1
|
Takte MA, Patil SS, Fulari AV, Hianik T, Shirsat MD. Electrochemical Sensor Based on DNA Aptamers Immobilized on V 2O 5/rGO Nanocomposite for the Sensitive Detection of Hg(II). SENSORS (BASEL, SWITZERLAND) 2025; 25:2334. [PMID: 40218845 PMCID: PMC11991058 DOI: 10.3390/s25072334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
We developed a sensor consisting of V2O5 nanorods and a reduced graphene oxide (rGO) nanocomposite (V2O5/rGO) with immobilized DNA aptamers (Apt-NH@V2O5/rGO) for the sensitive electrochemical detection of Hg (II). The V2O5 nanorods anchored on rGO nanosheets were synthesized using a hydrothermal method. The nanocomposite was analyzed by various powerful physical methods that include X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, the Brunauer-Emmett-Teller (BET) method, and Fourier transform infrared spectroscopy (FTIR). The FE-SEM of V2O5 disclosed the nanorod-like structure and uniform anchoring of V2O5 on the rGO nanosheet. Moreover, the BET results showed that the V2O5/rGO nanocomposite possesses excellent porosity. Furthermore, a glassy carbon electrode (GCE) was modified with Apt-NH@V2O5/rGO and used for the electrochemical detection of Hg(II) by differential pulse voltammetry (DPV). The aptasensor exhibited excellent sensitivity and selectivity toward Hg(II) detection, with a limit of detection (LOD) of 5.57 nM, which is below the maximum permissible limit established by WHO for rivers (30 nM). The sensor also exhibited significant stability and good repeatability.
Collapse
Affiliation(s)
- Mahesh A. Takte
- RUSA Center for Advanced Sensor Technology, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar 431004, MS, India; (M.A.T.); (S.S.P.)
| | - Shubham S. Patil
- RUSA Center for Advanced Sensor Technology, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar 431004, MS, India; (M.A.T.); (S.S.P.)
| | - Akash V. Fulari
- Symbiosis Centre for Nanoscience and Nanotechnology, Symbiosis International (Deemed University), Pune 412115, MS, India;
| | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina F1, 84248 Bratislava, Slovakia
| | - Mahendra D. Shirsat
- RUSA Center for Advanced Sensor Technology, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar 431004, MS, India; (M.A.T.); (S.S.P.)
- Department of Electronics, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar 431004, MS, India
| |
Collapse
|
2
|
Xiao J, Sun Y, Lu J, Cao L, Liu Z, Yan Y, Li W, He S. Sources and health risk of metallic elements assessment: a study of a representative industrial city. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:125. [PMID: 40113601 DOI: 10.1007/s10653-025-02440-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
PM2.5 in the air can adsorb a wide range of substances, and due to their small size, they can carry toxic and hazardous substances into the human body through inhalation, which can be harmful to human health. PM2.5 samples were collected in Shihezi for one year from September 2021 to August 2022 to characterise the distribution of 13 metallic elements in PM2.5 and their potential sources. The findings revealed that the concentrations of PM2.5 surpassed the national threshold of 35 μg/m3, alongside elevated levels of crustal elements. To assess the potential sources of the 13 metallic elements, present in PM2.5, a comprehensive analysis was conducted utilizing Enrichment Factor analysis, principal component analysis (PCA), and Backward Trajectory Modelling. The Enrichment Factors analysis revealed that five elements were significantly influenced by anthropogenic activities, with cadmium exhibiting particularly high levels of enrichment. PCA indicated that the metal elements were predominantly sourced from coal combustion, vehicular emissions, dust, fossil fuel combustion and industrial activities. Backward trajectory cluster analysis demonstrated that pollutant concentrations are substantially affected by both long-range transport mechanisms and localized anthropogenic sources. The assessment of health risks associated with metallic elements suggests a low risk to human health. These findings offer a crucial scientific foundation for air pollution management strategies in the SHZ region.
