1
|
Zhu Z, Pang Y, Li Y, Gu Y, Wang X, Yu A, Liu B, Liu S, Huang W, Zhao Q. The Rising of Flexible Organic Electrochemical Transistors in Sensors and Intelligent Circuits. ACS NANO 2025; 19:4084-4120. [PMID: 39829276 DOI: 10.1021/acsnano.4c12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Flexible electronic devices in biomedicine, environmental monitoring, and brain-like computing have garnered significant attention. Among these, organic electrochemical transistors (OECTs) have been spotlighted in flexible sensors and neuromorphic circuits for their low power consumption, high signal amplification, excellent biocompatibility, chemical stability, stretchability, and flexibility. However, OECTs will also face some challenges on the way to commercialized applications, including the need for improved long-term stability, enhanced performance of N-type materials, integration with existing technologies, and cost-effective manufacturing processes. This review presents the device physics of OECTs in detail, including the evaluation of their various properties and the introduction of different configurations of the aforementioned OECTs. Subsequently, the components of this device and their roles are explained in depth, and the main ways to design and fabricate flexible OECTs are summarized. Following this, we summarize and analyze the principles and applications of OECTs for electrophysiological signal sensing, chemical sensing, biosensing, and sensor arrays. In addition, the concepts of OECT-based digital and neuromorphic circuits and their applications are presented. Finally, the paper summarizes the opportunities and challenges of OECT-based flexible electronics.
Collapse
Affiliation(s)
- Zihan Zhu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Yuncong Pang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Yang Li
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Yuzhe Gu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Xiaotian Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Aoxi Yu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Baoguang Liu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiang Zhao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| |
Collapse
|
2
|
Gamboa J, El Attar R, Thuau D, Estrany F, Abbas M, Torras J. Carbon quantum dots composite for enhanced selective detection of dopamine with organic electrochemical transistors. Mikrochim Acta 2024; 191:639. [PMID: 39354107 PMCID: PMC11445364 DOI: 10.1007/s00604-024-06722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024]
Abstract
A compact organic electrochemical transistors (OECT) sensor enriched with carbon quantum dots (CQDs) was developed to enhance the transconductance of an electropolymerized poly(3,4-ethylenedioxythiophene) (PEDOT) film, enabling the precise and selective detection of dopamine (DA). Accurate monitoring of DA levels is critical for diagnosing and managing related conditions. Incorporating CQDs, we have achieved a remarkable up to threefold increase in current at the DA detection peak in differential pulse voltammetry. This enhancement showcases superior selectivity even in the presence of high concentrations of interferents like uric acid and ascorbic acid. This material significantly boosts the sensitivity of OECTs for DA detection, delivering an amperometric response with a detection limit of 55 nM and a broader detection range (1 - 500 µM). Our results underscore the potential of low-dimensional carbonaceous materials in creating cost-effective, high-sensitivity devices for detecting DA and other biomolecules. This breakthrough sets the stage for the development of next-generation biosensors for point-of-care diagnostics.
Collapse
Affiliation(s)
- Jillian Gamboa
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, Av. Eduard Maristany, 10-14, 08019, Barcelona, Spain
- Barcelona Research Centre in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Av. Eduard Maristany, 10-14, 08019, Barcelona, Spain
| | - Reem El Attar
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Pessac, 33607, France
| | - Damien Thuau
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Pessac, 33607, France.
| | - Francesc Estrany
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, Av. Eduard Maristany, 10-14, 08019, Barcelona, Spain
- Barcelona Research Centre in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Av. Eduard Maristany, 10-14, 08019, Barcelona, Spain
| | - Mamatimin Abbas
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Pessac, 33607, France
| | - Juan Torras
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, Av. Eduard Maristany, 10-14, 08019, Barcelona, Spain.
- Barcelona Research Centre in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Av. Eduard Maristany, 10-14, 08019, Barcelona, Spain.
| |
Collapse
|
3
|
Li C, He Y, Ingebrandt S, Vu XT. Microscale Sensor Arrays for the Detection of Dopamine Using PEDOT:PSS Organic Electrochemical Transistors. SENSORS (BASEL, SWITZERLAND) 2024; 24:5244. [PMID: 39204939 PMCID: PMC11360330 DOI: 10.3390/s24165244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/24/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024]
Abstract
We present a sensor array of microscale organic electrochemical transistors (OECTs) using poly (3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) as the channel material. The devices show high sensitivity and selectivity to detect dopamine (DA) with platinum (Pt) as a pseudo-reference gate electrode. First, we describe the wafer-scale fabrication process for manufacturing the PEDOT:PSS OECTs, and then we introduce a dilution method to adjust the thickness of the PEDOT:PSS film. Next, we investigate the effect of the film thickness on the sensitivity of DA detection. Reducing the film thickness enhances the sensitivity of DA detection within the concentration range of 1 μM to 100 μM. The OECTs show impressive sensitivitywith a limit of detection (LoD) as low as 1 nM and a high selectivity against uric acid (UA) and ascorbic acid (AA). Finally, we modify the surface of the Pt gate electrode with chitosan to improve the selectivity of OECTs at high concentrations of up to 100 µM to expand the detection range.
