1
|
Yang D, Shao T, Zhang L, Wang X, Yue Q. Novel carbon dots from phenylenediamine for simultaneous detection of peroxydisulfate and phosphate with a smart phone by dual-channel of fluorometry and colorimetry. Food Chem 2025; 472:142905. [PMID: 39848051 DOI: 10.1016/j.foodchem.2025.142905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/27/2024] [Accepted: 01/12/2025] [Indexed: 01/25/2025]
Abstract
Carbon dots (CDs), one type of zero-dimensional carbon nanomaterial, showed extensive application in food analysis. Herein, CDs as fluorometry and colorimetry probes were developed to determine peroxydisulfate (PDS) and phosphate ion (Pi) in food samples. CDs were developed with one-pot hydrothermal process from 5-amino salicylic acid and o/m-phenylenediamine named o/m-CDs. o-CDs and m-CDs showed bright green fluorescence with quantum yield at 5.73 % and 6.40 %, which was quenched by PDS and Pi. Fluorometry was based on fluorescence quenching with LOD at 1.6 nM (PDS) and 5.2 nM (Pi). The colorimetry was based on color change of CDs from colorless to brown and indigo blue with LOD at 2.4 (PDS) and 21.1 μM (Pi). Interestingly, for both channels there was no interfering of each other. For portable detection, a wechat mini program of smart phone was employed to calculate the color change. Furthermore, the systems were potential for application in food safety analysis.
Collapse
Affiliation(s)
- Dou Yang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Tong Shao
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Likai Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xiaoshuang Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Qiaoli Yue
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
2
|
Das C, Sepay N, Kim TW, Chae S, Ghosh N, Dumpala M, Choi D, Jeon S, Im J, Biswas G. Recycling Motorcycle Exhaust Soot into Fluorescent Graphene Oxide Quantum Dots for Sensing Ferrocyanide Ions and Bioimaging Cells: A Method for Waste Utilization. ACS OMEGA 2025; 10:14229-14240. [PMID: 40256545 PMCID: PMC12004190 DOI: 10.1021/acsomega.5c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/22/2025]
Abstract
Graphene oxide quantum dots (GOQDs) with a high quantum yield (50%) were synthesized using soot collected from a motorcycle (petroleum vehicle) exhaust pipe and applied as sensors for ferrocyanide ([Fe(CN)6]4-) ions and as bioimaging agents in a cancer cell line. X-ray photoelectron spectroscopy (XPS) data for the GOQDs revealed a C/O ratio of 2.49, which was close to that of graphene oxide (GO). The synthesized GOQDs exhibited strong blue fluorescence. High sensitivity to detect [Fe(CN)6]4- was reported in GOQDs with a detection limit of 0.46 nmol mL-1, and a strong linear relationship was achieved in the concentration range of 100-1100 μg L-1. The results demonstrate the utility of GOQDs for detecting [Fe(CN)6]4- in a real scenario. The GOQDs exhibited almost negligible cytotoxicity in cells and were internalized within 4 h of incubation, emitting blue fluorescence in the cytoplasm. This suggests that the GOQDs are promising bioimaging agents for biomedical applications. In general, these waste-derived GOQDs appear to be good chemo- and biosensing probes for real-life applications.