Collapse
Affiliation(s)
- Jinfeng Xiao
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang, Shihezi University, Shihezi, 832003, China
| | - Yongchao Sun
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang, Shihezi University, Shihezi, 832003, China
| | - Jianjiang Lu
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang, Shihezi University, Shihezi, 832003, China.
| | - Li Cao
- The First Affiliated Hospital of Shihezi University, Shihezi, 832003, China.
| | - Zilong Liu
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang, Shihezi University, Shihezi, 832003, China
| | - Yujun Yan
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang, Shihezi University, Shihezi, 832003, China
| | - Weijun Li
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang, Shihezi University, Shihezi, 832003, China
| | - Shaohua He
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang, Shihezi University, Shihezi, 832003, China
| |
Collapse
|
3
|
Sýkora J, Komendová R. Field determination of trace concentrations of hazardous metals in waters by portable EDXRF. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1226. [PMID: 39567376 DOI: 10.1007/s10661-024-13412-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
A new effective method has been developed for field determination of trace concentrations of cadmium, arsenic, zinc, copper, nickel, chromium, and lead in waters (e.g., surface and wastewater) using an energy dispersive X-ray fluorescence (EDXRF) analyzer. Trace concentrations cannot be determined by EDXRF without preconcentration. Agar was used for the preconcentration of these potentially toxic elements (PTE). Metals are trapped in the three-dimensional network of agar gel. Subsequent swelling of the gel leads to more effective preconcentration. The swollen gels with PTE were analyzed by a portable energy dispersive X-ray fluorescence analyzer Delta Professional X (pXRF). The preconcentration factors for each PTE were determined. With pXRF, the detection limits were 7, 5, 6, 7, 9, 47, and 22 µg/L for Cr, Ni, Cu, Zn, As, Cd, and Pb, respectively. A reference material was used to assess the methodology performance, and it has a very good agreement. The optimized and verified methodology was tested in practice at the special chemical unit of the Fire Rescue Service of the Czech Republic. PTE were determined by pXRF in a mobile chemical laboratory in field analysis. The measured values were compared with those determined via inductively coupled plasma mass spectrometry (ICP-MS) and were in good agreement. Our method was applied to real wastewater samples collected during after a fire of accumulation batteries of domestic photovoltaic power plants, allowing accurate real-time estimation of PTE concentrations. Obtaining reliable data during an ecological accident has a very important role in minimizing the subsequent environmental impact of the accident.
Collapse
Affiliation(s)
- Jiří Sýkora
- Faculty of Chemistry, Brno University of Technology (BUT), Purkyňova 464/118, 612 00, Brno, Czech Republic.
| | - Renata Komendová
- Faculty of Chemistry, Brno University of Technology (BUT), Purkyňova 464/118, 612 00, Brno, Czech Republic
| |
Collapse
|
4
|
Tokalıoğlu Ş, Shahir S, Akgül ET, Şenkal BF. Dispersive Solid-phase Microextraction of Lead in Waters and Edible Lettuce and Dill Extracts in the Unified Bioaccessibility Method (UBM) Saliva Solution. Biol Trace Elem Res 2024; 202:4314-4323. [PMID: 38117385 DOI: 10.1007/s12011-023-04001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
A new thiosemicarbazide-modified, sulfonamide-based poly (styrene) adsorbent (T-CSPS) was prepared starting from the reaction of chlorosulfonated polystyrene and thiosemicarbazide. It was characterized by SEM-EDX, FT-IR, and zeta potential. The T-CSPS was used as an adsorbent for the first time for the dispersive solid-phase microextraction (d-SPµE) and preconcentration of Pb(II) ions from waters and dill and lettuce extracts in the unified bioaccessibility method (UBM) saliva. Lead was then determined using the FAAS. In the first step of optimization, the solution pH was changed from 2 to 8, and pH 4 with a recovery value of 103% ± 5 was selected. Two milliliters of 2 mol L-1 HCl was chosen as eluent. Contact times were found to be only 2 min. Effects of coexisting ions and sample volume were tested. Under optimal conditions, the preconcentration factor (PF) and the adsorption capacity were 15 and 40 mg g-1. The RSD% was 2.2% and 3.1% for intra-day and inter-day precision, respectively. The LOD and LOQ were found to be 5.1 µg L-1 and 16.9 µg L-1, respectively. The accuracy of the d-SPµE was checked by TMDA-70.2 Lake water and BCR-482 Lichen-certified reference materials and also applying d-SPµE to spiked waters and lettuce and dill extracts in UBM saliva.
