UV light. They have been used as an efficient "turn-off" FL sensor for dual sensing of Fe3+ and Hg2+ ions in an aqueous medium with high sensitivity and selectivity through a static quenching mechanism. The lowest limit of detection (LOD) for Fe3+ and Hg2+ ions was found to be 0.406 µM and 0.934 µM, respectively over the concentration range of 0-50 µM. Therefore, the present work provides an effective strategy to monitor the concentration of Fe3+ and Hg2+ ions simultaneously in an aqueous medium using environment-friendly CDs.
Collapse
|
20
|
Nsanzamahoro S, Wang WF, Zhang Y, Wang CB, Shi YP, Yang JL. α-Glucosidase-Triggered Reaction for Fluorometric and Colorimetric Assays Based on the Formation of Silicon-Containing Nanoparticles. Anal Chem 2021; 93:15412-15419. [PMID: 34762397 DOI: 10.1021/acs.analchem.1c03210] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Designing analytical approaches for enzymatic activity monitoring with high sensitivity and selectivity is of critical value for the diagnosis of diseases and biomedical studies. In this study, we have created a facile one-step synthetic route to prepare orange-red color and yellow fluorescent silicon-containing nanoparticles (Si CNPs) by mixing 3(2-aminoethylamino) propyl (dimethoxymethylsilane) and hydroquinone (HQ) in an aqueous solution. Inspired by the HQ-regulated facile synthetic step and the generation of HQ from α-glucosidase (α-Glu)-catalyzed hydrolysis of 4-hydroxyphenyl-α-d-glucopyranosyl (4-HPαDG), we have designed a straightforward colorimetric and fluorometric α-Glu activity assay using a commercially available 4-HPαDG as the α-Glu substrate. Fluorescent and colorimetric assays for α-Glu activity measurement have been thereby established and exhibited detection limits as low as 0.0032 and 0.0046 U/mL, respectively. Under single excitation at 370 nm, the prepared Si CNPs emitted yellow fluorescence at 520 nm and exhibited an absorbance peak at 390 nm. In addition, the proposed approach reveals various advantages including easy operation, time-saving, and good anti-interference ability. Hence, it could improve the progress of fluorometric and colorimetric enzymatic activity assays with high sensitivity and simplicity. Moreover, the proposed approach was applied for α-Glu inhibitor screening, and its feasibility in real samples was measured by detecting the α-Glu activity in human serum samples.
Collapse
Affiliation(s)
- Stanislas Nsanzamahoro
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Wei-Feng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P.R. China
| | - Ying Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P.R. China
| | - Cheng-Bo Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P.R. China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P.R. China
| | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P.R. China
| |
Collapse
|
21
|
Babazadeh S, Bisauriya R, Carbone M, Roselli L, Cecchetti D, Bauer EM, Sennato S, Prosposito P, Pizzoferrato R. Colorimetric Detection of Chromium(VI) Ions in Water Using Unfolded-Fullerene Carbon Nanoparticles. SENSORS (BASEL, SWITZERLAND) 2021; 21:6353. [PMID: 34640679 PMCID: PMC8512488 DOI: 10.3390/s21196353] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 12/05/2022]
Abstract
Water pollution caused by hexavalent chromium (Cr(VI)) ions represents a serious hazard for human health due to the high systemic toxicity and carcinogenic nature of this metal species. The optical sensing of Cr(VI) through specifically engineered nanomaterials has recently emerged as a versatile strategy for the application to easy-to-use and cheap monitoring devices. In this study, a one-pot oxidative method was developed for the cage opening of C60 fullerene and the synthesis of stable suspensions of N-doped carbon dots in water-THF solutions (N-CDs-W-THF). The N-CDs-W-THF selectively showed variations of optical absorbance in the presence of Cr(VI) ions in water through the arising of a distinct absorption band peaking at 550 nm, i.e., in the transparency region of pristine material. Absorbance increased linearly, with the ion concentration in the range 1-100 µM, thus enabling visual and ratiometric determination with a limit of detection (LOD) of 300 nM. Selectivity and possible interference effects were tested over the 11 other most common heavy metal ions. The sensing process occurred without the need for any other reactant or treatment at neutral pH and within 1 min after the addition of chromium ions, both in deionized and in real water samples.