Collapse
Affiliation(s)
- Chanchal Das
- Department
of Chemistry, Cooch Behar Panchanan Barma
University, Cooch
Behar 736101, India
| | - Nasim Sepay
- Department
of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, Asan 31538, Republic
of Korea
| | - Tae Wan Kim
- Department
of Medical Life Science, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Shinwon Chae
- Department
of Biochemistry, Soonchunhyang University,
College of Medicine, Cheonan 31151, Republic of Korea
| | - Nandan Ghosh
- Department
of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, Asan 31538, Republic
of Korea
| | - Mohan Dumpala
- Department
of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, Asan 31538, Republic
of Korea
| | - Dongsic Choi
- Department
of Biochemistry, Soonchunhyang University,
College of Medicine, Cheonan 31151, Republic of Korea
| | - Seob Jeon
- Department
of Obstetrics and Gynecology, College of
Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea
| | - Jungkyun Im
- Department
of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, Asan 31538, Republic
of Korea
- Department
of Chemical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Goutam Biswas
- Department
of Chemistry, Cooch Behar Panchanan Barma
University, Cooch
Behar 736101, India
| |
Collapse
|
3
|
Yin Z, Wang H, Tang X, Mou M, Yu H, Wang H. Exploration of biomass-derived carbon dots based on chestnut shell for the sensitive detection of phosphate and tetracycline hydrochloride. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125746. [PMID: 39826165 DOI: 10.1016/j.saa.2025.125746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/15/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
Phosphate pollution leads to the deterioration of water quality, posing a serious threat to human health. Tetracycline hydrochloride (TC), a class of broad-spectrum bacteriostatic agents, has garnered attention due to its extensive use and potential toxicity. Therefore, developing a highly selective and sensitive fluorescent probe for the detection of phosphates and TC is of significant importance. Herein, to enhance the conversion and utilization of high-value biomass waste, biomass-derived carbon dots (LZ-NCDs) emitting green fluorescence with a quantum yield of 44 % were synthesized in a one-step hydrothermal process using chestnut shell biomass waste as a carbon source and nitrogen doping technology. Based on the dynamic quenching mechanism, a highly sensitive method for effectively identifying PO43- using LZ-NCDs fluorescence probe was constructed, with a linear range of 0.1-10 µmol/L and a detection limit of 43.0 nmol/L. A quenched fluorescent probe, LZ-NCDs for the determination of TC, was fabricated through the synergistic effects of inner filter effect and static quenching, exhibiting a linear range from 0.05 to 10 µmol/L with a detection limit of 16.8 nmol/L. The successful determination of PO43- and TC in actual samples was achieved. The two different quenching mechanisms indicate that LZ-NCDs are expected to become potential sensing materials for the real-time monitoring of PO43- and TC in organisms and food, which is very important for our health.
Collapse
Affiliation(s)
- Zirui Yin
- School of Chemical Engineering, University of Science and Technology Liaoning, Liaoning, Anshan 114051, China
| | - Haowei Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Liaoning, Anshan 114051, China
| | - Xiaodan Tang
- School of Chemical Engineering, University of Science and Technology Liaoning, Liaoning, Anshan 114051, China.
| | - Mengshi Mou
- School of Chemical Engineering, University of Science and Technology Liaoning, Liaoning, Anshan 114051, China
| | - Hongmei Yu
- School of Chemical Engineering, University of Science and Technology Liaoning, Liaoning, Anshan 114051, China
| | - Huiyong Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
4
|
Jing HH, Shati AA, Alfaifi MY, Elbehairi SEI, Sasidharan S. The future of plant based green carbon dots as cancer Nanomedicine: From current progress to future Perspectives and beyond. J Adv Res 2025; 67:133-159. [PMID: 38320729 PMCID: PMC11725112 DOI: 10.1016/j.jare.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/18/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND The emergence of carbon dots (CDs) as anticancer agents had sparked a transformation in cancer research and treatment strategies. These fluorescent CDs, initially introduced in the early 2000 s, possess exceptional biocompatibility, tunable fluorescence, and surface modification capabilities, positioning them as promising tools in biomedical applications. AIM OF REVIEW The review encapsulates the transformative trajectory of green CDs as future anticancer nanomedicine, poised to redefine the strategies employed in the ongoing fight against cancer. KEY SCIENTIFIC CONCEPTS OF REVIEW The versatility of CDs was rooted in their various synthesis approaches and sustainable strategies, enabling their adaptability for diverse therapeutic uses. In vitro studies had showcased CDs' selective cytotoxicity against cancer cells while sparing healthy counterparts, forming the basis for targeted therapeutic potential. This selectivity had been attributed to the reactive oxygen species (ROS) generation, which opened avenues for targeted interventions. The role of CDs in combination therapies, synergizing with chemotherapy, radiotherapy, and targeted approaches was then investigated to heighten their anticancer efficacy. Notably, in vivo studies highlight CDs' remarkable biocompatibility and minimal side effects, endorsing their translational promise. Integration with conventional cancer treatments such as chemotherapy, radiotherapy, and immunotherapy amplified the versatility and effectiveness of CDs. The exploration of CDs' applications in photo-induced treatments further solidified their significance, positioning them as photosensitizers (PS) in photodynamic therapy (PDT) and photothermal agents (PA) in photothermal therapy (PTT). In PDT, CDs triggered the generation of ROS upon light exposure, facilitating cancer cell elimination, while in PTT, they induced localized hyperthermia within cancer cells, enhancing therapeutic outcomes. In vitro and in vivo investigations validated CDs' efficacy in PDT and PTT, affirming their potential for integration into combination therapies. Looking ahead, the future of CDs in anticancer treatment encompasses bioavailability, biocompatibility, synergistic treatments, tumor targeting, artificial intelligence (AI) and robotics integration, personalized medicine, and clinical translation. This transformative odyssey of CDs as future anticancer agents is poised to redefine the paradigm of cancer treatment strategies.
