1
|
Rajarathinam T, Jayaraman S, Kim CS, Yoon JH, Chang SC. Two-dimensional nanozyme nanoarchitectonics customized electrochemical bio diagnostics and lab-on-chip devices for biomarker detection. Adv Colloid Interface Sci 2025; 341:103474. [PMID: 40121951 DOI: 10.1016/j.cis.2025.103474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Recent developments in nanomaterials and nanotechnology have advanced biosensing research. Two-dimensional (2D) nanomaterials or nanozymes, such as metal oxides, graphene and its derivatives, transition metal dichalcogenides, metal-organic frameworks, carbon-organic frameworks and MXenes, have garnered substantial attention in recent years owing to their unique properties, including high surface area, excellent electrical conductivity, and mechanical flexibility. Moreover, 2D nanozymes exhibit intrinsic enzyme-mimicking properties, including those of peroxidase, oxidase, catalase, and superoxide dismutase, making them well-suited for detecting biomarkers of interest and developing bio diagnostics at the point-of-care. Since 2D nanosystems offer ultra-high sensitivity, label-free detection, and real-time analysis, point-of-care testing and multiplexed biomarker detection, the demand is growing. Additionally, their biocompatibility and scalable fabrication make them cost-effective for widespread adoption. This review discusses the advantages of 2D nanozymes and their recent advancements in biosensing applications. This review summarizes the latest developments in 2D nanozymes, focusing on their synthesis, biocatalytic capabilities, and advancements in developing bio diagnostics and lab-on-chip devices for detecting cancer and non-cancer biomarkers. In addition, existing challenges and prospects in 2D nanozyme-based biosensors are identified, highlighting their biosensing potential and advocating for their expanded application in bio diagnostics and lab-on-chip devices.
Collapse
Affiliation(s)
- Thenmozhi Rajarathinam
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea; Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University, Busan 46241, Republic of Korea
| | - Sivaguru Jayaraman
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea; Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University, Busan 46241, Republic of Korea
| | - Jang-Hee Yoon
- Busan Center, Korea Basic Science Institute, Busan 46742, Republic of Korea
| | - Seung-Cheol Chang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
2
|
Elancheziyan M, Singh M, Won K. Gold Nanoparticle-Embedded Thiol-Functionalized Ti 3C 2T x MXene for Sensitive Electrochemical Sensing of Ciprofloxacin. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1655. [PMID: 39452991 PMCID: PMC11510598 DOI: 10.3390/nano14201655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
The unregulated use of ciprofloxacin (CIPF) has led to increased resistance in patients and has threatened human health with issues such as digestive disorders, kidney disorders, and liver complications. In order to overcome these concerns, this work introduces a portable electrochemical sensor based on a disposable integrated screen-printed carbon electrode (SPCE) coated with gold nanoparticle-embedded thiol-functionalized Ti3C2Tx MXene (AuNPs-S-Ti3C2Tx MXene) for simple, rapid, precise, and sensitive quantification of CIPF in milk and water samples. The high surface area and electrical conductivity of AuNPs are maximized thanks to the strong interaction between AuNPs and SH-Ti3C2Tx MXene, which can prevent the aggregation of AuNPs and endow larger electroactive areas. Ti3C2Tx MXene was synthesized from Ti3AlC2 MAX phases, and its thiol functionalization was achieved using 3-mercaptopropyl trimethoxysilane. The prepared AuNPs-S-Ti3C2Tx MXene nanocomposite was characterized using FESEM, EDS, XRD, XPS, FTIR, and UV-visible spectroscopy. The electrochemical behavior of the nanocomposite was examined using CV, EIS, DPV, and LSV. The AuNPs-S-Ti3C2Tx MXene/SPCE showed higher electrochemical performances towards CIPF oxidation than a conventional AuNPs-Ti3C2Tx MXene/SPCE. Under the optimized DPV and LSV conditions, the developed nonenzymatic CIPF sensor displayed a wide range of detection concentrations from 0.50 to 143 μM (DPV) and from 0.99 to 206 μM (LSV) with low detection limits of 0.124 μM (DPV) and 0.171 μM (LSV), and high sensitivities of 0.0863 μA/μM (DPV) and 0.2182 μA/μM (LSV).
Collapse
Affiliation(s)
| | | | - Keehoon Won
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea; (M.E.); (M.S.)
| |
Collapse
|
3
|
Chen PY, Keerthi Reddy T, Rajaji U, Alothman AA, Govindasamy M. Optimization of Electrochemical Sensitivity in Anticancer Drug Quantification through ZnS@CNS Nanosheets: Synthesis via Accelerated Sonochemical Methodology. ULTRASONICS SONOCHEMISTRY 2024; 105:106858. [PMID: 38564910 PMCID: PMC11002299 DOI: 10.1016/j.ultsonch.2024.106858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/06/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Zinc sulfide/graphitic Carbon Nitride binary nanosheets were synthesized by using a novel sonochemical pathway with high electrocatalytic ability. The as- obtained samples were characterized by various analytical methods such as Transmission Electron Microscopy (TEM), Field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS) to evaluate the properties of ZnS@CNS synthesized by this new route. Subsequently, the electrical and electrochemical performance of the proposed electrodes were characterized by using EIS and CV to establish an electroactive ability of the nanocomposites. The complete properties like structural and physical of ZnS@CNS were analyzed. As-prepared binary nanocomposite was applied towards the detection of anticancer drug (flutamide) by various electrochemical methods such as cyclic voltammetry (CV), differential pulse voltammetry (DPV) and amperometry. The glassy carbon electrode modified with a ZnS@CNS composite demonstrates a remarkable electrocatalytic efficiency for detecting flutamide in a pH 7.0 (PBS). The composite modified electrode shows synergistic effect of ZnS and CNS catalyst. The electrochemical sensing performance of the linear range was improved significantly due to high electroactive sites and rapid electron transport pathways. Crucially, the electrochemical method was successfully demonstrated in biological fluids which reveals its potential real-time applicability in the analysis of drug.
Collapse
Affiliation(s)
- Pin-Yi Chen
- Department of Mechanical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Department of Mechanical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan.
| | - T Keerthi Reddy
- Department of Mechanical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Umamaheswari Rajaji
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamil Nadu, India
| | - Asma A Alothman
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mani Govindasamy
- International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Research Center for Intelligence Medical Devices, Ming Chi University of Technology, New Taipei City 243303, Taiwan.
