1
|
Wang H, Li J, Zhao P, Fei J, Xie Y. Ultrasensitive electrochemical sensor for vanillin based on CuS doped highly conductive carbon materials. Food Chem 2025; 482:144093. [PMID: 40179565 DOI: 10.1016/j.foodchem.2025.144093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
Herein, a sensitive and selective electrochemical sensor modified with CuS doped highly conductive carbon materials (HCC) were successfully used to detect vanillin (VAN), which manufactured in a low temperature one step process. Experimental analysis by differential pulse voltammetry (DPV) and cyclic voltammetry (CV) under optimised conditions revealed excellent rate characteristics due to sub-micron spherical particles on the surface of CuS nanoparticles and synergistic effects with the excellent electrical conductivity of HCC. The prepared functionalized CuS-HCC/GCE has an ultra high specific surface area (10.85 mm2) and selective VAN determination, whose detection limit and linear range of VAN sensor are 61 pM and 0.1 nM-120 μM respectively, and has a terrific recovery rate in food samples (96.7 % to 103.8 %). These results show that this work has provided a new promising food sensor for detecting VAN.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Jiejun Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, People's Republic of China.
| | - Yixi Xie
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, People's Republic of China.
| |
Collapse
|
2
|
Ahmed Mubarak M, Mohamed R, Ahmed Rizk S, Samir Darwish A, Abuzalat O, Eid M. Ali M. Competent CuS QDs@Fe MIL101 heterojunction for Sunlight-driven degradation of pharmaceutical contaminants from wastewater. ENVIRONMENTAL NANOTECHNOLOGY, MONITORING & MANAGEMENT 2024; 22:101013. [DOI: 10.1016/j.enmm.2024.101013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
|
3
|
Wang S, Zhang R, Ding S, Ao J, Shu T. Facile preparation of a CoNiS/CF electrode by SILAR for a high sensitivity non-enzymatic glucose sensor. RSC Adv 2024; 14:10897-10904. [PMID: 38577432 PMCID: PMC10993041 DOI: 10.1039/d3ra08154k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
The nanomaterials for non-enzymatic electrochemical sensors are usually pre-synthesized and coated onto electrodes by ex situ methods. In this work, amorphous cobalt-nickel sulfide (CoNiS) nanoparticles were facilely prepared on copper foam (CF) by the in situ successive ionic layer adsorption and reaction (SILAR) method, and as-prepared CoNiS/CF was studied as an electrode for non-enzymatic glucose sensing. It was analyzed by field emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDAX) and X-ray photoelectron spectroscopy (XPS). The electrochemical performance was investigated by cyclic voltammetry (CV) and chronoamperometry (CA). This binary sulfide electrode showed better performance toward glucose oxidation compared to the corresponding single sulfide and showed a wide linear range of 0.005 to 3.47 mM, a high sensitivity of 2298.7 μA mM-1 cm-2 and a low detection limit of 2.0 μM. The sensor exhibited high sensitivity and good repeatability and stability and was able to detect glucose in an actual sample. This work provides a simple and fast in situ electrode preparation method for a high-sensitivity glucose sensor.
Collapse
Affiliation(s)
- Shi Wang
- Hubei University of Science and Technology Xianning Hubei China
| | - Ruirui Zhang
- Hubei University of Science and Technology Xianning Hubei China
| | - Saiwen Ding
- Hubei University of Science and Technology Xianning Hubei China
| | - Jialin Ao
- Hubei University of Science and Technology Xianning Hubei China
| | - Ting Shu
- Hubei University of Science and Technology Xianning Hubei China
| |
Collapse
|
4
|
Sharma KP, Shin M, Awasthi GP, Cho S, Yu C. One-step hydrothermal synthesis of CuS/MoS 2 composite for use as an electrochemical non-enzymatic glucose sensor. Heliyon 2024; 10:e23721. [PMID: 38312675 PMCID: PMC10835264 DOI: 10.1016/j.heliyon.2023.e23721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 02/06/2024] Open
Abstract
Early diagnosis may be crucial for the prevention of chronic diabetes mellitus. For that herein, we prepared a CuS/MoS2 composite for a non-enzymatic glucose sensor through a one-step hydrothermal method owing to the synergetic effect of CuS/MoS2. The surface morphology of CuS/MoS2 was studied by Field Emission Scanning Electron Microscopy (FESEM) and Cs-corrected Scanning Transmission Electron Microscopy (Cs-STEM). The crystallinity and surface composition of CuS/MoS2 were analyzed by X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) respectively. The working electrode was prepared from CuS/MoS2 electrocatalyst, and for that dispersed solution of electrocatalyst was used to fabricate the material-loaded glassy carbon electrode (GC). CuS/MoS2 composite shows the viability of electrocatalyst to oxidize glucose in an alkaline solution with sensitivity and detection limit of 252.71 μA mM-1 cm-2 and 1.52 μM respectively. The proposed glucose sensor showed reasonable stability and potential selectivity during electrochemical analysis. Accordingly, the CuS/MoS2 composite has potential as a viable material for glucose sensing in diluted human serum.