Collapse
Affiliation(s)
- Hong Hui Jing
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), Pulau Pinang 11800, Malaysia
| | - Ali A Shati
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia
| | - Mohammad Y Alfaifi
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia
| | - Serag Eldin I Elbehairi
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia; Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), 51 Wezaret El-Zeraa St., Agouza, Giza, Egypt
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), Pulau Pinang 11800, Malaysia.
| |
Collapse
|
5
|
Kong W, Liu M, Zhang J, Wu H, Wang Y, Su Q, Li Q, Zhang J, Wu C, Zou WS. Room-temperature phosphorescence and fluorescence nanocomposites as a ratiometric chemosensor for high-contrast and selective detection of 2,4,6-trinitrotoluene. Anal Chim Acta 2023; 1282:341930. [PMID: 37923408 DOI: 10.1016/j.aca.2023.341930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
Reports on using complementary colours for high-contrast ratiometric assays are limited to date. In this work, graphitized carbon nitride (g-C3N4) nanosheets and mercaptoethylamine (MEA) capped Mn-doped ZnS QDs were fabricated by liquid exfoliation of bulk g-C3N4, and by a coprecipitation and postmodification strategies, respectively. Mn-doped ZnS quantum dots were deposited onto g-C3N4 nanosheets through an electrostatic self-assembly to form new nanocomposites (denoted as Mn-ZnS QDs@g-C3N4). Mn-ZnS QDs@g-C3N4 can emit a pair of complementary colour light, namely, orange room-temperature phosphorescence (RTP) at 582 nm and blue fluorescence at 450 nm. After 2,4,6-trinitrotoluene (TNT) dosing into Mn-ZnS QDs@g-C3N4 aqueous solution, and pairing with MEA to generate TNT anions capable of quenching the emission of Mn-doped ZnS QDs, the fluorescence colours of the solution changed from orange to blue across white, exhibiting unusual high-contrast fluorescence images. The developed ratiometric chemosensor showed very good linearity in the range of 0-12 μM TNT with a limit of detection of 0.56 μM and an RSD of 6.4 % (n = 5). Also, the ratiometric probe had an excellent selectivity for TNT over other nitroaromatic compounds, which was applied in the ratiometric test paper to image TNT in water, and TNT sensing under phosphorescence mode to efficiently avoid background interference. A high-contrast dual-emission platform for selective ratiometric detection of TNT was therefore established.
Collapse
Affiliation(s)
- Weili Kong
- School of Materials and Chemical Engineering, Key Laboratory of Functional Molecule Design and Interface Procedure, Anhui Jianzhu University, Hefei, 230022, China
| | - Meina Liu
- School of Materials and Chemical Engineering, Key Laboratory of Functional Molecule Design and Interface Procedure, Anhui Jianzhu University, Hefei, 230022, China
| | - Jinhui Zhang
- School of Materials and Chemical Engineering, Key Laboratory of Functional Molecule Design and Interface Procedure, Anhui Jianzhu University, Hefei, 230022, China
| | - Hongbo Wu
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, 232001, China
| | - Yaqin Wang
- School of Materials and Chemical Engineering, Key Laboratory of Functional Molecule Design and Interface Procedure, Anhui Jianzhu University, Hefei, 230022, China.
| | - Qin Su
- School of Materials and Chemical Engineering, Key Laboratory of Functional Molecule Design and Interface Procedure, Anhui Jianzhu University, Hefei, 230022, China
| | - Qin Li
- School of Materials and Chemical Engineering, Key Laboratory of Functional Molecule Design and Interface Procedure, Anhui Jianzhu University, Hefei, 230022, China
| | - Jun Zhang
- School of Materials and Chemical Engineering, Key Laboratory of Functional Molecule Design and Interface Procedure, Anhui Jianzhu University, Hefei, 230022, China; New Energy Photovoltaic Industry Research Center, Qinghai University, Xining, 810016, China
| | - Chengli Wu
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Wen-Sheng Zou
- School of Materials and Chemical Engineering, Key Laboratory of Functional Molecule Design and Interface Procedure, Anhui Jianzhu University, Hefei, 230022, China.