| |
Collapse
|
4
|
Habibi MM, Mousavi M, Shekofteh-Gohari M, Parsaei-Khomami A, Hosseini MA, Haghani E, Salahandish R, Ghasemi JB. Machine learning-enhanced drug testing for simultaneous morphine and methadone detection in urinary biofluids. Sci Rep 2024; 14:8099. [PMID: 38582770 PMCID: PMC10998919 DOI: 10.1038/s41598-024-58843-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/03/2024] [Indexed: 04/08/2024] Open
Abstract
The simultaneous identification of drugs has considerable difficulties due to the intricate interplay of analytes and the interference present in biological matrices. In this study, we introduce an innovative electrochemical sensor that overcomes these hurdles, enabling the precise and simultaneous determination of morphine (MOR), methadone (MET), and uric acid (UA) in urine samples. The sensor harnesses the strategically adapted carbon nanotubes (CNT) modified with graphitic carbon nitride (g-C3N4) nanosheets to ensure exceptional precision and sensitivity for the targeted analytes. Through systematic optimization of pivotal parameters, we attained accurate and quantitative measurements of the analytes within intricate matrices employing the fast Fourier transform (FFT) voltammetry technique. The sensor's performance was validated using 17 training and 12 test solutions, employing the widely acclaimed machine learning method, partial least squares (PLS), for predictive modeling. The root mean square error of cross-validation (RMSECV) values for morphine, methadone, and uric acid were significantly low, measuring 0.1827 µM, 0.1951 µM, and 0.1584 µM, respectively, with corresponding root mean square error of prediction (RMSEP) values of 0.1925 µM, 0.2035 µM, and 0.1659 µM. These results showcased the robust resiliency and reliability of our predictive model. Our sensor's efficacy in real urine samples was demonstrated by the narrow range of relative standard deviation (RSD) values, ranging from 3.71 to 5.26%, and recovery percentages from 96 to 106%. This performance underscores the potential of the sensor for practical and clinical applications, offering precise measurements even in complex and variable biological matrices. The successful integration of g-C3N4-CNT nanocomposites and the robust PLS method has driven the evolution of sophisticated electrochemical sensors, initiating a transformative era in drug analysis.
Collapse
Affiliation(s)
- Mohammad Mehdi Habibi
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Mitra Mousavi
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Maryam Shekofteh-Gohari
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Anita Parsaei-Khomami
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Monireh-Alsadat Hosseini
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Elnaz Haghani
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab-HA), Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada
- Department of Electrical Engineering and Computer Science, Biomedical Engineering Program, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Razieh Salahandish
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab-HA), Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada.
- Department of Electrical Engineering and Computer Science, Biomedical Engineering Program, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
| | - Jahan B Ghasemi
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab-HA), Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
5
|
Lorencova L, Kasak P, Kosutova N, Jerigova M, Noskovicova E, Vikartovska A, Barath M, Farkas P, Tkac J. MXene-based electrochemical devices applied for healthcare applications. Mikrochim Acta 2024; 191:88. [PMID: 38206460 PMCID: PMC10784403 DOI: 10.1007/s00604-023-06163-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
The initial part of the review provides an extensive overview about MXenes as novel and exciting 2D nanomaterials describing their basic physico-chemical features, methods of their synthesis, and possible interfacial modifications and techniques, which could be applied to the characterization of MXenes. Unique physico-chemical parameters of MXenes make them attractive for many practical applications, which are shortly discussed. Use of MXenes for healthcare applications is a hot scientific discipline which is discussed in detail. The article focuses on determination of low molecular weight analytes (metabolites), high molecular weight analytes (DNA/RNA and proteins), or even cells, exosomes, and viruses detected using electrochemical sensors and biosensors. Separate chapters are provided to show the potential of MXene-based devices for determination of cancer biomarkers and as wearable sensors and biosensors for monitoring of a wide range of human activities.
Collapse
Affiliation(s)
- Lenka Lorencova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic.
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Natalia Kosutova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Monika Jerigova
- International Laser Center, Slovak Center of Scientific and Technical Information, Ilkovicova 3, 841 04, Bratislava, Slovak Republic
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Mlynska Dolina, 842 15, Bratislava, Slovak Republic
| | - Eva Noskovicova
- International Laser Center, Slovak Center of Scientific and Technical Information, Ilkovicova 3, 841 04, Bratislava, Slovak Republic
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Mlynska Dolina, 842 15, Bratislava, Slovak Republic
| | - Alica Vikartovska
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Marek Barath
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Pavol Farkas
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic.
| |
Collapse
|
6
|
Sun P, Niu K, Du H, Li R, Chen J, Lu X. Ultrasensitive rapid detection of antibiotic resistance genes by electrochemical ratiometric genosensor based on 2D monolayer Ti 3C 2@AuNPs. Biosens Bioelectron 2023; 240:115643. [PMID: 37651949 DOI: 10.1016/j.bios.2023.115643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
As an important emerging pollutant, antibiotic resistance genes (ARGs) monitoring is crucial to protect the ecological environment and public health, but its rapid and accurate detection is still a major challenge. In this study, a new single-labeled dual-signal output ratiometric electrochemical genosensor (E-DNA) was developed for the rapid and highly sensitive detection of ARGs using a synergistic signal amplification strategy of T3C2@Au nanoparticles (T3C2@AuNPs) and isothermal strand displacement polymerase reaction (ISDPR). Specially, two-dimensional monolayer T3C2 nanosheets loaded with uniformly gold nanoparticles were prepared and used as the sensing platform of the E-DNA sensor. Benefiting from excellent conductivity and large specific surface area of Ti3C2@AuNPs, the probe immobilization capacity of the E-DNA sensor is doubled, and electrochemical response signals of the E-DNA sensor were significantly improved. The proposed single-labeled dual-signal output ratiometric sensing strategy exhibits three to six times higher sensitivity for the sul2 gene than the single-signal sensing strategy, which significantly reduces cost meanwhile retaining the advantages of high sensitivity and reliability offered by conventional dual-labeled ratiometric sensors. Coupled with ISDPR amplification technology, the E-DNA sensor has a wider linear range from 10 fM to 10 nM and a limit of detection as low as 2.04 fM (S/N=3). More importantly, the E-DNA sensor demonstrates excellent specificity, good stability and reproducibility for target ARGs detection in real water samples. The proposed new sensing strategy provides a highly sensitive and versatile tool for the rapid and accurate quantitative analysis of various ARGs in environmental water samples.
Collapse
Affiliation(s)
- Pengcheng Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China; Dalian Minzu University, College of Mechanical and Electronic Engineering, Dalian, 116600, PR China
| | - Kai Niu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Haiying Du
- Dalian Minzu University, College of Mechanical and Electronic Engineering, Dalian, 116600, PR China.
| | - Ruixin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
| | - Xianbo Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.
| |
Collapse
|
7
|
Niyitanga T, Chaudhary A, Ahmad K, Kim H. Titanium Carbide (Ti 3C 2T x) MXene as Efficient Electron/Hole Transport Material for Perovskite Solar Cells and Electrode Material for Electrochemical Biosensors/Non-Biosensors Applications. MICROMACHINES 2023; 14:1907. [PMID: 37893344 PMCID: PMC10609296 DOI: 10.3390/mi14101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Recently, two-dimensional (2D) MXenes materials have received enormous attention because of their excellent physiochemical properties such as high carrier mobility, metallic electrical conductivity, mechanical properties, transparency, and tunable work function. MXenes play a significant role as additives, charge transfer layers, and conductive electrodes for optoelectronic applications. Particularly, titanium carbide (Ti3C2Tx) MXene demonstrates excellent optoelectronic features, tunable work function, good electron affinity, and high conductivity. The Ti3C2Tx has been widely used as electron transport (ETL) or hole transport layers (HTL) in the development of perovskite solar cells (PSCs). Additionally, Ti3C2Tx has excellent electrochemical properties and has been widely explored as sensing material for the development of electrochemical biosensors. In this review article, we have summarized the recent advances in the development of the PSCs using Ti3C2Tx MXene as ETL and HTL. We have also compiled the recent progress in the fabrication of biosensors using Ti3C2Tx-based electrode materials. We believed that the present mini review article would be useful to provide a deep understanding, and comprehensive insight into the research status.