Collapse
Affiliation(s)
- Krishna Prasad Sharma
- Department of Energy Storage/Conversion Engineering (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Miyeon Shin
- Department of Energy Storage/Conversion Engineering (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Ganesh Prasad Awasthi
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Soonhwan Cho
- ENPLUS Co., LTD, 167 Jayumuyeok-gil, Baeksan-myeon, Gimje-si, 54352, Republic of Korea
| | - Changho Yu
- Department of Energy Storage/Conversion Engineering (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
5
|
Prasanna M, Logeshwaran N, Ramakrishnan S, Yoo DJ. Metallic 1T-N-WS 2 /WO 3 Heterojunctions Featuring Interface-Engineered Cu-S Configuration for Selective Electrochemical CO 2 Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306165. [PMID: 37715287 DOI: 10.1002/smll.202306165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/13/2023] [Indexed: 09/17/2023]
Abstract
Electrocatalytic carbon-dioxide reduction reactions (ECO2 RR) are one of the most rational techniques to control one's carbon footprint. The desired product formation depends on deliberate reaction kinetics and a choice of electron-proton contribution. Herein the usage of novel CuS active centers decorated over stable 1T metallic N-WS2 /WO3 nanohybrids as an efficient selective formate conversion electrocatalyst with regard to ECO2 RR is reported. The preferred reaction pathway is identified as *OCHO, which is reduced (by gaining H+ + e- ) to HCOO- (HCOO- path) as the primary product. More significantly, at -1.3 V versus RHE yield of FEHCOO - is 55.6% ± 0.5 with a Jgeo of -125.05 mA cm-2 for CuS@1T-N-WS2 /WO3 nanohybrids. In addition, predominant catalytic activity, selectivity, and stability properties are observed; further post-mortem analysis demonstrates the choice of material importance. The present work describes an impressive approach to develop highly active electrocatalysts for selective ECO2 RR applications.
Collapse
Affiliation(s)
- Murugesan Prasanna
- Graduate School, Department of Energy Storage/Conversion Engineering (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, 567-Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Natarajan Logeshwaran
- Graduate School, Department of Energy Storage/Conversion Engineering (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, 567-Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Shanmugam Ramakrishnan
- Graduate School, Department of Energy Storage/Conversion Engineering (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, 567-Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
- School of Engineering, Newcastle University, Merz Court, Newcastle upon Tyne, NE17RU, UK
| | - Dong Jin Yoo
- Graduate School, Department of Energy Storage/Conversion Engineering (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, 567-Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
- Department of Life Science, Jeonbuk National University, 567-Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
6
|
Miya N, Machogo-Phao LFE, Ntsendwana B. Exploring Copper Oxide and Copper Sulfide for Non-Enzymatic Glucose Sensors: Current Progress and Future Directions. MICROMACHINES 2023; 14:1849. [PMID: 37893284 PMCID: PMC10609065 DOI: 10.3390/mi14101849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023]
Abstract
Millions of people worldwide are affected by diabetes, a chronic disease that continuously grows due to abnormal glucose concentration levels present in the blood. Monitoring blood glucose concentrations is therefore an essential diabetes indicator to aid in the management of the disease. Enzymatic electrochemical glucose sensors presently account for the bulk of glucose sensors on the market. However, their disadvantages are that they are expensive and dependent on environmental conditions, hence affecting their performance and sensitivity. To meet the increasing demand, non-enzymatic glucose sensors based on chemically modified electrodes for the direct electrocatalytic oxidation of glucose are a good alternative to the costly enzymatic-based sensors currently on the market, and the research thereof continues to grow. Nanotechnology-based biosensors have been explored for their electronic and mechanical properties, resulting in enhanced biological signaling through the direct oxidation of glucose. Copper oxide and copper sulfide exhibit attractive attributes for sensor applications, due to their non-toxic nature, abundance, and unique properties. Thus, in this review, copper oxide and copper sulfide-based materials are evaluated based on their chemical structure, morphology, and fast electron mobility as suitable electrode materials for non-enzymatic glucose sensors. The review highlights the present challenges of non-enzymatic glucose sensors that have limited their deployment into the market.