Collapse
Affiliation(s)
- Saeedeh Babazadeh
- Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Mechanical Engineering of Biosystems, Agriculture Faculty, Urmia University, Urmia 5756151818, Iran
| | - Ramanand Bisauriya
- Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marilena Carbone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ludovica Roselli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Daniele Cecchetti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Elvira Maria Bauer
- Institute of Structure of Matter (ISM), Italian National Research Council (CNR), 00015 Rome, Italy
| | - Simona Sennato
- Institute for Complex Systems (ISC), Italian National Research Council (CNR) and Physics Department, Sapienza University of Rome, 00185 Rome, Italy
| | - Paolo Prosposito
- Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Roberto Pizzoferrato
- Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
22
|
Zheng X, Ren S, Wang L, Gai Q, Dong Q, Liu W. Controllable functionalization of carbon dots as fluorescent sensors for independent Cr(Ⅵ), Fe(Ⅲ) and Cu(Ⅱ) ions detection. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113359] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Mao Y, Gao S, Yao L, Wang L, Qu H, Wu Y, Chen Y, Zheng L. Single-atom nanozyme enabled fast and highly sensitive colorimetric detection of Cr(VI). JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124898. [PMID: 33385719 DOI: 10.1016/j.jhazmat.2020.124898] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 05/23/2023]
Abstract
As a high biologically toxic heavy metal ion, Cr(VI) will cause environmental pollution and endanger human health. Therefore, the development of fast, simple and visible detection methods for Cr(VI) is extremely important to control its harm. Toward this end, we report the establishment of a colorimetric sensing method for Cr(VI) based on single-atom nanozymes for enhanced detection performance. Firstly, we prepared SA-Fe/NG as peroxidase mimetic by anchoring Fe single-atom onto a single-layer of two-dimensional nitrogen-doped graphene. The SA-Fe/NG showed superiorly high oxidation catalytic activity due to its 100% atomic utilization and existing Fe-N-C structure. Furthermore, with 3,3',5,5'-tetramethylbenzidine (TMB) as a colorimetric sensing probe, and 8-hydroxyquinoline (8-HQ) as an inhibitor for the oxidation of TMB, the detection of Cr(VI) was realized through specific interaction between Cr(VI) and 8-HQ, which led to the recovery of oxTMB in blue color. Our established method showed superior sensitivity with a detection limit of 3 nM and a linear range of 30 nM to 3 μM. It also exhibited high selectivity for a series of metal cations, and has been successfully applied to the detection of Cr(VI) in tap water and tuna samples.
Collapse
Affiliation(s)
- Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shengjie Gao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lili Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Yuen Wu
- School of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Ying Chen
- Agro-product Safety Research Centre, Chinese Academy of Inspection and Quarantine, Beijing 100123, China
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Intelligent Interconnected Systems Laboratory of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
24
|
Nsanzamahoro S, Wang WF, Zhang Y, Shi YP, Yang JL. Synthesis of orange-emissive silicon nanoparticles as "off-on" fluorescence probe for sensitive and selective detection of l-methionine and copper. Talanta 2021; 231:122369. [PMID: 33965034 DOI: 10.1016/j.talanta.2021.122369] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 01/29/2023]
Abstract
Fluorescent silicon nanoparticles (Si NPs) are of great interest as they are free of heavy ions. However, most of Si NPs exhibit blue or green emission, while orange or red-emitting Si NPs are required for an extensive range of applications. Copper ion (Cu2+) and l-methionine (L-Met) detection is critically valuable point since their abnormal level is an indicator of various diseases. In this work, we illustrate an "off-on" method for sensitively and selectively determination of Cu2+ and L-Met using Si NPs as fluorescent probe. The Si NPs emitting orange fluorescence with the quantum yield of 2.23% were prepared via one and easy step of hydrothermal treatment of 3(2-aminoethylamino) propyl (dimethoxymethylsilane) (AEAPDMMS) and 2-aminophenol as precursors. The fluorescence of Si NPs was quenched in the presence of Cu2+ due to the strong metal-ligand coordination and electrostatic interactions between the large amount of amino and hydroxyl groups on the surface of Si NPs and Cu2+. Surprisingly, the resulted non-fluorescent Si NPs-Cu2+ complex displayed a fluorescence "turn-on" toward L-Met, due to the competitive coordination of Cu2+ between L-Met and Si NPs which leads to the unique "off-on" response to L-Met after the release of free Si NPs. The as-proposed approach is fast, simple, low cost and environmental-friendly. More importantly, it has been applied in the determination of Cu2+ and L-Met in water and urine samples, respectively with satisfactory recoveries. Furthermore, the approach could detect Cu2+ and L-Met with detection limit of 0.012 μM and 0.07 μM, which are lower than the level of Cu2+ in drinking water and of L-Met in human urine sample (maximum ~20 μM and ~5.9 μM, respectively).
