1
|
Das C, Sepay N, Kim TW, Chae S, Ghosh N, Dumpala M, Choi D, Jeon S, Im J, Biswas G. Recycling Motorcycle Exhaust Soot into Fluorescent Graphene Oxide Quantum Dots for Sensing Ferrocyanide Ions and Bioimaging Cells: A Method for Waste Utilization. ACS OMEGA 2025; 10:14229-14240. [PMID: 40256545 PMCID: PMC12004190 DOI: 10.1021/acsomega.5c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/22/2025]
Abstract
Graphene oxide quantum dots (GOQDs) with a high quantum yield (50%) were synthesized using soot collected from a motorcycle (petroleum vehicle) exhaust pipe and applied as sensors for ferrocyanide ([Fe(CN)6]4-) ions and as bioimaging agents in a cancer cell line. X-ray photoelectron spectroscopy (XPS) data for the GOQDs revealed a C/O ratio of 2.49, which was close to that of graphene oxide (GO). The synthesized GOQDs exhibited strong blue fluorescence. High sensitivity to detect [Fe(CN)6]4- was reported in GOQDs with a detection limit of 0.46 nmol mL-1, and a strong linear relationship was achieved in the concentration range of 100-1100 μg L-1. The results demonstrate the utility of GOQDs for detecting [Fe(CN)6]4- in a real scenario. The GOQDs exhibited almost negligible cytotoxicity in cells and were internalized within 4 h of incubation, emitting blue fluorescence in the cytoplasm. This suggests that the GOQDs are promising bioimaging agents for biomedical applications. In general, these waste-derived GOQDs appear to be good chemo- and biosensing probes for real-life applications.
Collapse
Affiliation(s)
- Chanchal Das
- Department
of Chemistry, Cooch Behar Panchanan Barma
University, Cooch
Behar 736101, India
| | - Nasim Sepay
- Department
of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, Asan 31538, Republic
of Korea
| | - Tae Wan Kim
- Department
of Medical Life Science, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Shinwon Chae
- Department
of Biochemistry, Soonchunhyang University,
College of Medicine, Cheonan 31151, Republic of Korea
| | - Nandan Ghosh
- Department
of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, Asan 31538, Republic
of Korea
| | - Mohan Dumpala
- Department
of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, Asan 31538, Republic
of Korea
| | - Dongsic Choi
- Department
of Biochemistry, Soonchunhyang University,
College of Medicine, Cheonan 31151, Republic of Korea
| | - Seob Jeon
- Department
of Obstetrics and Gynecology, College of
Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea
| | - Jungkyun Im
- Department
of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, Asan 31538, Republic
of Korea
- Department
of Chemical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Goutam Biswas
- Department
of Chemistry, Cooch Behar Panchanan Barma
University, Cooch
Behar 736101, India
| |
Collapse
|
2
|
Xu Q, Dong J, Yan G, Yi R, Yang X. Synthesis of N-Doped Graphene Quantum Dots from Cellulose and Construction of a Fluorescent Probe for 6-Mercaptopurin Quantitative Detection. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5852. [PMID: 39685288 DOI: 10.3390/ma17235852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/09/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
With cellulose as the precursor and ethylenediamine as the N source, N-doped graphene quantum dots (N-GQDs) were synthesized by a simple and feasible one-pot hydrothermal method. The whole process did noSchemet need a strong acid or strong base and avoided interference from inorganic salt residues. The whole process lasted only 3 h and avoided any complex postprocessing. Because of the outstanding optical properties of N-GQDs, a high-efficiency 6-mercaptopurine fluorescent probe based on the inner filter effect of fluorescence was established. The detection range was 0.2-60 μM and the detection limit was 0.05 μM. This method can preliminarily detect 6-mercaptopurine in human urine and avoids any sample preparation or extraction in advance and brings satisfactory results.