Collapse
Affiliation(s)
| | - Lerato F. Eugeni Machogo-Phao
- DSI/Mintek Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Private Bag X3015, Randburg 2125, South Africa; (N.M.); (B.N.)
| | | |
Collapse
|
7
|
Shin M, Awasthi GP, Sharma KP, Pandey P, Park M, Ojha GP, Yu C. Nanoarchitectonics of Three-Dimensional Carbon Nanofiber-Supported Hollow Copper Sulfide Spheres for Asymmetric Supercapacitor Applications. Int J Mol Sci 2023; 24:ijms24119685. [PMID: 37298635 DOI: 10.3390/ijms24119685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Three-dimensional carbon nanofiber (3D-CNF)-supported hollow copper sulfide (HCuS) spheres were synthesized by the facile hydrothermal method. The morphology of the as-synthesized HCuS@3D-CNF composite clearly revealed that the 3D-CNFs act as a basement for HCuS spheres. The electrochemical performance of as-synthesized HCuS@3D-CNFs was evaluated by cyclic voltammetry (CV) tests, gravimetric charge-discharge (GCD) tests, and Nyquist plots. The obtained results revealed that the HCuS@3D-CNFs exhibited greater areal capacitance (4.6 F/cm2) compared to bare HCuS (0.64 F/cm2) at a current density of 2 mA/cm2. Furthermore, HCuS@3D-CNFs retained excellent cyclic stability of 83.2% after 5000 cycles. The assembled asymmetric device (HCuS@3D-CNFs//BAC) exhibits an energy density of 0.15 mWh/cm2 with a working potential window of 1.5 V in KOH electrolyte. The obtained results demonstrate that HZnS@3D-CNF nanoarchitectonics is a potential electrode material for supercapacitor applications.
Collapse
Affiliation(s)
- Miyeon Shin
- Department of Energy Storage, Conversion Engineering of Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ganesh Prasad Awasthi
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Krishna Prasad Sharma
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Puran Pandey
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea
| | - Mira Park
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea
| | - Gunendra Prasad Ojha
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea
| | - Changho Yu
- Department of Energy Storage, Conversion Engineering of Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
8
|
Low temperature growth of CuS nanosheets on hollow Co9S8 nanotubes: Synthesis and analytical application. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Kundu A, Shetti NP, Basu S, Mondal K, Sharma A, Aminabhavi TM. Versatile Carbon Nanofiber-Based Sensors. ACS APPLIED BIO MATERIALS 2022; 5:4086-4102. [PMID: 36040854 DOI: 10.1021/acsabm.2c00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carbon nanofibers (CNFs) display colossal potential in different fields like energy, catalysis, biomedicine, sensing, and environmental science. CNFs have revealed extensive uses in various sensing platforms due to their distinctive structure, properties, function, and accessible surface functionalization capabilities. This review presents insight into various fabrication methods for CNFs like electrospinning, chemical vapor deposition, and template methods with merits and demerits of each technique. Also, we give a brief overview of CNF functionalization. Their unique physical and chemical properties make them promising candidates for the sensor applications. This review offers detailed discussion of sensing applications (strain sensor, biosensor, small molecule detection, food preservative detection, toxicity biomarker detection, and gas sensor). Various sensing applications of CNF like human motion monitoring and energy storage and conversion are discussed in brief. The challenges and obstacles associated with CNFs for futuristic applications are discussed. This review will be helpful for readers to understand the different fabrication methods and explore various applications of the versatile CNFs.