Collapse
Affiliation(s)
- Stanislas Nsanzamahoro
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Wei-Feng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China
| | - Ying Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China.
| | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China.
| |
Collapse
|
25
|
Ghayyem S, Swaidan A, Barras A, Dolci M, Faridbod F, Szunerits S, Boukherroub R. Colorimetric detection of chromium (VI) ion using poly(N-phenylglycine) nanoparticles acting as a peroxidase mimetic catalyst. Talanta 2021; 226:122082. [PMID: 33676645 DOI: 10.1016/j.talanta.2021.122082] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023]
Abstract
This paper reports on enzyme-like catalytic properties of polyethylene glycol-functionalized poly(N-phenylglycine) (PNPG-PEG) nanoparticles, which have not been explored to date. The developed nanoparticles have the ability to display great inherent peroxidase-like activity at very low concentrations, and are able to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) substrate in presence of hydrogen peroxide (H2O2). The oxidized product of TMB has a deep blue color with a maximum absorbance at ~655 nm. The PNPG-PEG nanoparticles exhibit Km values of 0.2828 for TMB and 0.0799 for H2O2, indicating that TMB oxidation takes place at lower concentration of H2O2 in comparison to other nanozymes. Based on the known mechanism of H2O2 oxidation by hexavalent chromium [Cr(VI)] ions to generate hydroxyl radicals (•OH), these nanoparticles were successfully applied for the colorimetric sensing of Cr(VI) ions. The sensor achieved good performance for Cr(VI) sensing with detection limits of 0.012 μM (0.01-0.1 μM linear range) and 0.52 μM (0.05-12.5 μM linear range). The detection scheme was highly selective, and successfully applied for the detection of Cr(VI) in real water samples.
Collapse
Affiliation(s)
- Sena Ghayyem
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, Lille, F-59000, France; Analytical Chemistry Department, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Abir Swaidan
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, Lille, F-59000, France
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, Lille, F-59000, France
| | - Mathias Dolci
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, Lille, F-59000, France
| | - Farnoush Faridbod
- Analytical Chemistry Department, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, Lille, F-59000, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, Lille, F-59000, France.
| |
Collapse
|
26
|
Cao X, Bai Y, Liu F, Li F, Luo Y. 'Turn-off' fluorescence strategy for determination of hexavalent chromium ions based on copper nanoclusters. LUMINESCENCE 2020; 36:229-236. [PMID: 32841499 DOI: 10.1002/bio.3942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/21/2020] [Accepted: 06/27/2020] [Indexed: 12/11/2022]
Abstract
Cu nanoclusters (CuNCs) capped by tannic acid (TA) (CuNCs@TA) can be used as a highly sensitive fluorescent probe for Cr(VI) detection. Therefore, a fluorescence detection method for Cr(VI) can be established according to the fluorescence quenching of CuNCs@TA that is caused immediately after the addition of Cr(VI). The fluorescence quenching efficiency of CuNCs@TA was linearly correlated with Cr(VI) concentration within the range 0.03-60 μM, and the detection limit for Cr(VI) was 5 nM. This method was demonstrated to be suitable for detecting Cr(VI) in actual water samples. We found that sodium thiosulfate (ST) can redox with Cr(VI) and therefore restore the fluorescence of CuNCs@TA. The mechanism of CuNCs@TA fluorescence quenching and enhancement by Cr(VI) and ST was investigated in detail. The 'turn-on' fluorescent sensor is of practical significance and has broad application prospects.