Collapse
Affiliation(s)
- Şerife Tokalıoğlu
- Faculty of Sciences, Chemistry Department, Erciyes University, 38039, Kayseri, Turkey.
| | - Shukria Shahir
- Faculty of Sciences, Chemistry Department, Erciyes University, 38039, Kayseri, Turkey
| | - Ebru Tekneci Akgül
- Department of Chemistry, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Bahire Filiz Şenkal
- Department of Chemistry, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| |
Collapse
|
5
|
Ghamari F, Ghorbani J, Azizi E, Arjomandi J, Shi H. Template-free efficacious morphology of electrosynthesized polyaniline/β-cyclodextrin host-guest complex on Au/rGO modified electrode for removal and recovery of rare-earth and heavy elements from seawater. CHEMOSPHERE 2024; 356:141897. [PMID: 38582156 DOI: 10.1016/j.chemosphere.2024.141897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Global water pollution and scarcity of water resources are turning increasingly into serious threats to the survival of all living organisms on Earth. This study offers an influent strategy for the electrosynthesis of reduced graphene oxide/polyaniline/β-cyclodextrin (rGO/PAni/βCD) nanocomposite and its application to the removal/recovery of heavy elements (HEs) and rare-earth elements (REEs). Besides physicochemical and electrochemical studies, the surface morphological and statistical properties of fabricated nanocomposite electrode were examined. The textural and morphological characteristics of nanocomposite electrode were investigated via AFM data based on statistical, stereometric, and fractal theory. The cohesive, porous, and well-developed morphology of fabricated nanocomposite electrode has enabled the electrodeposition technique to achieve significant simultaneous removal/recovery efficiency of HE and REE ions such as Pb(II), Cu(II), Cd(II), Hg(II), Ce(IV), and Nb(V). Therefore, using rGO/PAni/βCD, considerable removal of HEs and REEs was achieved under optimized pH, 0.1 M KNO3, and 35 mg L-1 metal ion initial concentration during 20 min. Removal capacity of the nanocomposite electrode is preserved subsequent to 10 cycles of electrodeposition/desorption, according to the desorption investigation through eluted adsorbent at time intervals in deionized water and adjusted acidic pH values. Then, using rGO/PAni/CD nanocomposite, simulated seawater remediation was accomplished successfully. This interdisciplinary approach reveals that the removal/recovery efficiency enhance linearly along with the improvement of well-developed morphology for electrosynthesized composites. Thus, these results suggest how the morphological features of the polymer composites could improve remediation of water resources.
Collapse
Affiliation(s)
- Fatemeh Ghamari
- Department of Physics, Faculty of Science, Bu-Ali Sina University, 38695-65178, Hamedan, Iran
| | - Jaleh Ghorbani
- Department of Physical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, 38695-65178, Hamedan, Iran
| | - Elmira Azizi
- Department of Physical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, 38695-65178, Hamedan, Iran
| | - Jalal Arjomandi
- Department of Physical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, 38695-65178, Hamedan, Iran; School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China.