| |
Collapse
|
6
|
Zhu J, Shen M, Shen J, Wang C, Wei Y. Nitrogen and bromine co-doped carbon dots with red fluorescence for sensing of Ag + and visual monitoring of glutathione in cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122642. [PMID: 36989694 DOI: 10.1016/j.saa.2023.122642] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/19/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Carbon dots (CDs) with red fluorescence emission have excellent advantages in cell imaging. Herein, novel nitrogen and bromine doped CDs (N,Br-CDs) were prepared with 4-bromo-1,2-phenylenediamine as precursor. The N, Br-CDs present the optimal emission wavelength at 582 nm (λex = 510 nm) at pH 7.0 and 648 nm (λex = 580 nm) at pH 3.0 ∼ 5.0, respectively. The fluorescence intensity of N,Br-CDs at 648 nm versus Ag+ concentration shows a good relationship from 0 to 60 μM with the limit of detection (LOD) of 0.14 μM. Furthermore, the fluorescence of N,Br-CDs/Ag+ is efficiently restored via the combination of glutathione (GSH) and Ag+ and linearly changes with GSH concentration from 0 ∼ 6.0 μM with LOD of 49 nM. This method has been successfully employed to monitor intracellular Ag+ and GSH with fluorescence imaging. The results suggest that the N,Br-CDs has application potential in the sensing of Ag+ and visual monitoring of GSH in cells.
Collapse
Affiliation(s)
- Jiantao Zhu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China; Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina, Lanzhou 730060, Gansu, PR China
| | - Mengxin Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Jiwei Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Chaozhan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China.
| |
Collapse
|
7
|
Chen L, Chen C, Yan Y, Yang L, Liu R, Zhang J, Zhang X, Xie C. Folic Acid Adjustive Polydopamine Organic Nanoparticles Based Fluorescent Probe for the Selective Detection of Mercury Ions. Polymers (Basel) 2023; 15:polym15081892. [PMID: 37112040 PMCID: PMC10142360 DOI: 10.3390/polym15081892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Polydopamine fluorescent organic nanomaterials present unique physicochemical and biological properties, which have great potential application in bio-imaging and chemical sensors. Here, folic acid (FA) adjustive polydopamine (PDA) fluorescent organic nanoparticles (FA-PDA FONs) were prepared by a facile one-pot self-polymerization strategy using dopamine (DA) and FA as precursors under mild conditions. The as-prepared FA-PDA FONs had an average size of 1.9 ± 0.3 nm in diameter with great aqueous dispersibility, and the FA-PDA FONs solution exhibit intense blue fluorescence under 365 nm UV lamp, and the quantum yield is ~8.27%. The FA-PDA FONs could be stable in a relatively wide pH range and high ionic strength salt solution, and the fluorescence intensities are constant. More importantly, here we developed a method for rapidly selective and sensitive detection of mercury ions (Hg2+) within 10 s using FA-PDA FONs based probe, the fluorescence intensities of FA-PDA FONs presented a great linear relationship to Hg2+ concentration, the linear range and limit of detection (LOD) were 0-18 µM and 0.18 µM, respectively. Furthermore, the feasibility of the developed Hg2+ sensor was verified by determination of Hg2+ in mineral water and tap water samples with satisfactory results.
Collapse
Affiliation(s)
- Lijuan Chen
- College of Materials and Chemical Engineering, West Anhui University, Lu'an 237012, China
| | - Changchang Chen
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China
| | - Yehan Yan
- College of Materials and Chemical Engineering, West Anhui University, Lu'an 237012, China
| | - Linlin Yang
- College of Materials and Chemical Engineering, West Anhui University, Lu'an 237012, China
| | - Renyong Liu
- College of Materials and Chemical Engineering, West Anhui University, Lu'an 237012, China
| | - Jiajia Zhang
- College of Materials and Chemical Engineering, West Anhui University, Lu'an 237012, China
| | - Xin Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Chenggen Xie
- College of Materials and Chemical Engineering, West Anhui University, Lu'an 237012, China
| |
Collapse
|
8
|
Xu F, Leng W, Lu Q, Li K, Zhang Y, Liu J, Xu L, Sheng G. Ratiometric fluorescent sensing of phosphate ion in environmental water samples using flavin mononucleotide-functionalized Fe 3O 4 particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159249. [PMID: 36220471 DOI: 10.1016/j.scitotenv.2022.159249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/19/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Phosphate ion (PO43-) serves as an important nutrient carrier to support the growth of aquatic animals and plants in aquatic systems. However, excess concentrations of PO43- are the key factor responsible for eutrophication, resulting in rapid deterioration of water quality. Therefore, accurate determination of PO43- is of great significance in water quality and security. In this study, flavin mononucleotide (FMN), an intracellular form of vitamin B2, was used as fluorophore. A novel "off-on" fluorescent sensing platform (FMN@Fe3O4) was fabricated for selective and sensitive detection of PO43-, and showed excellent fluorescence response and good selectivity for PO43- detection. With the addition of PO43-, the fluorescence intensity restored is proportional to PO43- concentration in the quantification range of 50 nM-0.75 μM with a limit of detection as low as 20 nM (0.62 μg.L-1, calculated by P element). An adsorption/desorption sensing mechanism via an in-depth analysis of the interfacial interaction between PO43- and FMN@Fe3O4 is proposed. FMN is first adsorbed by its terminal phosphate group on Fe3O4 particles to quench fluorescence. Free PO43- replaces the adsorbed FMN and restores the quenched fluorescence to achieve the aim of PO43- detection. In addition, this sensing system has been successfully validated in real water sample analysis and all reagents involved are nontoxic, environmentally benign, and easily-available. Therefore, this assay has great applicability in water quality monitoring.