Collapse
Affiliation(s)
- Xueling Cao
- College of Chemical & Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City, China
| | - Yageng Bai
- College of Chemical & Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City, China
| | - Faxian Liu
- PetroChina Jilin Petrochemical Co. Ltd, Jilin City, China
| | - Fei Li
- College of Chemical & Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City, China
| | - Yanan Luo
- College of Chemical & Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City, China
| |
Collapse
|
27
|
Polyethylenimine-stabilized silver nanoclusters act as an oxidoreductase mimic for colorimetric determination of chromium(VI). Mikrochim Acta 2020; 187:263. [PMID: 32270303 DOI: 10.1007/s00604-020-04232-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/23/2020] [Indexed: 12/19/2022]
Abstract
A new and efficient assay is proposed for the photometric determination of Cr6+ by employing polyethylenimine-stabilized Ag nanoclusters (PEI-AgNCs) as an oxidoreductase mimic. Cr6+ with certain oxidicability is able to specifically react with 3,3',5,5'-tetramethylbenzidine (TMB), giving a color change from colorless to blue indicating the presence of Cr6+. However, the redox kinetics is so slow that the sensitivity obtained for Cr6+ determination is very poor. It is interestingly found that PEI-AgNCs can act as an oxidoreductase-like nanozyme to significantly promote the sluggish reaction, making it possible to rapidly detect toxic Cr6+ with remarkably enhanced performance. With the use of PEI-AgNCs, fast and convenient determination of Cr6+ was realized, with a limit of detection as low as 1.1 μM. Additionally, the proposed assay exhibited excellent selectivity; other ions, including Cr3+, hardly affected the determination of Cr6+. Graphical abstract Polyethylenimine-stabilized silver nanoclusters (PEI-AgNCs) act as an oxidoreductase mimic to catalyze the redox reaction of Cr6+ and 3,3',5,5'-tetramethylbenzidine (TMB), enabling the high-performance colorimetric determination of toxic Cr6+.
Collapse
|
28
|
Han Z, He L, Pan S, Liu H, Hu X. Hydrothermal synthesis of carbon dots and their application for detection of chlorogenic acid. LUMINESCENCE 2020; 35:989-997. [DOI: 10.1002/bio.3803] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Zhu Han
- College of Chemistry and Chemical Engineering Southwest University Chongqing China
| | - Li He
- College of Chemistry and Chemical Engineering Southwest University Chongqing China
| | - Shuang Pan
- College of Chemistry and Chemical Engineering Southwest University Chongqing China
| | - Hui Liu
- College of Pharmaceutical Sciences Southwest University Chongqing China
| | - Xiaoli Hu
- College of Chemistry and Chemical Engineering Southwest University Chongqing China
| |
Collapse
|
29
|
Yahyazadeh E, Shemirani F. Arginine-derived carbon nanoparticles for determination of Cr(VI) in water samples. LUMINESCENCE 2020; 35:694-701. [PMID: 32012443 DOI: 10.1002/bio.3774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/06/2019] [Accepted: 12/20/2019] [Indexed: 01/06/2023]
Abstract
Hexavalent chromium, Cr(VI), is a toxic and carcinogenic ion that poses significant risks toward human health and the environment. Due to its extensive industrial use and high water solubility, Cr(VI) can easily contaminate drinking water sources. Therefore, it is essential to develop methods to detect Cr(VI) in water samples. Recently, carbon quantum dots - being biocompatible, easy to synthesize, and cost-effective fluorophores - have been successfully applied for the determination of different heavy metal ions. In this study, arginine-derived carbon nanoparticles were synthesized using a solvent-free one-pot thermal method. These carbon nanoparticles were characterized using transmission electron microscopy, dynamic light scattering analysis, infrared spectroscopy, ultraviolet-visible (UV-vis) light spectroscopy, fluorescence spectroscopy, and CHNO elemental analysis before being used to design a sensor for Cr(VI). The sensor's signal was optimized and the arginine-derived carbon nanoparticle-based Cr(VI) determination method was shown to have a limit of detection of 18 nM, a limit of quantification of 60 nM, and a linear response range of 0.06-100 μM. The sensor's selectivity toward Cr(VI) was studied and a potential interfering ion was identified and dealt with. Finally, the sensor was successfully applied for the determination of Cr(VI) in tap water and mineral water samples.