| | - Hu Shi
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China
| |
Collapse
|
6
|
Zendehdel AA, Sorouraddin SM, Farajzadeh MA. Development of salt-induced homogeneous liquid-liquid extraction using a deep eutectic solvent performed in a narrow-bore tube for the extraction of Zn(II), Cu(II), and Cd(II) ions from honey samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1593-1602. [PMID: 38404220 DOI: 10.1039/d3ay02335d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In this study, a sample preparation procedure based on salt-induced homogeneous liquid-liquid extraction performed in a narrow-bore tube was used for the preconcentration and extraction of Zn(II), Cu(II), and Cd(II) ions from honey samples. To perform the procedure, a mixture of working solution containing sodium chloride, acetonitrile, and a synthesized deep eutectic solvent (as an extraction solvent) was transferred into a narrow tube filled with solid sodium chloride up to a specific level. As the solution flowed through the tube, tiny droplets of the extraction solvent were formed at the boundary between the solution and salt layer. The droplets moved upwards in the tube and eventually collected as a distinct layer on the top of the solution. The separated phase was removed and dispersed into ionized water. After centrifugation, tiny droplets of the extraction solvent containing the analytes were sedimented at the bottom of the tube. The concentrated analytes were measured using flame atomic absorption spectrophotometry. The linear ranges and extraction recoveries were obtained in the ranges of 1.5-100 μg kg-1 and 89.6-94.8%, respectively. The detection limits ranged from 0.35 to 0.48 μg kg-1. Low relative standard deviations (C = 10 μg L-1, n = 6) of 3.1, 2.8, and 3.4% for Zn(II), Cu(II), and Cd(II), respectively, were obtained. Finally, the optimized method was successfully used in determination of concentration of the selected heavy metal ions in various honey samples.
Collapse
Affiliation(s)
- Ali Asghar Zendehdel
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | | | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
- Engineering Faculty, Near East University, Mersin, 10, 99138 Nicosia, North Cyprus, Turkey
| |
Collapse
|
7
|
Adhikari S, Sunder GSS, Poudel A, Asfaha TY, Lawrence JG, Kandage MM, Marszewski M, Kirchhoff JR. Application of Poly(caffeic acid) for the Extraction of Critical Rare Earth Elements. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24892-24900. [PMID: 37171914 DOI: 10.1021/acsami.3c02915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Poly(caffeic acid) was synthesized and utilized for the extraction and determination of rare earth elements (REEs), thorium, and uranium. Oxidative polymerization of caffeic acid, a low-cost plant-based material, in the presence of ethylenediamine produced a granular, air-stable, and cross-linked polymer. The polymer is highly oxygenated and together with the amino group from ethylenediamine efficiently coordinates and preconcentrates these critical elements from aqueous media. Extraction was dependent on solution pH, amount of sorbent, and extraction time, while the concentration and flow rate of the desorption solution governed the recovery efficiency. Removal and recovery efficiencies greater than 98 and 90%, respectively, and low levels of detection ranging from 0.1 to 2.9 ng/L were achieved. Determination of these strategic elements in the presence of potentially interfering ions as well as in complex matrices such as well water and produced water samples also was demonstrated. The capacity of poly(caffeic acid) was determined with lanthanum as a representative REE to be 161.7 mg/g, establishing the promise of poly(caffeic acid) for larger-scale extractions in addition to the ability to screen sources for the presence of REEs.
Collapse
|
8
|
Acid phosphate-activated glassy carbon electrode for simultaneous detection of cadmium and lead. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Xu C, He M, Chen B, Hu B. Magnetic porous coordination networks for preconcentration of various metal ions from environmental water followed by inductively coupled plasma mass spectrometry detection. Talanta 2022; 245:123470. [PMID: 35427948 DOI: 10.1016/j.talanta.2022.123470] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/28/2022] [Accepted: 04/07/2022] [Indexed: 12/29/2022]
Abstract
Magnetic composites of Fe3O4@SiO2@PCN-224 (MPCN-224) was obtained by one-pot method with the interaction between PCN-224 monomer and silicon layer on magnetic core. MPCN-224 exhibited a core-shell structure with the specific surface area of 1114 m2 g-1 and good adsorption performance for various metal ions. With MPCN-224 used as the sorbent, a method combing magnetic solid phase extraction (MSPE) with inductively coupled plasma mass spectrometry (ICPMS) detection was established for the enrichment and determination of trace Cr(III), Zn(II), Pb(II) and Bi(III) in environmental water samples. Under the optimized conditions, the developed method exhibited low detection limits of 0.94-11.4 ng L-1 and wide linear range for target four metal ions. The analysis speed was fast (2/5 min for adsorption and desorption respectively). The MPCN-224 sorbent could be reused for at least 12 times, and the regeneration can be achieved easily by adjusting solution pH. The sorbent and the MSPE-ICPMS method have a great potential for adsorption and determination of trace metal ions in environmental water samples.