Collapse
Affiliation(s)
- Fang Xu
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Wei Leng
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qinwei Lu
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kunpeng Li
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yukuai Zhang
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jingyu Liu
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Liqiang Xu
- Department of Resource Science and Engineering, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Guoping Sheng
- Department of Environmental Science and Engineering, University of Science and Technology of China, 230026 Hefei, China
| |
Collapse
|
9
|
Jayswal VK, Ritcey AM, Morin JF. Synthesis of fluorescent carbon nanoparticles by dispersion polymerization of acetylene. NANOSCALE ADVANCES 2023; 5:337-343. [PMID: 36756256 PMCID: PMC9846478 DOI: 10.1039/d2na00619g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/17/2022] [Indexed: 06/18/2023]
Abstract
Carbon nanoparticles (CNPs) are of interest due to their distinct optoelectronic properties for a diverse range of applications and their functions and properties can be changed by varying their shape, size and dimensionality. The current synthetic methods reported often result in uncontrolled shape, size and polydispersity. In this work, we focus on developing a low-temperature synthetic method for preparing fluorescent carbon nanoparticles and modulation of properties. Our method, based on the dispersion Glaser-Hay polymerization of acetylene followed by decomposition into a carbonaceous material, yields CNPs with sizes varying from 30 nm to 60 nm. The change in reaction parameters influences the shape and size of CNPs, yielding spherical CNPs. The residual alkynes were exploited further for post-functionalization/graphitization by UV irradiation to yield multifunctional CNPs, which were fluorescent in the blue region. The CNPs were characterized with microscopy and spectroscopy techniques after synthesis and after UV-irradiation to study the morphological, chemical, physical and optical properties. This allowed us to understand the influence of parameter variation on the properties and to attempt to establish the structure-property relationship.
Collapse
Affiliation(s)
- Vijay Kumar Jayswal
- Département de Chimie et Centre de Recherche des Matériaux Avancés (CERMA), Université Laval 1045, de la Médecine Québec Quebec G1V 0A6 Canada
| | - Anna M Ritcey
- Département de Chimie et Centre de Recherche des Matériaux Avancés (CERMA), Université Laval 1045, de la Médecine Québec Quebec G1V 0A6 Canada
| | - Jean-François Morin
- Département de Chimie et Centre de Recherche des Matériaux Avancés (CERMA), Université Laval 1045, de la Médecine Québec Quebec G1V 0A6 Canada
| |
Collapse
|
10
|
Green Synthesis of Highly Fluorescent Carbon Dots from Bovine Serum Albumin for Linezolid Drug Delivery as Potential Wound Healing Biomaterial: Bio-Synergistic Approach, Antibacterial Activity, and In Vitro and Ex Vivo Evaluation. Pharmaceutics 2023; 15:pharmaceutics15010234. [PMID: 36678866 PMCID: PMC9862409 DOI: 10.3390/pharmaceutics15010234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
A simple and green approach was developed to produce novel highly fluorescent bovine serum albumin carbon dots (BCDs) via facile one-step hydrothermal treatment, using bovine serum albumin as a precursor carbon source. Inherent blue photoluminescence of the synthesized BCDs provided a maximum photostability of 90.5 ± 1.2% and was characterized via TEM, FT-IR, XPS, XRD, UV-visible, and zeta potential analyses. By virtue of their extremely small size, intrinsic optical and photoluminescence properties, superior photostability, and useful non-covalent interactions with the synthetic oxazolidinone antibiotic linezolid (LNZ), BCDs were investigated as fluorescent nano-biocarriers for LNZ drug delivery. The release profile of LNZ from the drug delivery system (LNZ-BCDs) revealed a distinct biphasic release, which is beneficial for mollifying the lethal incidents associated with wound infection. The effective wound healing performance of the developed LNZ-BCDs were evaluated through various in vitro and ex vivo assays such as MTT, ex vivo hemolysis, in vitro antibacterial activity, in vitro skin-related enzyme inhibition, and scratch wound healing assays. The examination of LNZ-BCDs as an efficient wound healing biomaterial illustrated excellent biocompatibility and low cytotoxicity against normal human skin fibroblast (HSF) cell line, indicating distinct antibacterial