Collapse
Affiliation(s)
- Qiang Xu
- College of Environmental Science and Engineering, Shanxi University of Electronic Science and Technology, Linfen 041004, China
- Key Laboratory of Food & Environment & Drug Monitoring and Testing of Universities in Hunan Province, Hunan Police Academy, Changsha 410138, China
| | - Jiayi Dong
- School of Life Science, Shanxi Normal University, Taiyuan 030006, China
| | - Guiqin Yan
- School of Life Science, Shanxi Normal University, Taiyuan 030006, China
| | - Rongnan Yi
- Key Laboratory of Food & Environment & Drug Monitoring and Testing of Universities in Hunan Province, Hunan Police Academy, Changsha 410138, China
| | - Xiaojing Yang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Cao J, Shi Y, Chen J, Yan Z, Zhang M, Jin M, Shui L, Liu Z, Feng H. An innovative strategy for Gefitinib quantification in pharmaceutical and plasma samples using a graphene quantum dots-combined gold nanoparticles composite electrochemical sensor. Mikrochim Acta 2024; 191:697. [PMID: 39446161 DOI: 10.1007/s00604-024-06766-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
An innovative methodology is proposed for quantifying Gefitinib (GFT) using an electrochemical sensor constructed from a composite of graphene quantum dots (GQDs) and gold nanoparticles (AuNPs). GQDs were synthesized from graphite, preserving graphene's large surface area and excellent electron transfer capabilities while enhancing dispersibility. The combination of GQDs with AuNPs resulted in an AuNPs@GQDs composite, which was used to construct the sensor. The synthesized nanomaterials were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the electrochemical performance of the sensor was evaluated via cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under optimized conditions, the sensor displayed a linear calibration curve for GFT detection within the range 0.01 to 10.0 µM, with a limit of detection (LOD) of 0.005 µM (S/N = 3). The sensor demonstrated excellent anti-interference properties and stability in tests using pharmaceutical formulations and plasma samples. Compared to chromatographic methods, the sensor exhibited similar accuracy and recovery. Its easy fabrication and high sensitivity make it a promising tool for pharmaceutical analysis and clinical therapeutic drug monitoring.
Collapse
Affiliation(s)
- Jieping Cao
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, PR China
| | - Yingmei Shi
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, PR China
| | - Juntong Chen
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, PR China
| | - Zhibin Yan
- Joint Laboratory of Optofluidic Technology and System,National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, PR China
| | - Minmin Zhang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, PR China
| | - Mingliang Jin
- Joint Laboratory of Optofluidic Technology and System,National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, PR China
| | - Lingling Shui
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, PR China.
- Joint Laboratory of Optofluidic Technology and System,National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, PR China.
| | - Zhenping Liu
- Joint Laboratory of Optofluidic Technology and System,National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, PR China.
| | - Huiling Feng
- Department of pharmacy, Ganzhou People's Hospital, Ganzhou, 341000, PR China.
| |
Collapse
|
4
|
Díaz-García D, Díaz-Sánchez M, Álvarez-Conde J, Gómez-Ruiz S. Emergence of Quantum Dots as Innovative Tools for Early Diagnosis and Advanced Treatment of Breast Cancer. ChemMedChem 2024; 19:e202400172. [PMID: 38724442 DOI: 10.1002/cmdc.202400172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/09/2024] [Indexed: 06/20/2024]
Abstract
Quantum dots (QDs) semiconducting nanomaterials, have garnered attention due to their distinctive properties, including small size, high luminescence, and biocompatibility. In the context of triple-negative breast cancer (TNBC), notorious for its resistance to conventional treatments, QDs exhibit promising potential for enhancing diagnostic imaging and providing targeted therapies. This review underscores recent advancements in the utilization of QDs in imaging techniques, such as fluorescence tomography and magnetic resonance imaging, aiming at the early and precise detection of tumors. Emphasis is placed on the significance of QD design, synthesis and functionalization processes as well as their use in innovative strategies for targeted drug delivery, capitalizing on their ability to selectively deliver therapeutic agents to cancer cells. As the research in this field advances rapidly, this review covers a classification of QDs according to their composition, the characterization techniques than can be used to determine their properties and, subsequently, emphasizes recent findings in the field of TNBC-targeting, highlighting the imperative need to address challenges, like potential toxicity or methodologies standardization. Collectively, the findings explored thus far suggest that QDs could pave the way for early diagnosis and effective therapy of TNBC, representing a significant stride toward precise and personalized strategies in treating TNBC.