Collapse
Affiliation(s)
- Aayushi Kundu
- School of Chemistry and Biochemistry, Affiliate Faculty─TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Nagaraj P Shetti
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580 031, India
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, Panjab 140413, India
| | - Soumen Basu
- School of Chemistry and Biochemistry, Affiliate Faculty─TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Kunal Mondal
- Materials Science and Engineering Department, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| | - Ashutosh Sharma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Tejraj M Aminabhavi
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580 031, India
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, Panjab 140413, India
| |
Collapse
|
10
|
Titanium nanoparticle anchored functionalized MWCNTs for electrochemical detection of ractopamine in porcine samples with ultrahigh sensitivity. Food Chem 2022; 378:132083. [PMID: 35033720 DOI: 10.1016/j.foodchem.2022.132083] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 01/01/2023]
Abstract
We develop a disposable electrochemical sensor using a titanium nanoparticles (Ti NPs)-anchored functionalized multi-walled carbon nanotube (Ti@f-MWCNTs) composite as electrochemical sensing interface for the detection of ractopamine (RAC). The sensor demonstrated superior electrochemical sensing ability with a broad linear response range (0.01-185 μM) and ultralow detection limit (0.0038 µM). In addition, the stability, repeatability, reproducibility, and anti-interference ability of the Ti@f-MWCNTs sensor were satisfactory. The practicability of the sensor was effectively employed for the determination of RAC in porcine samples including pork, pig urine, and pig serum with substantial recoveries in the range of 92%-99% and a relative standard deviation of less than 5%.
Collapse
|
11
|
Mazurków JM, Kusior A, Radecka M. Electrochemical Characterization of Modified Glassy Carbon Electrodes for Non-Enzymatic Glucose Sensors. SENSORS 2021; 21:s21237928. [PMID: 34883931 PMCID: PMC8659783 DOI: 10.3390/s21237928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 01/07/2023]
Abstract
The diversity of materials proposed for non-enzymatic glucose detection and the lack of standardized protocols for assessing sensor performance have caused considerable confusion in the field. Therefore, methods for pre-evaluation of working electrodes, which will enable their conscious design, are currently intensively sought. Our approach involved comprehensive morphologic and structural characterization of copper sulfides as well as drop-casted suspensions based on three different polymers-cationic chitosan, anionic Nafion, and nonionic polyvinylpyrrolidone (PVP). For this purpose, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman spectroscopy were applied. Subsequently, comparative studies of electrochemical properties of bare glassy carbon electrode (GCE), polymer- and copper sulfides/polymer-modified GCEs were performed using electrochemical impedance spectroscopy (EIS) and voltammetry. The results from EIS provided an explanation for the enhanced analytical performance of Cu-PVP/GCE over chitosan- and Nafion-based electrodes. Moreover, it was found that the pH of the electrolyte significantly affects the electrocatalytic behavior of copper sulfides, indicating the importance of OHads in the detection mechanism. Additionally, diffusion was denoted as a limiting step in the irreversible electrooxidation process that occurs in the proposed system.
Collapse
|
12
|
Aun TT, Salleh NM, Ali UFM, Manan NSA. Non-Enzymatic Glucose Sensors Involving Copper: An Electrochemical Perspective. Crit Rev Anal Chem 2021; 53:537-593. [PMID: 34477020 DOI: 10.1080/10408347.2021.1967720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Non-enzymatic glucose sensors based on the use of copper and its oxides have emerged as promising candidates to replace enzymatic glucose sensors owing to their stability, ease of fabrication, and superior sensitivity. This review explains the theories of the mechanism of glucose oxidation on copper transition metal electrodes. It also presents an overview on the development of among the best non-enzymatic copper-based glucose sensors in the past 10 years. A brief description of methods, interesting findings, and important performance parameters are provided to inspire the reader and researcher to create new improvements in sensor design. Finally, several important considerations that pertain to the nano-structuring of the electrode surface is provided.
Collapse
Affiliation(s)
- Tan Tiek Aun
- Faculty of Science, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia.,University Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Noordini Mohamad Salleh
- Faculty of Science, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia.,Faculty of Science, Department of Chemistry, Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Umi Fazara Md Ali
- Chemical Engineering Programme, Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Arau, Malaysia.,Centre of Excellence for Biomass Utilization (COEBU), Universiti Malaysia Perlis, Arau, Malaysia
| | - Ninie Suhana Abdul Manan
- Faculty of Science, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia.,University Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Wang Q, Wang Z, Dong Q, Yu R, Zhu H, Zou Z, Yu H, Huang K, Jiang X, Xiong X. NiCl(OH) nanosheet array as a high sensitivity electrochemical sensor for detecting glucose in human serum and saliva. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105184] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Yadav D, Amini F, Ehrmann A. Recent advances in carbon nanofibers and their applications – A review. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109963] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Voltammetric nonenzymatic sensing of glucose by using a porous nanohybrid composed of CuS@SiO2 spheres and polypyrrole. Mikrochim Acta 2020; 187:260. [DOI: 10.1007/s00604-020-04227-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/16/2020] [Indexed: 10/24/2022]
|