Collapse
Affiliation(s)
- Theophile Niyitanga
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Archana Chaudhary
- Department of Chemistry, Medi-Caps University, Indore 453331, Madhya Pradesh, India
| | - Khursheed Ahmad
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Haekyoung Kim
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
8
|
Pattan-Siddappa G, Ko HU, Kim SY. Active site rich MXene as a sensing interface for brain neurotransmitter's and pharmaceuticals: One decade, many sensors. Trends Analyt Chem 2023; 164:117096. [DOI: 10.1016/j.trac.2023.117096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
9
|
Patil SA, Marichev KO, Patil SA, Bugarin A. Advances in the synthesis and applications of 2D MXene-metal nanomaterials. SURFACES AND INTERFACES 2023; 38:102873. [PMID: 37614222 PMCID: PMC10443947 DOI: 10.1016/j.surfin.2023.102873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
MXenes, two-dimensional (2D) materials that consist of transition metal carbides, nitrides and/or carbonitrides, have recently attracted much attention in energy-related and biomedicine fields. These materials have substantial advantages over traditional carbon graphenes: they possess high conductivity, high strength, excellent chemical and mechanical stability, and superior hydrophilic properties. Furthermore, diverse functional groups such as -OH, -O, and -F located on the surface of MXenes aid the immobilization of numerous noble metal nanoparticles (NP). Therefore, 2D MXene composite materials have become an important and convenient option of being applied as support materials in many fields. In this review, the advances in the synthesis (including morphology studies, characterization, physicochemical properties) and applications of the currently known 2D MXene-metal (Pd, Ag, Au, and Cu) nanomaterials are summarized based on critical analysis of the literature in this field. Importantly, the current state of the art, challenges, and the potential for future research on broad applications of MXene-metal nanomaterials have been discussed.
Collapse
Affiliation(s)
- Siddappa A. Patil
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
- Department of Chemistry and Physics, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965, USA
| | | | - Shivaputra A. Patil
- Pharmaceutical Sciences Department, College of Pharmacy, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Alejandro Bugarin
- Department of Chemistry and Physics, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965, USA
| |
Collapse
|
10
|
Liu T, Zhou R, Wu K, Zhu G. Colorimetric method transforms into highly sensitive homogeneous voltammetric sensing strategy for mercury ion based on mercury-stimulated Ti 3C 2T x MXene nanoribbons@gold nanozyme activity. Anal Chim Acta 2023; 1250:340975. [PMID: 36898821 DOI: 10.1016/j.aca.2023.340975] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Nanozymes were emerged as the next generation of enzyme-mimics which exhibit great applications in various fields, but there is rarely report in the electrochemical detection of heavy metal ions. In this work, Ti3C2Tx MXene nanoribbons@gold (Ti3C2Tx MNR@Au) nanohybrid was prepared firstly via a simple self-reduction process and its nanozyme activity was studied. The results showed the peroxidase-like activity of bare Ti3C2Tx MNR@Au is extremely weak, while in the presence of Hg2+, the related nanozyme activity is stimulated and improved remarkably, which can easily catalyze oxidation of several colorless substrates (e.g., o-phenylenediamine) to form colored products. Interestingly, the product of o-phenylenediamine exhibits a strong reduction current which is considerably sensitive to the Hg2+ concentration. Based on this phenomenon, an innovative and highly sensitive homogeneous voltammetric (HVC) sensing strategy was then proposed to detect Hg2+ via transforming the colorimetric method into electrochemistry since it can exhibit several unique advantages (e.g., rapid responsiveness, high sensitivity and quantificational). Compared to the conventional electrochemical sensing methods for Hg2+, the designed HVC strategy can avoid the modification processes of electrode coupled with enhanced sensing performances. Therefore, we expect the as-proposed nanozyme-based HVC sensing strategy provides a new development direction for detecting Hg2+ and other heavy metals.
Collapse
Affiliation(s)
- Tingting Liu
- School of Emergency Management, School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, PR China
| | - Ruiyong Zhou
- School of Emergency Management, School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, PR China
| | - Kechen Wu
- Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, PR China
| | - Gangbing Zhu
- School of Emergency Management, School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, PR China; State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, PR China; Key Laboratory for Analytical Science of Food Safety and Biology, Ministry of Education, PR China.
| |
Collapse
|
11
|
Solangi NH, Mubarak NM, Karri RR, Mazari SA, Jatoi AS. Advanced growth of 2D MXene for electrochemical sensors. ENVIRONMENTAL RESEARCH 2023; 222:115279. [PMID: 36706895 DOI: 10.1016/j.envres.2023.115279] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Over the last few years, electroanalysis has made significant advancements, particularly in developing electrochemical sensors. Electrochemical sensors generally include emerging Photoelectrochemical and Electrochemiluminescence sensors, which combine optical techniques and traditional electrochemical bio/non-biosensors. Numerous EC-detecting methods have also been designed for commercial applications to detect biological and non-biological markers for various diseases. Analytical applications have recently focused significantly on one of the novel nanomaterials, the MXene. This material is being extensively investigated for applications in electrochemical sensors due to its unique mechanical, electronic, optical, active functional groups and thermal characteristics. This study extensively discusses the salient features of MXene-based electrochemical sensors, photoelectrochemical sensors, enzyme-based biosensors, immunosensors, aptasensors, electrochemiluminescence sensors, and electrochemical non-biosensors. In addition, their performance in detecting various substances and contaminants is thoroughly discussed. Furthermore, the challenges and prospects the MXene-based electrochemical sensors are elaborated.
Collapse
Affiliation(s)
- Nadeem Hussain Solangi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Shaukat Ali Mazari
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan.
| | - Abdul Sattar Jatoi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| |
Collapse
|
12
|
Rajaji U, Raghu MS, Yogesh Kumar K, Almutairi TM, Mohammed AA, Juang RS, Liu TY. A sonochemical synthesis of SrTiO 3 supported N-doped graphene oxide as a highly efficient electrocatalyst for electrochemical reduction of a chemotherapeutic drug. ULTRASONICS SONOCHEMISTRY 2023; 93:106293. [PMID: 36638650 PMCID: PMC9852652 DOI: 10.1016/j.ultsonch.2023.106293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 06/03/2023]
Abstract
A sonochemical based green synthesis method playa powerful role in nanomaterials and composite development. In this work, we developed a perovskite type of strontium titanate via sonochemical process. SrTiO3 particles were incorporated with nitrogen doped graphene oxide through simple ultrasonic irradiation method. The SrTiO3/NGO was characterized by various analytical methods. The nanocomposite of SrTiO3/NGO was modified with laser-induced graphene electrode (LIGE). The SrTiO3/NGO/LIGE was applied for electrochemical sensor towards chemotherapeutic drug detection (nilutamide). Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques have been used to examine the electrochemical performance of nilutamide (anti-cancer drug). DPV was found to be more sensitive and found to exhibit a sensitivity 8.627 µA µM-1 cm-2 for SrTiO3/NGO/LIGE with a wide linear range (0.02-892 µM) and low Limit of detection (LOD: 1.16 µM). SrTiO3/NGO/LIGE has been examined for the detection of nilutamide in blood serum and urine samples and obtained a good recovery in the range of 97.2-99.72 %. The enhanced stability and selectivity and practical application results indicates the suitability of SrTiO3/NGO/LIGE towards the detection of nilutamide drug in pharmaceutical industries.