Collapse
Affiliation(s)
- Diana Díaz-García
- COMET-NANO Group. Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933, Móstoles, Madrid, Spain
| | - Miguel Díaz-Sánchez
- COMET-NANO Group. Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933, Móstoles, Madrid, Spain
| | - Javier Álvarez-Conde
- COMET-NANO Group. Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933, Móstoles, Madrid, Spain
| | - Santiago Gómez-Ruiz
- COMET-NANO Group. Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933, Móstoles, Madrid, Spain
| |
Collapse
|
5
|
Lei YY, Zhan X, Wu YW, Yu XX. N,Si co-doped GQDs: Facile green preparation and application in visual identifying dihydroxybenzene isomers and selective quantification of catechol, hydroquinone and antioxidants. Talanta 2024; 268:125287. [PMID: 37832454 DOI: 10.1016/j.talanta.2023.125287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/12/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
A green economical procedure for preparing N,Si co-doped graphene quantum dots (N,Si-GQDs) using waste toners and ethylene diamine was reported, which not only minimizes waste and promotes recycling but also offers an alternative method for producing N,Si-GQDs. At a pH of 8.5, hydroquinone and catechol underwent oxidation in the presence of air, resulting in the formation of diquinones, specifically p-phenyldiquinone and o-phenyldiquinone. Resorcinol, on the other hand, was converted into monoquinone. The interaction between diquinones and N,Si-GQDs caused a linear fluorescence quenching effect when catechol and hydroquinone were present. However, this effect was minimal in the case of resorcinol. Furthermore, the antioxidants glutathione (GSH) and ascorbic acid (AA) were observed to disrupt the redox equilibrium of catechol and o-phenyldiquinone, leading to the activation of fluorescence. Conversely, hydroquinone and p-phenyldiquinone, due to the highly stable and symmetrical structure of p-phenyldiquinone, did not exhibit this fluorescence activation. Based on the described "Off-On" sensor system, it was possible to visually identify dihydroxybenzene isomers and selectively quantify catechol and hydroquinone in environmental samples, as well as GSH and AA in human serum. The method detection limits were 0.93, 1.35, 2.34, and 1.37 μM for catechol, hydroquinone, GSH, and AA, respectively. In conclusion, the presented procedure offers several advantages, including environmental friendliness, cost-effectiveness, and a means of recycling waste toners. It also demonstrates the successful synthesis of N,Si-GQDs, as well as the potential for their application in the "Off-On" sensor system for the detection and quantification of various analytes.
Collapse
Affiliation(s)
- Ya-Ya Lei
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Xin Zhan
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Yi-Wei Wu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China.
| | - Xiao-Xiao Yu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China.
| |
Collapse
|
6
|
Das C, Sillanpää M, Zaidi SA, Khan MA, Biswas G. Current trends in carbon-based quantum dots development from solid wastes and their applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45528-45554. [PMID: 36809626 PMCID: PMC9942668 DOI: 10.1007/s11356-023-25822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Urbanization and a massive population boom have immensely increased the solid wastes (SWs) generation and are expected to reach 3.40 billion tons by 2050. In many developed and emerging nations, SWs are prevalent in both major and small cities. As a result, in the current context, the reusability of SWs through various applications has taken on added importance. Carbon-based quantum dots (Cb-QDs) and their many variants are synthesized from SWs in a straightforward and practical method. Cb-QDs are a new type of semiconductor that has attracted the interest of researchers due to their wide range of applications, which include everything from energy storage, chemical sensing, to drug delivery. This review is primarily focused on the conversion of SWs into useful materials, which is an essential aspect of waste management for pollution reduction. In this context, the goal of the current review is to investigate the sustainable synthesis routes of carbon quantum dots (CQDs), graphene quantum dots (GQDs), and graphene oxide quantum dots (GOQDs) from various types SWs. The applications of CQDs, GQDs, and GOQDs in the different areas are also been discussed. Finally, the challenges in implementing the existing synthesis methods and future research directions are highlighted.