Collapse
Affiliation(s)
- Ehsan Yahyazadeh
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Farzaneh Shemirani
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| |
Collapse
|
30
|
Chang D, Shi L, Zhang Y, Zhang G, Zhang C, Dong C, Shuang S. Smilax China-derived yellow-fluorescent carbon dots for temperature sensing, Cu2+ detection and cell imaging. Analyst 2020; 145:2176-2183. [DOI: 10.1039/d0an00102c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we report an environmentally friendly fabrication strategy of bright yellow fluorescent carbon dots (y-CDs) and construct a rapid and accurate multifunctional sensing platform for the effective detection of temperature and Cu2+.
Collapse
Affiliation(s)
- Dan Chang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- PR China
| | - Lihong Shi
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- PR China
| | - Yan Zhang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- PR China
| | - Guomei Zhang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- PR China
| | - Caihong Zhang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- PR China
| | - Chuan Dong
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- PR China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- PR China
| |
Collapse
|
31
|
Huang S, Yang E, Yao J, Chu X, Liu Y, Xiao Q. Nitrogen, phosphorus and sulfur tri-doped carbon dots are specific and sensitive fluorescent probes for determination of chromium(VI) in water samples and in living cells. Mikrochim Acta 2019; 186:851. [PMID: 31776683 DOI: 10.1007/s00604-019-3941-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/12/2019] [Indexed: 10/25/2022]
Abstract
A rapid, sensitive, and selective fluorometric assay is described for the determination of chromium(VI) in real waters and living cells. The method is making use of nitrogen, phosphorus, and sulfur tri-doped carbon dots (NPS-CDs) which have absorption/emission maxima at 360/505 nm/nm. Cr(VI) has an absorption maximum at 350 nm and causes an inner filter effect (IFE) on the blue fluorescence of the NPS-CDs. The NPS-CDs were hydrothermally synthesized using p-aminobenzenesulfonic acid and tetrakis(hydroxymethyl)phosphonium chloride as precursors. The NPS-CDs were characterized by transmission electron microscopy, X-ray diffraction, and several spectroscopic methods. They are biocompatible and negligibly cytotoxic when tested with HeLa cells and MCF-7 cells even after 48 h of incubation. The NPS-CDs were used as fluorescent probes for Cr(VI). The detection limit is 0.23 μM (three times standard deviation versus slope), and the linear response covers the 1 to 500 μM chromate concentration range. The NPS-CDs were applied to the determination of Cr(VI) in real waters and living cells (HeLa and MCF-7) and gave satisfying results. Graphical abstractSchematic representation of hydrothermal synthesis of nitrogen, phosphorus, and sulfur tri-doped carbon dots (NPS-CDs) for Cr(VI) detection via inner filter effect (IFE). NPS-CDs were applied to the determination of Cr(VI) in living cells (HeLa and MCF-7) with satisfying results.