activity against the most common wound infectious pathogens including Staphylococcus aureus (ATCC® 25922) and methicillin-resistant Staphylococcus aureus, robust anti-elastase, anti-collagenase, and anti-tyrosinase activities, and enhanced cell proliferation and migration effect. The obtained results confirmed the feasibility of using the newly designed fluorescent LNZ-BCDs nano-bioconjugate as a unique antibacterial biomaterial for effective wound healing and tissue regeneration. Besides, the greenly synthesized BCDs could be considered as a great potential substitute for toxic nanoparticles in biomedical applications due to their biocompatibility and intense fluorescence characteristics and in pharmaceutical industries as promising drug delivery nano-biocarriers for effective wound healing applications.
Collapse
|
11
|
Zou WS, Xu Y, Li W, Kong WL, Li H, Qu Q, Wang Y. Lysosome-targetable brightly green fluorescence carbon dots for real-time monitoring in cell and highly efficient removal in environment of hypochlorite. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121591. [PMID: 35809425 DOI: 10.1016/j.saa.2022.121591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Due to the lacks of lysosome localization group and reaction/interaction site for hypochlorite (ClO-) on the surface of the carbon dots (C-dots), no C-dots-based lysosome-targeted fluorescence probes have, so far, been reported for real-time monitoring intracellular ClO-. In this work, 1,3,6-trinitropyrene (TNP) was used as a precursor to prepare C-dots with maximum excitation and emission wavelengths at 485 and 532 nm, respectively, and quantum yield ∼ 27% by a hydrothermal approach at 196 °C for 6 h under a reductive atmosphere. The brightly green C-dots can sensitively and quickly respond to ClO- in aqueous solution through surface chemical reaction, showing a linear relationship in the range of 0.5-120 μΜ ClO- with 0.27 μΜ of limit of detection (LOD). Most significantly, the C-dots can localize at intracellular lysosome to image ClO- in lysosomes. Also, the magnetic nanocomposites (C-dots@Fe3O4 MNCs) were fabricated via a simple electrostatic self-assembly between Fe3O4 magnetic nanoparticles (Fe3O4 MNPs) and C-dots for highly efficient removal of ClO- in real samples. Therefore, lysosome-targetable C-dots-based probes for real-time monitoring ClO- were successfully constructed, opening up a promising door to investigate the biological functions and pathological roles of ClO- at organelle levels.
Collapse
Affiliation(s)
- Wen-Sheng Zou
- School of Materials and Chemical Engineering, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230022, China
| | - Yu Xu
- School of Materials and Chemical Engineering, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230022, China
| | - Weihua Li
- School of Materials and Chemical Engineering, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230022, China
| | - Wei-Li Kong
- School of Materials and Chemical Engineering, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230022, China
| | - Haibin Li
- School of Materials and Chemical Engineering, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230022, China
| | - Qishu Qu
- School of Materials and Chemical Engineering, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230022, China
| | - Yaqin Wang
- School of Materials and Chemical Engineering, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230022, China.
| |
Collapse
|
12
|
Luo K, Wen Y, Kang X. Halogen-Doped Carbon Dots: Synthesis, Application, and Prospects. Molecules 2022; 27:4620. [PMID: 35889495 PMCID: PMC9320250 DOI: 10.3390/molecules27144620] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/06/2023] Open
Abstract
Carbon dots (CDs) have many advantages, such as tunable photoluminescence, large two-photon absorption cross-sections, easy functionalization, low toxicity, chemical inertness, good dispersion, and biocompatibility. Halogen doping further improves the optical and physicochemical properties of CDs, extending their applications in fluorescence sensors, biomedicine, photocatalysis, anti-counterfeiting encryption, and light-emitting diodes. This review briefly describes the preparation of CDs via the "top-down" and "bottom-up" approaches and discusses the preparation methods and applications of halogen (fluorine, chlorine, bromine, and iodine)-doped CDs. The main challenges of CDs in the future are the elucidation of the luminescence mechanism, fine doping with elements (proportion, position, etc.), and their incorporation in practical devices.