Collapse
Affiliation(s)
- Chi Xu
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
10
|
Electrochemical Sensing of Pb2+ and Cd2+ Ions with the Use of Electrode Modified with Carbon-Covered Halloysite and Carbon Nanotubes. Molecules 2022; 27:molecules27144608. [PMID: 35889475 PMCID: PMC9324300 DOI: 10.3390/molecules27144608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 02/01/2023] Open
Abstract
A novel voltammetric method for the sensitive and selective determination of cadmium and lead ions using screen-printed carbon electrodes (SPCEs) modified with carbon-deposited natural halloysite (C_Hal) and multi-walled carbon nanotubes (MWCNTs) was developed. The electrochemical properties of the proposed sensor were investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), while the morphology and structure were established by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). A two-factorial central composite design (CCD) was employed to select the composition of the nanocomposite modifying the electrode surface. The optimal measuring parameters of differential pulse anodic stripping voltammetry (DPASV) used for quantitative analysis were established with the Nelder–Mead simplex method. In the analytical investigation of Cd(II) and Pb(II) ions by DPASV, the MWCNTs/C_Hal/Nafion/SPCE exhibited a linear response in the concentration range of 0.1–10.0 µmol L−1 (for both ions) with a detection limit of 0.0051 and 0.0106 µmol L−1 for Pb(II) and Cd(II), respectively. The proposed sensor was successfully applied for the determination of metal ions in different natural water and honey samples with recovery values of 96.4–101.6%.
Collapse
|
11
|
Ratnani S, Singh VK, Agnihotri NK. A Derivative Spectrophotometric Method for the Simultaneous Determination of Cadmium and Cobalt in Environmental and Standard Samples. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822070103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Electrochemical determination of Pb2+ and Cd2+ with a poly(pyrrole-1-carboxylic acid) modified electrode. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Emmons RV, Shyam Sunder GS, Liden T, Schug KA, Asfaha TY, Lawrence JG, Kirchhoff JR, Gionfriddo E. Unraveling the Complex Composition of Produced Water by Specialized Extraction Methodologies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2334-2344. [PMID: 35080868 DOI: 10.1021/acs.est.1c05826] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Produced water (PW), a waste byproduct of oil and gas extraction, is a complex mixture containing numerous organic solubles and elemental species; these constituents range from polycyclic aromatic hydrocarbons to naturally occurring radioactive materials. Identification of these compounds is critical in developing reuse and disposal protocols to minimize environmental contamination and health risks. In this study, versatile extraction methodologies were investigated for the untargeted analysis of PW. Thin-film solid-phase microextraction with hydrophilic-lipophilic balance particles was utilized for the extraction of organic solubles from eight PW samples from the Permian Basin and Eagle Ford formation in Texas. Gas chromatography-mass spectrometry analysis found a total of 266 different organic constituents including 1,4-dioxane, atrazine, pyridine, and PAHs. The elemental composition of PW was evaluated using dispersive solid-phase extraction followed by inductively coupled plasma-mass spectrometry, utilizing a new coordinating sorbent, poly(pyrrole-1-carboxylic acid). This confirmed the presence of 29 elements including rare earth elements, as well as hazardous metals such as Cr, Cd, Pb, and U. Utilizing chemometric analysis, both approaches facilitated the discrimination of each PW sample based on their geochemical origin with a prediction accuracy above 90% using partial least-squares-discriminant analysis, paving the way for PW origin tracing in the environment.