Collapse
Affiliation(s)
- Umamaheswari Rajaji
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - M S Raghu
- Department of Chemistry, New Horizon College of Engineering, Outer Ring Road, Bangalore 560103, India
| | - K Yogesh Kumar
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Bangalore 562112, India; Korea University of Technology and Education, Cheonan-si 31253, Chungcheongnam-do, Cheonan-si, Republic of Korea
| | - Tahani M Almutairi
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - AbdallahA A Mohammed
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ruey-Shin Juang
- Department of Chemical and Materials Engineering, Chang Gung University 259 Wenhua First Road Guishan, Taoyuan 33302, Taiwan; Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, Taishan, New Taipei City 243303, Taiwan.
| | - Ting-Yu Liu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan; Research Center for Intelligent Medical Devices, Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City 243303, Taiwan.
| |
Collapse
|
13
|
Amara U, Hussain I, Ahmad M, Mahmood K, Zhang K. 2D MXene-Based Biosensing: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205249. [PMID: 36412074 DOI: 10.1002/smll.202205249] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/24/2022] [Indexed: 06/16/2023]
Abstract
MXene emerged as decent 2D material and has been exploited for numerous applications in the last decade. The remunerations of the ideal metallic conductivity, optical absorbance, mechanical stability, higher heterogeneous electron transfer rate, and good redox capability have made MXene a potential candidate for biosensing applications. The hydrophilic nature, biocompatibility, antifouling, and anti-toxicity properties have opened avenues for MXene to perform in vitro and in vivo analysis. In this review, the concept, operating principle, detailed mechanism, and characteristic properties are comprehensively assessed and compiled along with breakthroughs in MXene fabrication and conjugation strategies for the development of unique electrochemical and optical biosensors. Further, the current challenges are summarized and suggested future aspects. This review article is believed to shed some light on the development of MXene for biosensing and will open new opportunities for the future advanced translational application of MXene bioassays.
Collapse
Affiliation(s)
- Umay Amara
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Muhmmad Ahmad
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Kaili Zhang
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| |
Collapse
|
14
|
|
15
|
Facile bimetallic co-amplified electrochemical sensor for folic acid sensing based on CoNPs and CuNPs. Anal Bioanal Chem 2022; 414:6791-6800. [PMID: 35931786 DOI: 10.1007/s00216-022-04242-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/29/2022]
Abstract
Folic acid (FA) is essential for human health, particularly for pregnant women and infants. In this work, a glassy carbon electrode (GCE) was modified by a bimetallic layer of Cu/Co nanoparticles (CuNPs/CoNPs) as a synergistic amplification element by simple step-by-step electrodeposition, and was used for sensitive detection of FA. The proposed CuNPs/CoNPs/GCE sensor was characterized by differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS) and field emission scanning electron microscopy (FESEM). Then, under optimal conditions, a linear relationship was obtained in the wide range of 110.00-1750.00 μM for the detection of FA with a limit of detection (LOD) of 34.79 μM (S/N = 3). The sensitivity was calculated as 0.096 μA μM-1 cm-2. Some interfering compounds including glucose (Glc), biotin, dopamine (DA), and glutamic acid (Glu) showed little effect on the detection of FA by amperometry (i-t). Finally, the average recovery obtained was in a range of 91.77-110.06%, with a relative standard deviation (RSD) less than 8.00% in FA tablets, indicating that the proposed sensor can accurately and effectively detect the FA content in FA tablets.
Collapse
|
16
|
Babar ZUD, Della Ventura B, Velotta R, Iannotti V. Advances and emerging challenges in MXenes and their nanocomposites for biosensing applications. RSC Adv 2022; 12:19590-19610. [PMID: 35865615 PMCID: PMC9258029 DOI: 10.1039/d2ra02985e] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/21/2022] [Indexed: 12/14/2022] Open
Abstract
Two-dimensional materials have unique properties and their better functionality has created new paradigms in the field of sensing. Over the past decade, a new family of 2D materials known as MXenes has emerged as a promising material for numerous applications, including biosensing. Their metallic conductivity, rich surface chemistry, hydrophilicity, good biocompatibility, and high anchoring capacity for biomaterials make them an attractive candidate to detect a variety of analytes. Despite such notable properties, there are certain limitations associated with them. This review aims to present a detailed survey of MXene's synthesis; in particular, their superiority in the field of biosensing as compared to other 2D materials is addressed. Their low oxidative stability is still an open challenge, and recent investigations on MXene's oxidation are summarized. The hexagonal stacking network of MXenes acts as a distinctive matrix to load nanoparticles, and the embedded nanoparticles can bind an excess number of biomolecules (e.g., antibodies) thereby improving biosensor performance. We will also discuss the synthesis and corresponding performance of MXenes nanocomposites with noble metal nanoparticles and magnetic nanoparticles. Furthermore, Nb and Ti2C-based MXenes, and Ti3C2-MXene sandwich immunoassays are also reviewed in view of their importance. Different aspects and challenges associated with MXenes (from their synthesis to final applications) and the future perspectives described give new directions to fabricate novel biosensors.
Collapse
Affiliation(s)
- Zaheer Ud Din Babar
- Scuola Superiore Meridionale (SSM), University of Naples Federico II Largo S. Marcellino, 10 80138 Italy
- Department of Physics "E. Pancini", University of Naples Federico II Via Cintia 26 80126 Naples Italy
| | - Bartolomeo Della Ventura
- Department of Physics "E. Pancini", University of Naples Federico II Via Cintia 26 80126 Naples Italy
| | - Raffaele Velotta
- Department of Physics "E. Pancini", University of Naples Federico II Via Cintia 26 80126 Naples Italy
| | - Vincenzo Iannotti
- Department of Physics "E. Pancini", University of Naples Federico II Via Cintia 26 80126 Naples Italy
- CNR-SPIN (Institute for Superconductors, Oxides and Other Innovative Materials and Devices) Piazzale V. Tecchio 80 80125 Naples Italy
| |
Collapse
|
17
|
Mokkath JH. Localized surface plasmon resonances in a hybrid structure consisting of a mono-layered Al sheet and Ti 3C 2F MXene. Phys Chem Chem Phys 2022; 24:12389-12396. [PMID: 35574826 DOI: 10.1039/d2cp01150f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
MXenes are a novel class of two-dimensional materials that exhibit unique light-matter interactions. In this work, using quantum-mechanical simulations based on the time dependent density functional theory, we investigate the electronic and optical properties of a hybrid structure consisting of a mono-layered aluminum (Al) sheet and Ti3C2F MXene. As a key result of this work, we reveal that the coupling of a mono-layered Al sheet on top of Ti3C2F MXene causes interlayer charge transfer accompanied by strong signatures of localized surface plasmon resonances (LSPRs) in the visible region of the electromagnetic spectrum. Our theoretical findings demonstrate a promising strategy to generate LSPRs in MXene-based heterostructures.