Collapse
Affiliation(s)
- Chanchal Das
- Department of Chemistry, Cooch Behar Panchanan Barma University, West Bengal, Cooch Behar, 736101, India
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
| | - Shabi Abbas Zaidi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Moonis Ali Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University, West Bengal, Cooch Behar, 736101, India
| |
Collapse
|
7
|
Novel chitosan - graphene quantum dots composite for therapeutic delivery and tracking through enzymatic stimuli response. Carbohydr Polym 2022; 289:119426. [DOI: 10.1016/j.carbpol.2022.119426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/02/2022] [Accepted: 03/26/2022] [Indexed: 12/11/2022]
|
8
|
Zhan X, Yu X, Li B, Zhou R, Fang Q, Wu Y. Quantifying H 2O 2 by ratiometric fluorescence sensor platform of N-GQDs/rhodamine B in the presence of thioglycolic acid under the catalysis of Fe 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121191. [PMID: 35366522 DOI: 10.1016/j.saa.2022.121191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/24/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
In the presence of thioglycolic acid (TGA) and under the catalysis of Fe3+, a simple, rapid, sensitive, selective and effective ratiometric fluorescence sensor platform based on the mixed physically blue nitrogen-doped graphene quantum dots (N-GQDs) as probe signals and orange rhodamine B as internal standard signals has been constructed for analysis of H2O2 in human serum. TGA is the key factor for fluorescence response toward H2O2 by N-GQDs and the mechanism is H2O2 reacts speedily with TGA under the catalysis of Fe3+, and produces intermediate of superoxide anions (O2-), which accepts electrons from N-GQDs, and generates graphene oxide, causing the fluorescence quench of N-GQDs. Compared with N-GQDs probe, the sensitivity of the ratiometric fluorescence sensor platform of N-GQDs/rhodamine B for analysis of H2O2 has been improved by nearly 5-folds. Under the optimum conditions, Fλ=580nm/Fλ=440nm has a good linear relationship with the concentration of H2O2 and the detection limit of H2O2 is 0.46 μmol/L with 3.5% RSD. The established sensor platform has been successfully used for probing H2O2 in human serum with satisfactory results. The superior performance of the probe lies in its high selectivity and can be directly employed in detecting H2O2 in serum samples without any sample pretreatment procedures.
Collapse
Affiliation(s)
- Xin Zhan
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Xiaoxiao Yu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Benmengyang Li
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Rui Zhou
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Qingyu Fang
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Yiwei Wu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| |
Collapse
|
9
|
Yu X, Zhu C, Wang H, Wu Y. Waste toner-derived micro-materials as low-cost magnetic solid-phase extraction adsorbent for the analysis of trace Pb in environmental and biological samples. Anal Bioanal Chem 2022; 414:2409-2418. [PMID: 35044488 DOI: 10.1007/s00216-022-03879-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/11/2021] [Accepted: 01/05/2022] [Indexed: 01/04/2023]
Abstract
Lead (Pb) is a toxic heavy metal and is commonly used in industrial applications. Thus, Pb poisoning is a concerning public health issue worldwide. The amounts of lead in natural water, urine, and blood can serve as significant indicators for monitoring the exposure of Pb poisoning. Waste toner has the characteristics of both "waste" and "resource," as it is a "resource in the wrong place." Here, a low-cost carboxylate-functionalized magnetic adsorbent was first synthesized from waste toner by a simple thermal treatment and served as a novel adsorbent with a flexible multidentate O-donor for pre-concentration of trace Pb. The characterization, adsorption behavior, and various factors of adsorption and desorption were adequately optimized, and prior to graphite furnace atomic absorption spectrometry (GFAAS) detection, a new magnetic solid-phase extraction method was proposed for the analysis of Pb in real environmental water and biological samples. The developed method exhibited a low detection limit (0.003 μg L-1), high enrichment factor (88.6-fold), good linearity (0.01-0.3 μg L-1), satisfactory precision with relative standard deviations of 7.9% (n = 7, CPb = 0.02 μg L-1), fast adsorption kinetics (5 min), and strong ability to overcome matrix interference. Validation was also performed by analyzing a certified standard reference material, and the method was successfully applied to real tap water, lake water, human urine, and human blood serum with satisfactory recoveries of 92.6-109%.