Collapse
Affiliation(s)
- Ronald V Emmons
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606, United States
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606, United States
| | - Govind Sharma Shyam Sunder
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606, United States
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606, United States
- School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| | - Tiffany Liden
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Kevin A Schug
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
- Collaborative Laboratories for Environmental Analysis and Remediation, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Timnit Yosef Asfaha
- Center for Materials and Sensor Characterization, College of Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| | - Joseph G Lawrence
- Center for Materials and Sensor Characterization, College of Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| | - Jon R Kirchhoff
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606, United States
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606, United States
- School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| | - Emanuela Gionfriddo
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606, United States
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606, United States
- School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
14
|
Zada S, Raza S, Khan S, Iqbal A, Kai Z, Ahmad A, Ullah M, Kakar M, Fu P, Dong H, Xueji Z. Microalgal and cyanobacterial strains used for the bio sorption of copper ions from soil and wastewater and their relative study. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Chen S, Yu J, Chen Z, Huang Z, Song Y. Simultaneous electrochemical sensing of heavy metal ions based on a g-C 3N 4/CNT/NH 2-MIL-88(Fe) nanocomposite. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5830-5837. [PMID: 34842866 DOI: 10.1039/d1ay01682b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The presence of Cd2+, Pb2+, Cu2+ and Hg2+ in drinking-water can be harmful to human health, even if their concentration is fairly low. Hence, it is significant to detect these heavy metal ions in sewage to evaluate the quality of water. Herein, amino-functionalized metal-organic frameworks (NH2-MIL-88(Fe)) embedded with graphitic carbon nitride (g-C3N4) nanosheets and acid-functionalized carbon nanotubes were prepared via a one-pot synthesis. The composite can be directly modified on the surface of glass carbon electrodes without the assistance of Nafion or other binders. The modified glass carbon electrodes can be used to simultaneously detect Cd2+, Pb2+, Cu2+ and Hg2+ in water via square wave stripping voltammetry. The doping of g-C3N4 in the composite, rich in N-containing functional groups, participates in the adsorption of metal ions on the surface of the electrodes. The porous composite provides accommodation room for metals generated by electro-reduction. The detection limit for Cd2+, Pb2+, Cu2+ and Hg2+ is 39.6 nM, 7.6 nM, 11.9 nM, and 9.6 nM, respectively. And the sensitivity for Cd2+, Pb2+, Cu2+ and Hg2+ is 0.0789 mA μM-1 cm-2, 0.4122 mA μM-1 cm-2, 0.2616 mA μM-1 cm-2, and 0.3251 mA μM-1 cm-2, respectively. This work not only enriches the functional design of Fe-MOF materials, but also develops a method for the determination of metal ions using the adsorption sites in g-C3N4.
Collapse
Affiliation(s)
- Shouhui Chen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China.
| | - Jingguo Yu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China.
| | - Zhen Chen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China.
| | - Zhenzhong Huang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China.
| | - Yonghai Song
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China.