Collapse
Affiliation(s)
- Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, People's Republic of China
| | - Erli Yang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, People's Republic of China
| | - Jiandong Yao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, People's Republic of China
| | - Xu Chu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, People's Republic of China
| | - Yi Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, People's Republic of China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, People's Republic of China.
| |
Collapse
|
32
|
Cysteamine-capped gold-copper nanoclusters for fluorometric determination and imaging of chromium(VI) and dopamine. Mikrochim Acta 2019; 186:788. [PMID: 31732881 DOI: 10.1007/s00604-019-3974-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/25/2019] [Indexed: 12/24/2022]
Abstract
Highly emissive cysteamine-capped gold-copper bimetallic nanoclusters (CA-AuCu NCs) with a quantum yield of 18% were synthesized via one-pot anti-galvanic reduction. The CA-AuCu NCs were characterized by HR-TEM, XPS, FTIR, MALDI-TOF mass spectrometry, DLS, and zeta potential analyses. The NCs are shown to be viable fluorescent probes for Cr(VI) ions and dopamine (DA) via quenching of the blue fluorescence, typically measured at excitation/emission wavelengths of 350/436 nm. During DA recognition, a dark brown color appears, which is distinguishable from that of Cr(VI) detection. The aggregation induced quenching due to electron transfer was demonstrated by photoluminescence, HR-TEM, FTIR, DLS, and zeta potential interrogations. In buffer of pH 7, response is linear in the 0.2 ~ 100 μM for Cr(VI) and from 0.4 ~ 250 μM for DA. The respective detection limits are 80 and 135 nM. The method was applied to the determination of both Cr(VI) and DA in (spiked) tap, lake and sea water, and in human urine samples. The low toxicity of CA-AuCu NCs was validated by the MTT assay, and their responses to Cr(VI) ions and DA was also proven by Raw 264.7 cell imaging. Graphical abstractCysteamine capped Au-Cu nanoclusters (CA-AuCu NCs) were synthesized via one-pot anti-galvanic reduction and utilized in sensing of Cr(VI) ions and dopamine (DA) with demonstrated real/urine and cell imaging applications.
Collapse
|
33
|
Chromium speciation by isophthalic acid-doped polymer dots as sensitive and selective fluorescent probes. Talanta 2019; 209:120521. [PMID: 31892071 DOI: 10.1016/j.talanta.2019.120521] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/25/2019] [Accepted: 10/27/2019] [Indexed: 11/23/2022]
Abstract
Hexavalent chromium is a known carcinogen, among all species of chromium ions, for the respiratory tract in humans. In the present work, a new facile probe is developed for rapid and sensitive determination of Cr(VI) based on utilizing highly fluorescent conjugated poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(1,4-benzo-(2,1',3) thiadiazole)] (PFBT) polymer dots (PDs). The PDs are easily functionalized by doping of isophthalic acid (IPA) into the target PDs during a single step preparation. The prepared PDs with an average diameter of 30 nm illustrated a strong fluorescence with an emission peak centered at 530 nm (photo-excited at 480 nm). The strong fluorescence of PDs is selectively and significantly quench with Cr(VI), while it does not change by Cr(III) ion and, thus, can facilitate a chromium speciation process. The proposed mechanism is an inner filter effect (IFE) mechanism, in which the absorption bands of Cr(IV) overlaps with the emission and excitation bands of the modified PDs. The prepared PDs revealed a good linear relationship from 0.1 to 1000 μmol L-1 for Cr(VI) with a detection limit of 0.03 μmol L-1, which further used to track the Cr distribution in water samples. Finally, the IPA-doped PDs with excellent optical properties, biocompatibility, and high quantum yield showed promising potential in tracking Cr species and specifying of different Cr ions inside the human cells, which opening a new door toward getting a better insight into the cell function and metabolism in the presence of heavy metal ions, and especially chromium ions.
Collapse
|
34
|
Yan F, Sun Z, Zhang H, Sun X, Jiang Y, Bai Z. The fluorescence mechanism of carbon dots, and methods for tuning their emission color: a review. Mikrochim Acta 2019; 186:583. [DOI: 10.1007/s00604-019-3688-y] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/07/2019] [Indexed: 12/13/2022]
|
35
|
Wang Q, Yang H, Zhang Q, Ge H, Zhang S, Wang Z, Ji X. Strong acid-assisted preparation of green-emissive carbon dots for fluorometric imaging of pH variation in living cells. Mikrochim Acta 2019; 186:468. [DOI: 10.1007/s00604-019-3569-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 06/02/2019] [Indexed: 12/24/2022]
|