Collapse
Affiliation(s)
- Xiaoxiao Yu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China.
| | - Changxing Zhu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Han Wang
- Wuhan Customs District of China, Wuhan, 430020, China
| | - Yiwei Wu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| |
Collapse
|
10
|
Sharma AS, Ali S, Sabarinathan D, Murugavelu M, Li H, Chen Q. Recent progress on graphene quantum dots-based fluorescence sensors for food safety and quality assessment applications. Compr Rev Food Sci Food Saf 2021; 20:5765-5801. [PMID: 34601802 DOI: 10.1111/1541-4337.12834] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 12/23/2022]
Abstract
The versatile photophysicalproperties, high surface-to-volume ratio, superior photostability, higher biocompatibility, and availability of active sites make graphene quantum dots (GQDs) an ideal candidate for applications in sensing, bioimaging, photocatalysis, energy storage, and flexible electronics. GQDs-based sensors involve luminescence sensors, electrochemical sensors, optical biosensors, electrochemical biosensors, and photoelectrochemical biosensors. Although plenty of sensing strategies have been developed using GQDs for biosensing and environmental applications, the use of GQDs-based fluorescence techniques remains unexplored or underutilized in the field of food science and technology. To the best of our knowledge, comprehensive review of the GQDs-based fluorescence sensing applications concerning food quality analysis has not yet been done. This review article focuses on the recent progress on the synthesis strategies, electronic properties, and fluorescence mechanisms of GQDs. The various GQDs-based fluorescence detection strategies involving Förster resonance energy transfer- or inner filter effect-driven fluorescence turn-on and turn-off response mechanisms toward trace-level detection of toxic metal ions, toxic adulterants, and banned chemical substances in foodstuffs are summarized. The challenges associated with the pretreatment steps of complex food matrices and prospects and challenges associated with the GQDs-based fluorescent probes are discussed. This review could serve as a precedent for further advancement in interdisciplinary research involving the development of versatile GQDs-based fluorescent probes toward food science and technology applications.
Collapse
Affiliation(s)
| | - Shujat Ali
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | | | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,College of Food and Biological Engineering, Jimei University, Xiamen, China
| |
Collapse
|
11
|
Abstract
Toner waste is one of the major electronic waste materials posing serious environmental threat and health hazards. Globally, only about 20–30% of toner waste is recycled, while the remaining percentage is dumped in landfills. Recycling options are limited due to the desirably engineered durability of toners, ascribed to a complicated composition of chemicals, carbon black, and plastic particles, which in turn creates critical challenges in recycling. The World Health Organization has classified toner waste as class 2B carcinogen due to its potential health hazard. In this review, the existing challenges in toner waste recycling are discussed from the perspective of environmental, health, and feasibility aspects. In parallel, the challenges have been opening up alternative strategies to recycle toner wastes. Emerging trends in toner waste recycling include transformation of toner waste into value-added products, utilization as raw material for nanomaterial synthesis, generation of composite electrodes for power generation/storage devices, integration into construction materials, and development of microwave absorbing composites. Considering the enormous volume of toner waste generated globally every year, better recycling and transformation strategies are needed immediately. A circular economy could be established in the future by transforming the enormous toner waste into a resource for other applications. For an effective management of toner waste in the future, an integrated approach involving policies and legislations, infrastructure for collection and treatment, and financial planning among the stakeholders is needed in addition to technological innovations.