Collapse
Affiliation(s)
- Junais Habeeb Mokkath
- Quantum Nanophotonics Simulations Lab, Department of Physics, Kuwait College of Science And Technology, Doha Area, 7th Ring Road, P.O. Box 27235, Kuwait. .,Department of Applied Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
18
|
Ganesh PS, Kim SY. Electrochemical sensing interfaces based on novel 2D-MXenes for monitoring environmental hazardous toxic compounds: A concise review. J IND ENG CHEM 2022; 109:52-67. [DOI: 10.1016/j.jiec.2022.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Bhat KS, Byun S, Alam A, Ko M, An J, Lim S. A fast and label-free detection of hydroxymethylated DNA using a nozzle-jet printed AuNPs@Ti 3C 2 MXene-based electrochemical sensor. Talanta 2022; 244:123421. [PMID: 35397322 DOI: 10.1016/j.talanta.2022.123421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/24/2022] [Accepted: 03/27/2022] [Indexed: 12/18/2022]
Abstract
5-hydroxymethylcytosine (5hmC) is a key epigenetic mark in the mammalian genome that has been proposed as a promising cancer biomarker with diagnostic and prognostic potentials. A new type of two-dimensional (2D) material called MXene includes transition metal carbides and nitrides and possesses unique physico-chemical properties suitable for diverse applications, including electrochemical sensors. Here, we report a new nozzle-jet printed electrochemical sensor using gold nanoparticles (AuNPs)@Ti3C2 MXene nanocomposite for the real-time and label-free detection of 5hmC in the genome. We utilized Ti3C2 MXene as a platform to immobilize AuNPs, which have been shown to exhibit different affinity interactions toward 5-methylcytosine (5 mC) and 5hmC, and thus produce distinct electrochemical responses. To fabricate the electrode, a highly conductive and adhesive silver ink was prepared to generate a silver line onto polyethylene terephthalate (PET) substrate using nozzle-jet printing, followed by deposition of AuNPs@Ti3C2 MXene ink at one end via dropcasting. Analyses of morphology and chemical composition showed that all steps of the sensor fabrication were successful. The fabricated sensor coupled with cyclic voltammetry showed excellent performance in distinguishing 5 mC- or 5hmC-enriched cellular genomic DNAs. As a proof-of-concept investigation, we confirmed that our sensor readily and consistently detected 5hmC diminution in multiple tumors, compared to the paired normal tissues. Thus, our simple and cost-effective sensing strategy using printable AuNPs@Ti3C2 MXene ink holds promise for a wide range of practical applications in epigenetic studies as well as clinical settings.
Collapse
Affiliation(s)
- Kiesar Sideeq Bhat
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute, Jeonbuk National University, Jeonju, 54896, Republic of Korea; Department of Bioresources, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Seongjun Byun
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Asrar Alam
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Myunggon Ko
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Jungeun An
- Department of Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sooman Lim
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
20
|
Rajaji U, Ganesh PS, Kim SY, Govindasamy M, Alshgari RA, Liu TY. MoS 2 Sphere/2D S-Ti 3C 2 MXene Nanocatalysts on Laser-Induced Graphene Electrodes for Hazardous Aristolochic Acid and Roxarsone Electrochemical Detection. ACS APPLIED NANO MATERIALS 2022; 5:3252-3264. [DOI: 10.1021/acsanm.1c03680] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Affiliation(s)
- Umamaheswari Rajaji
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Pattan-Siddappa Ganesh
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do 31253, Republic of Korea
| | - Sang-Youn Kim
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do 31253, Republic of Korea
| | - Mani Govindasamy
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | | | - Ting-Yu Liu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| |
Collapse
|
21
|
Rizwan K, Rahdar A, Bilal M, Iqbal HMN. MXene-based electrochemical and biosensing platforms to detect toxic elements and pesticides pollutants from environmental matrices. CHEMOSPHERE 2022; 291:132820. [PMID: 34762881 DOI: 10.1016/j.chemosphere.2021.132820] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/22/2021] [Accepted: 11/05/2021] [Indexed: 02/05/2023]
Abstract
Fabricating new biosensing constructs with high selectivity and sensitivity is the most needed environmental detection tool. In this context, several nanostructured materials have been envisaged to construct biosensors to achieve superior selectivity and sensitivity. Among them, MXene is regarded as the most promising to develop biosensors due to its fascinating attributes, like high surface area, excellent thermal resistance, good hydrophilicity, unique layered topology, high electrical conductivity, and environmentally-friendlier properties. MXenes-based materials have emerged as a prospective for catalysis, energy storage, electronics, and environmental sensing and remediation applications thanks to the above-mentioned exceptional characteristics. This review elaborates on the contemporary and state-of-the-art advancements in MXene-based electrochemical and biosensing tools to detect toxic elements, pharmaceutically active residues, and pesticide contaminants from environmental matrices. At first, the surface functionalization/modification of MXenes is discussed. Afterwards, a particular focus has been devoted to exploiting MXene to construct electrochemical (bio) sensors to detect various environmentally-related pollutants. Lastly, current challenges in this arena accompanied by potential solutions and directions are also outlined.
Collapse
Affiliation(s)
- Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P.O. Box. 35856-98613, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
22
|
Alwarappan S, Nesakumar N, Sun D, Hu TY, Li CZ. 2D metal carbides and nitrides (MXenes) for sensors and biosensors. Biosens Bioelectron 2022; 205:113943. [PMID: 35219021 DOI: 10.1016/j.bios.2021.113943] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023]
Abstract
MXenes are layered two-dimensional (2D) materials discovered in 2011 (Ti3C2X) and are otherwise called 2D transition metal carbides, carbonitrides, and nitrides. These 2D layered materials have been in the limelight for a decade due to their interesting properties such as large surface area, high ion transport, biocompatibility, and low diffusion barrier. Therefore, MXenes are widely preferred by researchers for applications in electronics, sensing, biosensing, electrocatalysis, super-capacitors and fuel cells. There are a number of methods available for the bulk synthesis of MXene-based nanomaterials. In addition, the possibility of structural modification as required and its outstanding surface chemistry offer a fascinating interface for the development of novel biosensors. In this review, we specifically discuss important MXene synthesis routes. Moreover, critical parameters such as surface functionalization that can dictate the mechanical, electronic, magnetic, and optical properties of MXenes are also discussed. Following this, methods available for the surface functionalization and modification strategies of MXenes are also discussed. Furthermore, the emergence of gas, electrochemical, and optical biosensors based on MXenes since its first report is discussed in detail. Finally, future directions of MXenes biosensors for critical applications are discussed.