| |
Collapse
|
16
|
Shyam Sunder GS, Rohanifar A, Alipourasiabi N, Lawrence JG, Kirchhoff JR. Synthesis and Characterization of Poly(pyrrole-1-carboxylic acid) for Preconcentration and Determination of Rare Earth Elements and Heavy Metals in Water Matrices. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34782-34792. [PMID: 34254511 DOI: 10.1021/acsami.1c05061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pyrrole was N-functionalized with solid carbon dioxide followed by chemical polymerization to create a new air-stable, granular, and water-insoluble sorbent, poly(pyrrole-1-carboxylic acid) (PPy-CO2). PPy-CO2 exhibited enhanced affinity for the sorption of metal ions compared to unfunctionalized PPy due to the incorporation of carboxylate functional groups directly onto the polymer backbone. As a freestanding sorbent material, immobilization to an additional solid support is not needed. Sorption, and therefore preconcentration, occurs simultaneously to achieve efficient removal and recovery of metal ions by a pH-dependent sorption-desorption mechanism. PPy-CO2 was evaluated on the analytical scale for the solid-phase extraction of a range of metal ions and found to efficiently preconcentrate rare earth elements (REEs), Th, and heavy metals (Cr, Fe, Cd, and Pb), which allowed quantitation by inductively coupled plasma mass spectrometry (ICP-MS). The impact of sorption parameters, such as solution pH, amount of sorbent, and sorption time, and the effect of desorption flow rate for recovery were investigated and optimized using ultrasound-assisted dispersive solid-phase extraction (UAD-SPE) with ICP-MS analysis. Maximum efficiency for sorption and recovery of most metal ions was achieved at a solution pH of 6.0, 10 mg of sorbent, a sorption time of 5 min, and desorption conditions of 1 mL of 2 M nitric acid applied at a flow rate of 0.25 mL min-1. Detection limits for REEs and Th ranged from 0.2-3.4 ng L-1 for REEs and Th and 0.9-5.7 ng L-1 for heavy metals. Linear ranges from 0.1-1000 μg L-1 for REEs and 0.1-500 μg L-1 for heavy metals and Th were also observed. PPy-CO2 successfully preconcentrated and facilitated the determination of the targeted metal ions in water matrices of varying complexity, including tap water, well water, river water, and produced water samples. These results indicate the potential application of PPy-CO2 for larger-scale recovery and removal of valuable or hazardous metal ions.
Collapse
|
17
|
Hejabri Kandeh S, Amini S, Ebrahimzadeh H. Simultaneous trace-level monitoring of seven opioid analgesic drugs in biological samples by pipette-tip micro solid phase extraction based on PVA-PAA/CNT-CNC composite nanofibers followed by HPLC-UV analysis. Mikrochim Acta 2021; 188:275. [PMID: 34318377 DOI: 10.1007/s00604-021-04931-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Electrospun poly(vinyl alcohol)-(PVA)-poly(acrylic acid) (PAA)/carbon nanotubes(CNTs)-cellulose nanocrystal (CNC) (PVA-PAA/CNT-CNC) composite nanofibers were prepared and characterized using Fourier transform-infrared spectroscopy and field emission scanning electron microscopy. The resultant composite was used as an effective and novel sorbent for pipette-tip micro-solid phase extraction (PT-μSPE) of seven opioid analgesics (OAs) in biological samples followed by HPLC-UV analysis. Addition of CNT-CNC with the high specific surface area and plenty of OH-functional groups endows the nanofibers with considerable extraction efficiency. Under the optimum conditions, the linearity was obtained in the range 1.5 to 700.0 ng mL-1 for morphine, codeine, oxycodone, and tramadol, and 0.5 to 1000.0 ng mL-1 for nalbuphine, thebaine, and noscapine with coefficient of determination (r2) ≥ 0.9990. Detection limits (LODs) based on S/N = 3 were in the range of 0.15-0.50 ng mL-1. The relative standard deviations (RSDs) of 4.1-5.4% (intra-day, n = 5) and 5.2-6.4% (inter-day, n = 3) for three consecutive days were achieved. Finally, the efficiency of the PT-μSPE-HPLC-UV method was evaluated for the determination of OAs in human plasma and urine samples with good recoveries (87.3 to 97.8%). A: Schematic illustration for the preparation of PVA-PAA/CNT-CNC composite nanofibers. B: Schematic presentation of applying PVA-PAA/CNT-CNC composite nanofibers as the sorbent in pipette-tip micro solid-phase extraction (PT-μSPE) for the preconcentration of seven opioid analgesic drugs in biological samples before HPLC-UV analysis.