Collapse
|
12
|
Gao T, Xing S, Xu M, Fu P, Yao J, Zhang X, Zhao Y, Zhao C. A peptide nucleic acid-regulated fluorescence resonance energy transfer DNA assay based on the use of carbon dots and gold nanoparticles. Mikrochim Acta 2020; 187:375. [PMID: 32518969 DOI: 10.1007/s00604-020-04357-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/25/2020] [Indexed: 02/06/2023]
Abstract
A convenient fluorometric method was developed for specific determination of DNA based on peptide nuclei acid (PNA)-regulated fluorescence resonance energy transfer (FRET) between carbon dots (CDs) and gold nanoparticles (AuNPs). In this system, CDs that display lake blue fluorescence with excitation/emission maxima at 345/445 nm were used as fluorometric reporter, while AuNPs were used as fluorescence nanoquencher. A neutral PNA probe, which is designed to recognize the target DNA, was used as a coagulant to control the dispersion and aggregation of AuNPs. Without DNA, PNA can induce immediate AuNP aggregation, thus leading to the recovery of the FRET-quenched fluorescence emission of CDs. However, the addition of the complementary target DNA can protect AuNPs from being aggregated due to the formation of DNA/PNA complexes, which subsequently produces a high fluorescence quenching efficiency of CDs by dispersed AuNPs. Under optimized conditions, quantitative evaluation of DNA was achieved in a linear range of 5-100 nM with a detection limit of 0.21 nM. This method exhibited an excellent specificity towards fully matched DNA. In addition, the application of this assay for sensitive determination of DNA in cell lysate demonstrates its potential for bioanalysis and biodetection. Graphical abstract A simple fluorometric biosensor for specific detection of DNA was developed based on peptide nuclei acid (PNA)-regulated fluorescence resonance energy transfer (FRET) between carbon dots (CDs) and gold nanoparticles (AuNPs).
Collapse
Affiliation(s)
- Tingting Gao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, People's Republic of China.,Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Shu Xing
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.
| | - Mengjia Xu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Pan Fu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jiechen Yao
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Xiaokang Zhang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Yang Zhao
- College of Science and Technology, Ningbo University, Ningbo, 315212, People's Republic of China.
| | - Chao Zhao
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.
| |
Collapse
|
13
|
Yan J, Chen S, Zuo Z, He C, Yi M. Graphene oxide quantum dot exposure induces abnormalities in locomotor activities and mechanisms in zebrafish (
Danio rerio
). J Appl Toxicol 2020; 40:794-803. [DOI: 10.1002/jat.3944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Jinhui Yan
- School of KinesiologyShanghai University of Sport Shanghai China
- College of Physical EducationJimei University Xiamen Fujian China
| | - Shujing Chen
- State Key Laboratory of Cellular Stress Biology, School of Life SciencesXiamen University Xiamen Fujian China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life SciencesXiamen University Xiamen Fujian China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life SciencesXiamen University Xiamen Fujian China
| | - Muqing Yi
- School of KinesiologyShanghai University of Sport Shanghai China
- Center for Sports NutritionNational Institute of Sports Medicine Beijing China
| |
Collapse
|
14
|
Saad SM, Abdullah J, Rashid SA, Fen YW, Salam F, Yih LH. A fluorescence quenching based gene assay for Escherichia coli O157:H7 using graphene quantum dots and gold nanoparticles. Mikrochim Acta 2019; 186:804. [DOI: 10.1007/s00604-019-3913-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023]
|
15
|
Recycling Oxacillin Residues from Environmental Waste into Graphene Quantum Dots. C — JOURNAL OF CARBON RESEARCH 2019. [DOI: 10.3390/c5040068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Of great concern are the residual antibiotics from dirt that can be found in farm soil and wastewater. This kind of emerging pollutant into engineered nanomaterials is riveting. This work proposes the elimination and transformation of a beta-lactam antibiotic, oxacillin, from environmental waste to graphene quantum dots (GQDs). Two protocols were followed in which the use of ethylenediamine (EDA) in the transformation leads to GQDs with excellent optical properties. Therefore, two types of GQDs were synthesized in a Teflon-lined stainless autoclave by a thermal procedure using oxacillin in the absence and presence of EDA. The ensuing e-GQDs from oxacillin and EDA display a stronger fluorescence emission in comparison to those synthesized without EDA (o-GQDs). The combination of Kaiser test analyses, infrared (IR) and Raman measurements revealed the presence of oxygen-containing groups and primary amines at the edges of the graphitic nanolayer for e-GQDs. This straightforward strategy brings hope and opens a new interest in waste recycling by means of extracting residual contaminants from the environment for their further transformation into adequate non-toxic graphitic nanomaterials with potential applications.
Collapse
|