Collapse
Affiliation(s)
- Subbiah Alwarappan
- CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, Tamilnadu, India
| | - Noel Nesakumar
- Center for Nanotechnology & Advanced Biomaterials CeNTAB, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613 401, India
| | - Dali Sun
- Department of Electrical and Computer Engineering, North Dakota State University, 1411 Centennial Blvd, 101S, Fargo, ND, 58102, USA
| | - Tony Y Hu
- Center For Cellular and Molecular Diagnosis, Department of Biochemistry and Molecular Biology, Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Chen-Zhong Li
- Center For Cellular and Molecular Diagnosis, Department of Biochemistry and Molecular Biology, Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
23
|
Wu X, Kang R, Zhang Y, Li W, Zhang T. Electrochemical Immune-Determination of Alkaline Phosphatase Based on Gold Nanoparticle/Ti3C2Tx MXenes as the Sensing Platform by Differential Pulse Voltammetry (DPV). ANAL LETT 2021. [DOI: 10.1080/00032719.2021.2007941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xing Wu
- Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Rongbin Kang
- Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Yiyuan Zhang
- Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Weiming Li
- Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Tao Zhang
- Department of Orthopedics Institute, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| |
Collapse
|
24
|
Priscillal IJD, Alothman AA, Wang SF, Arumugam R. Lanthanide type of cerium sulfide embedded carbon nitride composite modified electrode for potential electrochemical detection of sulfaguanidine. Mikrochim Acta 2021; 188:313. [PMID: 34458931 DOI: 10.1007/s00604-021-04975-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/05/2021] [Indexed: 11/24/2022]
Abstract
Environmental sustainability is threatened by the widespread exploitation and unfettered release of chemical pollutants that require immediate detection and eradication. An instantaneous quantification technique is essential to understand the physiological roles of the antibacterial drug sulfaguanidine (SGN) in biological systems. The present work features the green and environmentally benign synthesis of rare earth metal sulfide nanorods incorporated carbon nitrides sheets (Ce2S3@CNS) by deep eutectic solvent-based fabrication with remarkable electrochemical properties. The morphological and structural analyses of the prepared electrocatalyst were characterized using various techniques including SEM, XRD, XPS, and EIS. The heterojunction of regimented structures bids synergistic quantum confinement effects and refines charge carriers endorsing enormous active sites. Furthermore, the obtained Ce2S3@CNS/GCE possess an exceedingly lower limit of detection (0.0053 μM) and high sensitivity of 8.685 μA·μM-1·cm-2 with superior electrocatalytic action and virtuous stability for the detection of SGN. This modified electrode could afford linearity in the range 0.01-1131.5 μM measured at 0.95 V (vs. Ag/AgCl) correlated to the concentration of SGN. Examining the real samples with this advanced electrocatalyst would support its hands-on applications in everyday life. Development of such innovative architectures with fewer energy necessities and nominal by-products scripts the superiority in characteristic synthetic methodology following the guidelines of green chemistry.
Collapse
Affiliation(s)
- I Jenisha Daisy Priscillal
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei, 106, Taiwan
| | - Asma A Alothman
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei, 106, Taiwan.
| | - Rameshkumar Arumugam
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam, Erode, India. .,Korea University of Technology and Education, Cheonan-si, 31253, Chungcheongnam-do, Republic of Korea.
| |
Collapse
|
25
|
Rajaji U, K YK, Chen SM, Raghu MS, Parashuram L, Alzahrani FM, Alsaiari NS, Ouladsmane M. Deep eutectic solvent synthesis of iron vanadate-decorated sulfur-doped carbon nanofiber nanocomposite: electrochemical sensing tool for doxorubicin. Mikrochim Acta 2021; 188:303. [PMID: 34435234 DOI: 10.1007/s00604-021-04950-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/19/2021] [Indexed: 11/30/2022]
Abstract
Detection of anticancer drug (doxorubicin) using an electrochemical sensor is developed based on a transition metal vanadate's related carbon composite material. With an environmentally friendly process, we have synthesized a metal oxide composite of iron vanadate nanoparticle assembled with sulfur-doped carbon nanofiber (FeV/SCNF). The FeV/SCNF composite was characterized using XRD, TEM, FESEM with elemental mapping, XPS and EDS. In contrast to other electrodes reported in the literature, a much-improved electrochemical efficiency is shown by FeV/SCNF composite modified electrodes. Amperometric technique has been employed at 0.25 V (vs. Ag/AgCl) for the sensitive detection of DOX within a wide range of 20 nM-542.5 μM and it possesses enhanced selectivity in presence of common interferents. The modified electrochemical sensors show high sensitivity of 46.041 μA μM-1 cm-2. The newly developed sensor could be used for the determination of doxorubicin in both blood serum and drug formulations with acceptable results, suggesting its feasibility for real-time applications.
Collapse
Affiliation(s)
- Umamaheswari Rajaji
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Chung-Hsiao East Road, Section 3, Taipei, 10608, Taiwan, Republic of China
| | - Yogesh Kumar K
- Department of Chemistry, School of Engineering and Technology, Jain University, Bangalore, 562112, India
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Chung-Hsiao East Road, Section 3, Taipei, 10608, Taiwan, Republic of China.
| | - M S Raghu
- Department of Chemistry, New Horizon College of Engineering, Outer Ring Road, Bangalore, 560103, India
| | - L Parashuram
- Department of Chemistry, New Horizon College of Engineering, Outer Ring Road, Bangalore, 560103, India
| | - Fatimah Mohammed Alzahrani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Norah Salem Alsaiari
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Mohamed Ouladsmane
- Advanced Materials Research Chair, Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
26
|
Lin X, Li Z, Qiu J, Wang Q, Wang J, Zhang H, Chen T. Fascinating MXene nanomaterials: emerging opportunities in the biomedical field. Biomater Sci 2021; 9:5437-5471. [PMID: 34296233 DOI: 10.1039/d1bm00526j] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In recent years, there has been rapid progress in MXene research due to its distinctive two-dimensional structure and outstanding properties. Especially in biomedical applications, MXenes have attracted widespread favor with numerous studies on biosafety, bioimaging, therapy, and biosensing, although their development is still in the experimental stage. A comprehensive understanding of the current status of MXenes in biomedicine will promote their use in clinical applications. Here, we review advances in MXene research. First, we introduce the methods of synthesis, surface modification and functionalization of MXenes. Then, we summarize the biosafety and biocompatibility, paving the way for specific biomedical applications. On this basis, MXene nanostructures are described with respect to their use in antibacterial, bioimaging, cancer therapy, tissue regeneration and biosensor applications. Finally, we discuss MXene as a promising candidate material for further applications in biomedicine.
Collapse
Affiliation(s)
- Xiangping Lin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Zhongjun Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Jinmei Qiu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Jianxin Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China. and Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Han Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
27
|
Da Silva GH, Franqui LS, Petry R, Maia MT, Fonseca LC, Fazzio A, Alves OL, Martinez DST. Recent Advances in Immunosafety and Nanoinformatics of Two-Dimensional Materials Applied to Nano-imaging. Front Immunol 2021; 12:689519. [PMID: 34149731 PMCID: PMC8210669 DOI: 10.3389/fimmu.2021.689519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/10/2021] [Indexed: 01/10/2023] Open
Abstract
Two-dimensional (2D) materials have emerged as an important class of nanomaterials for technological innovation due to their remarkable physicochemical properties, including sheet-like morphology and minimal thickness, high surface area, tuneable chemical composition, and surface functionalization. These materials are being proposed for new applications in energy, health, and the environment; these are all strategic society sectors toward sustainable development. Specifically, 2D materials for nano-imaging have shown exciting opportunities in in vitro and in vivo models, providing novel molecular imaging techniques such as computed tomography, magnetic resonance imaging, fluorescence and luminescence optical imaging and others. Therefore, given the growing interest in 2D materials, it is mandatory to evaluate their impact on the immune system in a broader sense, because it is responsible for detecting and eliminating foreign agents in living organisms. This mini-review presents an overview on the frontier of research involving 2D materials applications, nano-imaging and their immunosafety aspects. Finally, we highlight the importance of nanoinformatics approaches and computational modeling for a deeper understanding of the links between nanomaterial physicochemical properties and biological responses (immunotoxicity/biocompatibility) towards enabling immunosafety-by-design 2D materials.