Collapse
Affiliation(s)
| | - Yanmei Wen
- Faculty of Chemistry and Environment Science, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Xinhuang Kang
- Faculty of Chemistry and Environment Science, Guangdong Ocean University, Zhanjiang 524088, China;
| |
Collapse
|
13
|
Small nanoparticles bring big prospect: The synthesis, modification, photoluminescence and sensing applications of carbon dots. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Wu J, Chen G, Jia Y, Ji C, Wang Y, Zhou Y, Leblanc RM, Peng Z. Carbon dot composites for bioapplications: a review. J Mater Chem B 2022; 10:843-869. [PMID: 35060567 DOI: 10.1039/d1tb02446a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Carbon dots (CDs) have received extensive attention in the last decade for their excellent optical, chemical and biological properties. In recent years, CD composites have also received significant attention due to their ability to improve the intrinsic properties and expand the application scope of CDs. In this article, the synthesis processes of four types of CD composites (metal-CD, nonmetallic inorganics-CD, and organics-CD as well as multi-components-CD composites) are systematically summarized first. Then the recent advancements in the bioapplications (bioimaging, drug delivery and biosensing) of these composites are also highlighted and discussed. Last, the current challenges and future trends of CD composites in biomedical fields are discussed.
Collapse
Affiliation(s)
- Jiajia Wu
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China.
| | - Gonglin Chen
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China.
| | - Yinnong Jia
- Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Chunyu Ji
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China.
| | - Yuting Wang
- Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, USA
| | - Zhili Peng
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China.
| |
Collapse
|
15
|
Luo K, Luo W, Liang Z, Li Y, Kang X, Wu Y, Wen Y. Self-doping synthesis of iodine–carbon quantum dots for sensitive detection of Fe( iii) and cellular imaging. NEW J CHEM 2022. [DOI: 10.1039/d2nj03474c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iodine-doped carbon quantum dots (I-CQDs) were synthesized via p-iodobenzoic acid self-doping for the detection of ferric ions (Fe3+) and cell imaging.
Collapse
Affiliation(s)
- Kun Luo
- Faculty of Chemistry and Environment science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Wenyi Luo
- Faculty of Chemistry and Environment science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhibin Liang
- Faculty of Chemistry and Environment science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yubin Li
- Faculty of Chemistry and Environment science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xinhuang Kang
- Faculty of Chemistry and Environment science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yulian Wu
- Faculty of Chemistry and Environment science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yanmei Wen
- Faculty of Chemistry and Environment science, Guangdong Ocean University, Zhanjiang, 524088, China
| |
Collapse
|
16
|
Miao W, Zou WS, Zhao Q, Wang Y, Chen X, Wu S, Liu Z, Xu T. Coupling room-temperature phosphorescence carbon dots onto active layer for highly efficient photodynamic antibacterial chemotherapy and enhanced membrane properties. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Gao X, Sun M, Liu X, Zhong K, Tang L, Li J. A fluorescent and colorimetric dual-recognition probe based on copper(II)-decorated carbon dots for detection of phosphate. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5003-5010. [PMID: 34635902 DOI: 10.1039/d1ay01394g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the present article, we report a novel fluorescent and colorimetric dual-signal sensing probe based on a CD-Cu2+ complex for the detection of the phosphate ion (Pi). The yellow fluorescent carbon quantum dots (CDs) were simply synthesized via one-step hydrothermal treatment of o-phenylenediamine (OPD) and 4-aminobutyric acid (GABA). The method was based on the combination of the CDs and Cu2+ to form a coordination complex. Pi can capture Cu2+ on the surface of CDs, which brings about two kinds of signal change through competitive complexation, including fluorescence and UV-vis absorption. The probe could detect the Pi with a linear range of 0.01-1 mM with a detection limit of 3.75 μM for the fluorescence signal and a linear range of 0.01-1 mM with a detection limit of 4.38 μM for the colorimetric signal. And the change in absorption signal can be used to visually detect Pi. Furthermore, the proposed sensing system was successfully applied to determine Pi in practical water samples.