Collapse
Affiliation(s)
| | | | | | - Xuan Thang Vu
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany; (C.L.); (Y.H.); (S.I.)
| |
Collapse
|
4
|
Ling W, Shang X, Yu C, Li C, Xu K, Feng L, Wei Y, Tang T, Huang X. Miniaturized Implantable Fluorescence Probes Integrated with Metal-Organic Frameworks for Deep Brain Dopamine Sensing. ACS NANO 2024; 18:10596-10608. [PMID: 38557034 DOI: 10.1021/acsnano.4c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Continuously monitoring neurotransmitter dynamics can offer profound insights into neural mechanisms and the etiology of neurological diseases. Here, we present a miniaturized implantable fluorescence probe integrated with metal-organic frameworks (MOFs) for deep brain dopamine sensing. The probe is assembled from physically thinned light-emitting diodes (LEDs) and phototransistors, along with functional surface coatings, resulting in a total thickness of 120 μm. A fluorescent MOF that specifically binds dopamine is introduced, enabling a highly sensitive dopamine measurement with a detection limit of 79.9 nM. A compact wireless circuit weighing only 0.85 g is also developed and interfaced with the probe, which was later applied to continuously monitor real-time dopamine levels during deep brain stimulation in rats, providing critical information on neurotransmitter dynamics. Cytotoxicity tests and immunofluorescence analysis further suggest a favorable biocompatibility of the probe for implantable applications. This work presents fundamental principles and techniques for integrating fluorescent MOFs and flexible electronics for brain-computer interfaces and may provide more customized platforms for applications in neuroscience, disease tracing, and smart diagnostics.
Collapse
Affiliation(s)
- Wei Ling
- Research Center for Augmented Intelligence, Research Institute of Artificial Intelligence, Zhejiang Lab, Hangzhou 311121, China
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Xue Shang
- Research Center for Intelligent Sensing Systems, Research Institute of Intelligent Sensing, Zhejiang Lab, Hangzhou 311121, China
| | - Chaonan Yu
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, China
| | - Chenxi Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Kedi Xu
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, China
- Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Linqing Feng
- Research Center for Augmented Intelligence, Research Institute of Artificial Intelligence, Zhejiang Lab, Hangzhou 311121, China
| | - Yina Wei
- Research Center for Augmented Intelligence, Research Institute of Artificial Intelligence, Zhejiang Lab, Hangzhou 311121, China
| | - Tao Tang
- Research Center for Augmented Intelligence, Research Institute of Artificial Intelligence, Zhejiang Lab, Hangzhou 311121, China
| | - Xian Huang
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- Center of Flexible Wearable Technology, Institute of Flexible Electronic Technology of Tsinghua, 906 Yatai Road, Jiaxing 314006, China
| |
Collapse
|
5
|
Ravariu C. From Enzymatic Dopamine Biosensors to OECT Biosensors of Dopamine. BIOSENSORS 2023; 13:806. [PMID: 37622892 PMCID: PMC10452593 DOI: 10.3390/bios13080806] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Neurotransmitters are an important category of substances used inside the nervous system, whose detection with biosensors has been seriously addressed in the last decades. Dopamine, a neurotransmitter from the catecholamine family, was recently discovered to have implications for cardiac arrest or muscle contractions. In addition to having many other neuro-psychiatric implications, dopamine can be detected in blood, urine, and sweat. This review highlights the importance of biosensors as influential tools for dopamine recognition. The first part of this article is related to an introduction to biosensors for neurotransmitters, with a focus on dopamine. The regular methods in their detection are expensive and require high expertise personnel. A major direction of evolution of these biosensors has expanded with the integration of active biological materials suitable for molecular recognition near electronic devices. Secondly, for dopamine in particular, the miniaturized biosensors offer excellent sensitivity and specificity and offer cheaper detection than conventional spectrometry, while their linear detection ranges from the last years fall exactly on the clinical intervals. Thirdly, the applications of novel nanomaterials and biomaterials to these biosensors are discussed. Older generations, metabolism-based or enzymatic biosensors, could not detect concentrations below the micro-molar range. But new generations of biosensors combine aptamer receptors and organic electrochemical transistors, OECTs, as transducers. They have pushed the detection limit to the pico-molar and even femto-molar ranges, which fully correspond to the usual ranges of clinical detection of human dopamine in body humors that cover 0.1 ÷ 10 nM. In addition, if ten years ago the use of natural dopamine receptors on cell membranes seemed impossible for biosensors, the actual technology allows co-integrate transistors and vesicles with natural receptors of dopamine, like G protein-coupled receptors. The technology is still complicated, but the uni-molecular detection selectivity is promising.