Collapse
Affiliation(s)
- Gabriela H. Da Silva
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Lidiane S. Franqui
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- School of Technology, University of Campinas (Unicamp), Limeira, Brazil
| | - Romana Petry
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), Santo Andre, Brazil
| | - Marcella T. Maia
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Leandro C. Fonseca
- NanoBioss Laboratory and Solid State Chemistry Laboratory (LQES), Institute of Chemistry, University of Campinas (Unicamp), Campinas, Brazil
| | - Adalberto Fazzio
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), Santo Andre, Brazil
| | - Oswaldo L. Alves
- NanoBioss Laboratory and Solid State Chemistry Laboratory (LQES), Institute of Chemistry, University of Campinas (Unicamp), Campinas, Brazil
| | - Diego Stéfani T. Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- School of Technology, University of Campinas (Unicamp), Limeira, Brazil
| |
Collapse
|
28
|
Wu X, Ma P, Sun Y, Du F, Song D, Xu G. Application of MXene in Electrochemical Sensors: A Review. ELECTROANAL 2021. [DOI: 10.1002/elan.202100192] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xinzhao Wu
- College of Chemistry Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments Jilin University Qianjin Street 2699 Changchun Jilin 130012 P.R. China
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun Jilin 130022 P.R. China
| | - Pinyi Ma
- College of Chemistry Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments Jilin University Qianjin Street 2699 Changchun Jilin 130012 P.R. China
| | - Ying Sun
- College of Chemistry Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments Jilin University Qianjin Street 2699 Changchun Jilin 130012 P.R. China
| | - Fangxin Du
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Daqian Song
- College of Chemistry Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments Jilin University Qianjin Street 2699 Changchun Jilin 130012 P.R. China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| |
Collapse
|
29
|
Shi Y, Zhang X, Mei L, Hu K, Chao L, Li X, Miao M. 2D Accordion‐like MXene Nanosheets as a Sensitive Electrode Material for Baicalin Sensing. ELECTROANAL 2021. [DOI: 10.1002/elan.202060535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yan‐Mei Shi
- Academy of Chinese Medical Sciences Henan University of Chinese Medicine Zhengzhou 450001 P.R. China
| | - Xi Zhang
- Academy of Chinese Medical Sciences Henan University of Chinese Medicine Zhengzhou 450001 P.R. China
| | - Lin Mei
- School of Materials and Chemical Engineering Zhongyuan University of Technology Zhengzhou 450007, P.R. China
| | - Kai Hu
- Academy of Chinese Medical Sciences Henan University of Chinese Medicine Zhengzhou 450001 P.R. China
| | - Li‐Qin Chao
- Academy of Chinese Medical Sciences Henan University of Chinese Medicine Zhengzhou 450001 P.R. China
| | - Xiu‐Min Li
- Department of Microbiology and Immunology New York Medical College New York NY 10595 USA
| | - Ming‐San Miao
- Academy of Chinese Medical Sciences Henan University of Chinese Medicine Zhengzhou 450001 P.R. China
| |
Collapse
|
30
|
Lazanas AC, Prodromidis MI. Two-dimensional inorganic nanosheets: production and utility in the development of novel electrochemical (bio)sensors and gas-sensing applications. Mikrochim Acta 2021; 188:6. [PMID: 33389171 DOI: 10.1007/s00604-020-04674-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/30/2020] [Indexed: 01/09/2023]
Abstract
This review (with 178 references) focuses on inorganic layered materials (ILMs) and the use of their two-dimensional nanosheets in the development of novel electrochemical (bio)sensors, analytical devices, and gas-phase sensing applications. The text is organized in three main sections including the presentation of the most important families of ILMs, a comprehensive outline of various "bottom-up", "top-down," and hydro(solvo)thermal methods that have been used for the production of ILM nanosheets, and finally an evaluative survey on their utility for the determination of analytes with interest in different sectors of contemporary analysis. Critical discussion on the effect of the production method on their electronic properties, the suitability of each nanomaterial in different sensing technologies along with an assessment of the performance of the (bio)sensors and devices that have been proposed within the last 5 years, is enclosed. The perspectives of further improving the utility of 2D inorganic nanosheets in sensing applications, in real-world samples, are also discussed.
Collapse
Affiliation(s)
- Alexandros Ch Lazanas
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45 110, Ioannina, Greece
| | - Mamas I Prodromidis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45 110, Ioannina, Greece.
| |
Collapse
|
31
|
Shahzad F, Iqbal A, Kim H, Koo CM. 2D Transition Metal Carbides (MXenes): Applications as an Electrically Conducting Material. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002159. [PMID: 33146936 DOI: 10.1002/adma.202002159] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/30/2020] [Indexed: 05/25/2023]
Abstract
Since their discovery in 2011, 2D transition metal carbides, nitrides, and carbonitrides, known as MXenes, have attracted considerable global research interest owing to their outstanding electrical conductivity coupled with light weight, flexibility, transparency, surface chemistry tunability, and easy solution processability. Here, the promising abilities of 2D MXenes, from both experimental and theoretical perspectives, for designing conductive materials for a range of applications, including electromagnetic interference shielding, flexible optoelectronics, sensors, and thermal heaters, are presented.
Collapse
Affiliation(s)
- Faisal Shahzad
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- National Center for Nanotechnology, Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, 45650, Pakistan
| | - Aamir Iqbal
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Nanomaterials Science and Engineering, University of Science and Technology, 217 Gajungro, 176 Gajung-dong, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Hyerim Kim
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Chong Min Koo
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Nanomaterials Science and Engineering, University of Science and Technology, 217 Gajungro, 176 Gajung-dong, Yuseong-gu, Daejeon, 34113, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
32
|
Shahzad F, Zaidi SA, Naqvi RA. 2D Transition Metal Carbides (MXene) for Electrochemical Sensing: A Review. Crit Rev Anal Chem 2020; 52:848-864. [PMID: 33108217 DOI: 10.1080/10408347.2020.1836470] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
MXene, a novel class of 2-dimensional transition metal carbides has evolved as a promising material for various applications owing to its outstanding characteristics such as hydrophilicity, high electrical conductivity, surface area, and attractive topological structure. MXenes can form dispersion in common solvents and constitute composite with other nanomaterials, which can be utilized as effective transducers for molecular sensing. MXene-modified support materials, thus provide an intriguing platform for immobilization of target molecules onto their surface. The literature reveals that it has been increasingly utilized in the sensing of diverse types of analytes including glucose, pharmaceuticals, metals and dyes, cancer markers, pesticides, neurotransmitters, small valuable molecules, and so on. In this review, we summarize the recent updates in the MXene modified materials for sensing. For the convenience of our audience, we have distributed the analytes into categories and discussed them comprehensively. Not only we present the synthesis approach, electrochemical properties and surface chemistry of MXenes but also discussed briefly the current challenges and an outlook for future research in the related area.