Collapse
Affiliation(s)
- Saeed Hejabri Kandeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Shima Amini
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Homeira Ebrahimzadeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
18
|
XING S, HE M, LIU T, YONG W, ZHANG F. [Research progress of solid phase extraction materials in the application of metal ion pretreatment]. Se Pu 2021; 39:455-462. [PMID: 34227329 PMCID: PMC9421574 DOI: 10.3724/sp.j.1123.2020.07004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Indexed: 11/25/2022] Open
Abstract
Monitoring of trace heavy metal pollutants released during industrial and agricultural processes is essential because of their widespread distribution in the environment and health hazards. Several techniques, including inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma-optical emission spectrometry (ICP-OES), electrothermal atomic absorption (ETAAS), and flame atomic absorption spectrometry (FAAS), have been proposed for the determination of heavy metals in serum, plasma, whole blood, and food. All these techniques have earned robust recognition in the field of trace heavy metals and have many advantages such as multi-elemental analysis capability, large dynamic linear range, low detection limits, and high productivity. Nevertheless, most of the recommended techniques require digestion of the sample and extraction with an organic solvent for isolation of the metal ion from the sample solution prior to analysis. Despite improvements in the performance of modern analytical instruments, the direct determination of heavy metal ions in real samples is difficult because of their low concentration levels and matrix interference. Thus, extraction and clean-up steps are required for pre-concentration of the analyte, so that detection and elimination of the interfering matrix component are possible. Solid-phase extraction (SPE) is one of the popular metal ion pretreatment methods. The advantages of SPE include easy cartridge/column regeneration, high analytical frequency, and high preconcentration factors for sorbents with high adsorption capacities. On the other hand, when the analytes are extracted from a complex matrix such as serum and meat samples, large amounts of proteins from the samples can be retained on the sorbent surface, obstructing the binding sites on the sorbent and leading to poor precision and accuracy. The key to metal ion detection is the development of new SPE materials with high efficiency and enrichment factors as well as an effective pretreatment technology. Nanomaterials such as restricted-access carbon nanotubes, nanoadsorbents, nanoparticle carriers, and magnetic nanoparticles have shown great promise in advancing biomedical and environmental analysis because of the unique properties originating from their ultrafine dimensions. Nanomaterials can provide large specific surface areas and tunable functional groups to facilitate metal ion absorption. They could also possess superior optical properties and allow for high sensitivity in simple fluorescent or colorimetric detection methods. Owing to their excellent mechanical and chemical stability, polymer materials have been of great interest as adsorbents for the SPE of metal ions from solution. Moreover, a designed polymeric material can show triple functionality such as physical adsorption, chelate formation, and ion exchange for the target metal ions. A dual-functional nanomaterial-DNAzyme platform can simultaneously allow for the sensitive detection and effective removal of heavy metal ions in water. Thus, this platform can serve as a simple, cost-effective tool for rapid and accurate metal quantification in the determination of human metal exposure and inspection of environmental contamination. Furthermore, the new photocaged chelator can uncage and release the combined metal ions into an aqueous solution that is free of the other components of the matrix. In this manner, we can develop diagnostic tests for metal ions that are often difficult to detect using other methods. In this paper, the characteristics of new SPE materials, including nanomaterials, polymer materials, and functional materials as well as advances in their applications to the preparation of complex samples are summarized, and the direction for future development is proposed.
Collapse
Affiliation(s)
- Shige XING
- 中国检验检疫科学研究院食品安全研究所, 北京 100176
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Muyi HE
- 中国检验检疫科学研究院食品安全研究所, 北京 100176
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Tong LIU
- 中国检验检疫科学研究院食品安全研究所, 北京 100176
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Wei YONG
- 中国检验检疫科学研究院食品安全研究所, 北京 100176
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Feng ZHANG
- 中国检验检疫科学研究院食品安全研究所, 北京 100176
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| |
Collapse
|
19
|
Automated analytical procedure using multicommuted flow analysis and organic solvent extraction controlled by an Arduino Due board for photometric determination of zinc in water. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Development of magnetism-reinforced in-tube solid phase microextraction combined with HPLC for the sensitive quantification of cobalt(II) and nickel(II) in environmental waters. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|