Collapse
Affiliation(s)
- Xue Gao
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, China.
| | - Minjun Sun
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, China.
| | - Xiuying Liu
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, China.
| | - Keli Zhong
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, Liaoning, 121013, China
| | - Lijun Tang
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, Liaoning, 121013, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, China.
| |
Collapse
|
18
|
Bai R, Sun H, Jin P, Li J, Peng A, He J. Facile synthesis of carbon nitride quantum dots as a highly selective and sensitive fluorescent sensor for the tetracycline detection. RSC Adv 2021; 11:24892-24899. [PMID: 35481027 PMCID: PMC9036896 DOI: 10.1039/d1ra04272f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Enhanced blue fluorescent carbon nitride quantum dots (g-C3N4QDs) were synthesized by a simple solvothermal “tailoring” process from bulk g-C3N4 and analyzed by various characterization methods. The as-obtained g-C3N4QDs were successfully applied in the determination of tetracycline (TC) with a good linear relationship in the range of 0.23–202.70 μM. The proposed fluorescent sensor shows excellent stability, good repeatability, high selectivity and outstanding sensitivity to TC with a low detection limit of 0.19 μM. The fluorescence quenching mechanism of g-C3N4QDs with TC was mainly governed by static quenching and the inner filter effect. The method was successfully applied to monitor TC in tap water and milk powder samples. The g-C3N4QDs were synthesized by a simple solvothermal “tailoring” process from bulk g-C3N4 which have a “strong quenching” behaviour in the presence of TC. The proposed fluorescent sensor has been successfully applied to detect TC in actual samples.![]()
Collapse
Affiliation(s)
- Ruining Bai
- College of Pharmacy, Dali University Dali 671000 Yunnan P. R. China +86-872-2257414
| | - Heli Sun
- College of Pharmacy, Dali University Dali 671000 Yunnan P. R. China +86-872-2257414
| | - Peng Jin
- College of Pharmacy, Dali University Dali 671000 Yunnan P. R. China +86-872-2257414
| | - Jingwei Li
- College of Pharmacy, Dali University Dali 671000 Yunnan P. R. China +86-872-2257414
| | - Anzhong Peng
- College of Pharmacy, Dali University Dali 671000 Yunnan P. R. China +86-872-2257414
| | - Jieli He
- College of Pharmacy, Dali University Dali 671000 Yunnan P. R. China +86-872-2257414
| |
Collapse
|
19
|
Man Y, Zou WS, Kong WL, Li W, Dong W, Zhao D, Qu Q, Wang Y. Brightly blue triazine-doped carbon dots for selective determination of Cu(II) in environment and imaging in cell. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
20
|
Polydopamine coated copper nanoclusters with aggregation-induced emission for fluorometric determination of phosphate ion and acid phosphatase activity. Mikrochim Acta 2020; 187:357. [PMID: 32468344 DOI: 10.1007/s00604-020-04335-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/16/2020] [Indexed: 10/24/2022]
Abstract
The preparation of aggregation-induced emission-type copper nanoclusters (CuNCs) capped with polydopamine (PDA) is described. PDA was formed via in situ polymerization of dopamine in the presence of alkaline polyethylenimine. The PDA-capped CuNCs (PDA-CuNCs) exhibit orange fluorescence with maximal emission at 580 nm upon excitation at 340 nm, a storage stability of at least 2 weeks, and a quantum yield (QY) of 2.54% in aqueous solution. The QY is 28-fold higher than that of sole CuNCs. The fluorescence of the PDA-CuNCs is quenched by Fe3+ ion while it is recovered by PO43- due to its stronger affinity for Fe3+. On this basis, a fluorometric phosphate assay was developed that has a 1.5 nM detection limit and a linear range over 0.003-70 μM. The method was satisfactorily applied to the determination of phosphate in local tap water and human sera, and the results agreed well with those obtained by a colorimetric method. In the presence of acid phosphatase (ACP), PO43- is produced by the catalytic hydrolysis of adenosine triphosphate (ACP substrate). Thus, a fluorogenic assay for screening ACP activity was established. Response is linear over the activity range 0.0012-25 U L-1, with a detection limit of 0.001 U L-1 (at S/N = 3). Graphic abstract We proposed an effective polydopamine-templating strategy for the in situ synthesis of highly emissive and stable CuNCs and demonstrated its use as an ion-driven fluorescence switch for the determination of phosphate and acid phosphatase activity.
Collapse
|
21
|
Meng Y, Jiao Y, Zhang Y, Li Y, Gao Y, Lu W, Liu Y, Shuang S, Dong C. Multi-sensing function integrated nitrogen-doped fluorescent carbon dots as the platform toward multi-mode detection and bioimaging. Talanta 2020; 210:120653. [DOI: 10.1016/j.talanta.2019.120653] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 02/02/2023]
|