Collapse
Affiliation(s)
- Faisal Shahzad
- National Center for Nanotechnology, Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Shabi Abbas Zaidi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Rizwan Ali Naqvi
- Department of Unmanned Vehicle Engineering, Sejong University, Seoul, Korea
| |
Collapse
|
33
|
Peng Y, Cai P, Yang L, Liu Y, Zhu L, Zhang Q, Liu J, Huang Z, Yang Y. Theoretical and Experimental Studies of Ti 3C 2 MXene for Surface-Enhanced Raman Spectroscopy-Based Sensing. ACS OMEGA 2020; 5:26486-26496. [PMID: 33110976 PMCID: PMC7581265 DOI: 10.1021/acsomega.0c03009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/23/2020] [Indexed: 05/07/2023]
Abstract
Recent advances in MXenes with high carrier mobility show great application prospects in the surface-enhanced Raman scattering (SERS) field. However, challenges remain regarding the improvement of the SERS sensitivity. Herein, an effective strategy considering charge-transfer resonance for semiconductor-based substrates is presented to optimize the SERS sensitivity with the guidance of the density functional theory calculation. The theoretical calculation predicted that the excellent SERS enhancement for methylene blue (MeB) on Ti3C2 MXene can be excited by both 633 and 785 nm lasers, and the Raman enhanced effect is mainly originated from the charge-transfer resonance enhancement. In this work, the Ti3C2 MXenes exhibit an excellent SERS sensitivity with an enhancement factor of 2.9 × 106 and a low detection limit of 10-7 M for MeB molecules. Furthermore, the SERS enhancement of Ti3C2 and Au-Ti3C2 substrates exhibit higher selectivity on different molecules, which contributes to the detection of target molecules in complex solution environments. This work can provide some theoretical and experimental basis for the research on SERS activity of other MXene materials.
Collapse
Affiliation(s)
- Yusi Peng
- State Key Laboratory
of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of
Sciences, 1295 Dingxi Road, Shanghai 200050, People’s Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Cai
- State Key Laboratory
of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of
Sciences, 1295 Dingxi Road, Shanghai 200050, People’s Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Yang
- State Key Laboratory
of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of
Sciences, 1295 Dingxi Road, Shanghai 200050, People’s Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Liu
- State Key Laboratory
of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of
Sciences, 1295 Dingxi Road, Shanghai 200050, People’s Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linfeng Zhu
- Shanghai Starriver Bilingual School, Shanghai 201108, China
| | - Qiuqi Zhang
- School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jianjun Liu
- State Key Laboratory
of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of
Sciences, 1295 Dingxi Road, Shanghai 200050, People’s Republic of China
| | - Zhengren Huang
- State Key Laboratory
of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of
Sciences, 1295 Dingxi Road, Shanghai 200050, People’s Republic of China
| | - Yong Yang
- State Key Laboratory
of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of
Sciences, 1295 Dingxi Road, Shanghai 200050, People’s Republic of China
| |
Collapse
|
34
|
Nature inspired poly (dopamine quinone -vanadyl) as new modifier for voltammetric determination of uric acid. Mikrochim Acta 2020; 187:411. [PMID: 32602064 DOI: 10.1007/s00604-020-04375-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022]
Abstract
The preparation of a novel polymer (poly(dopamine quinone-vanadyl) (polyDQV)) bearing dopaminequinone and VOIV redox groups is described. PolyDQV was characterized using field emission scanning electron microscopy (FESEM), energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy (XPS), Fourier transform infra-red (FTIR) spectroscopy, UV-Vis spectroscopy as well as electrochemical methods such as differential pulse voltammetry, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The electrocatalytic activity of polyDQV was studied toward electrooxidation of uric acid using differential pulse voltammetry as well as cyclic voltammetry. PolyDQV presents interesting electrocatalytic activity toward UA oxidation in phosphate buffer solution (0.1 M, pH 2) to a well-defined oxidation peak at 0.65 V (vs. Ag/AgCl). The polyDQV-modified carbon paste electrode (CPE/polyDQV) presents a precise linear signal-concentration relationship in the ranges of 0.3-5 μM and 5 to 200 μM with a detection limit (S/N = 3) of 0.02 μM. The %RSD values for ten replicate measurements of 0.5 and 50 μM UA were 1.8 and 3%, respectively, indicating good repeatability of analytical signals. Appropriate recovery values (in the range 96 to 103%) and good selectivity for UA over common coexisting species (such as ascorbic acid and dopamine) exhibit that CPE/polyDQV is a promising novel platform for sensing UA in human blood serum and urine samples. Graphical abstract.
Collapse
|
35
|
Mani V, Balamurugan T, Huang ST. Rapid One-Pot Synthesis of Polydopamine Encapsulated Carbon Anchored with Au Nanoparticles: Versatile Electrocatalysts for Chloramphenicol and Folic Acid Sensors. Int J Mol Sci 2020; 21:ijms21082853. [PMID: 32325883 PMCID: PMC7215351 DOI: 10.3390/ijms21082853] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 11/16/2022] Open
Abstract
Designing and engineering nanocomposites with tailored physiochemical properties through teaming distinct components is a straightforward strategy to yield multifunctional materials. Here, we describe a rapid, economical, and green one-pot microwave synthetic procedure for the preparation of ternary nanocomposites carbon/polydopamine/Au nanoparticles (C/PDA/AuNPs; C = carbon nanotubes (CNTs), reduced graphene oxide (rGO)). No harsh reaction conditions were used in the method, as are used in conventional hydrothermal or high-temperature methods. The PDA unit acts as a non-covalent functionalizing agent for carbon, through π stacking interactions, and also as a stabilizing agent for the formation of AuNPs. The CNTs/PDA/AuNPs modified electrode exhibited excellent electrocatalytic activity to oxidize chloramphenicol and the resulting sensor exhibited a low detection limit (36 nM), wide linear range (0.1–534 μM), good selectivity (against 5-fold excess levels of interferences), appreciable reproducibility (3.47%), good stability (94.7%), and practicality (recoveries 95.0%–98.4%). Likewise, rGO/PDA/AuNPs was used to fabricate a sensitive folic acid sensor, which exhibits excellent analytical parameters, including wide linear range (0.1–905 μM) and low detection limit (25 nM). The described synthetic route includes fast reaction time (5 min) and a readily available household microwave heating device, which has the potential to significantly contribute to the current state of the field.
Collapse
Affiliation(s)
- Veerappan Mani
- Correspondence: (V.M.); (S.-T.H.); Tel.: +886-2271-2171-2525 (V.M. & S.-T.H.); Fax: +886-02-2731-7117 (S.-T.H.)
| | | | - Sheng-Tung Huang
- Correspondence: (V.M.); (S.-T.H.); Tel.: +886-2271-2171-2525 (V.M. & S.-T.H.); Fax: +886-02-2731-7117 (S.-T.H.)
| |
Collapse
|
36
|
Elumalai S, Yoshimura M, Ogawa M. Simultaneous Delamination and Rutile Formation on the Surface of Ti
3
C
2
T
x
MXene for Copper Adsorption. Chem Asian J 2020; 15:1044-1051. [DOI: 10.1002/asia.202000090] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/12/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Satheeshkumar Elumalai
- School of Energy Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC) 555 Moo 1 Payupnai Wangchan Rayong 21210 Thailand
- Present address: Biophotonics and AdvancedNational Research Council (CNR) Via Pietro Castellino n.111 Naples 80131 Italy
| | - Masahiro Yoshimura
- Hierarchical Green-Energy Materials (Hi-GEM) Research CenterDepartment of Materials Science and EngineeringNational Cheng Kung UniversityNo.1University Road Tainan City 70101 Taiwan
| | - Makoto Ogawa
- School of Energy Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC) 555 Moo 1 Payupnai Wangchan Rayong 21210 Thailand
| |
Collapse
|