Collapse
Affiliation(s)
- Cristian Ravariu
- Biodevices and Nano-Electronics of Cell Group, Department of Electronic Devices Circuits and Architectures, Polytechnic University of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- EduSciArt SRL, Iovita 2, 050686 Bucharest, Romania
| |
Collapse
|
6
|
Parmeggiani M, Ballesio A, Battistoni S, Carcione R, Cocuzza M, D’Angelo P, Erokhin VV, Marasso SL, Rinaldi G, Tarabella G, Vurro D, Pirri CF. Organic Bioelectronics Development in Italy: A Review. MICROMACHINES 2023; 14:460. [PMID: 36838160 PMCID: PMC9966652 DOI: 10.3390/mi14020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
In recent years, studies concerning Organic Bioelectronics have had a constant growth due to the interest in disciplines such as medicine, biology and food safety in connecting the digital world with the biological one. Specific interests can be found in organic neuromorphic devices and organic transistor sensors, which are rapidly growing due to their low cost, high sensitivity and biocompatibility. This trend is evident in the literature produced in Italy, which is full of breakthrough papers concerning organic transistors-based sensors and organic neuromorphic devices. Therefore, this review focuses on analyzing the Italian production in this field, its trend and possible future evolutions.
Collapse
Affiliation(s)
- Matteo Parmeggiani
- Chilab–Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Via Lungo Piazza d’Armi 6, 10034 Turin, Italy
| | - Alberto Ballesio
- Chilab–Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Via Lungo Piazza d’Armi 6, 10034 Turin, Italy
| | - Silvia Battistoni
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Rocco Carcione
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Matteo Cocuzza
- Chilab–Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Via Lungo Piazza d’Armi 6, 10034 Turin, Italy
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Pasquale D’Angelo
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Victor V. Erokhin
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Simone Luigi Marasso
- Chilab–Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Via Lungo Piazza d’Armi 6, 10034 Turin, Italy
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Giorgia Rinaldi
- Chilab–Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Via Lungo Piazza d’Armi 6, 10034 Turin, Italy
| | - Giuseppe Tarabella
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Davide Vurro
- Camlin Italy Srl, Via Budellungo 2, 43124 Parma, Italy
| | - Candido Fabrizio Pirri
- Chilab–Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Via Lungo Piazza d’Armi 6, 10034 Turin, Italy
- Center for Sustainable Future Technologies, Italian Institute of Technology, Via Livorno 60, 10144 Turin, Italy
| |
Collapse
|
7
|
Micro- and nano-devices for electrochemical sensing. Mikrochim Acta 2022; 189:459. [DOI: 10.1007/s00604-022-05548-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022]
Abstract
AbstractElectrode miniaturization has profoundly revolutionized the field of electrochemical sensing, opening up unprecedented opportunities for probing biological events with a high spatial and temporal resolution, integrating electrochemical systems with microfluidics, and designing arrays for multiplexed sensing. Several technological issues posed by the desire for downsizing have been addressed so far, leading to micrometric and nanometric sensing systems with different degrees of maturity. However, there is still an endless margin for researchers to improve current strategies and cope with demanding sensing fields, such as lab-on-a-chip devices and multi-array sensors, brain chemistry, and cell monitoring. In this review, we present current trends in the design of micro-/nano-electrochemical sensors and cutting-edge applications reported in the last 10 years. Micro- and nanosensors are divided into four categories depending on the transduction mechanism, e.g., amperometric, impedimetric, potentiometric, and transistor-based, to best guide the reader through the different detection strategies and highlight major advancements as well as still unaddressed demands in electrochemical sensing.
Graphical Abstract
Collapse
|
8
|
Koklu A, Ohayon D, Wustoni S, Druet V, Saleh A, Inal S. Organic Bioelectronic Devices for Metabolite Sensing. Chem Rev 2021; 122:4581-4635. [PMID: 34610244 DOI: 10.1021/acs.chemrev.1c00395] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrochemical detection of metabolites is essential for early diagnosis and continuous monitoring of a variety of health conditions. This review focuses on organic electronic material-based metabolite sensors and highlights their potential to tackle critical challenges associated with metabolite detection. We provide an overview of the distinct classes of organic electronic materials and biorecognition units used in metabolite sensors, explain the different detection strategies developed to date, and identify the advantages and drawbacks of each technology. We then benchmark state-of-the-art organic electronic metabolite sensors by categorizing them based on their application area (in vitro, body-interfaced, in vivo, and cell-interfaced). Finally, we share our perspective on using organic bioelectronic materials for metabolite sensing and address the current challenges for the devices and progress to come.
Collapse
Affiliation(s)
- Anil Koklu
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - David Ohayon
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Shofarul Wustoni
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Victor Druet
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Abdulelah Saleh
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
9
|
Xu P, Lu C, Wang D, Fu D. Combination of ultrathin micro-patterned MXene and PEDOT: Poly(styrenesulfonate) enables organic electrochemical transistor for amperometric determination of survivin protein in children osteosarcoma. Mikrochim Acta 2021; 188:301. [PMID: 34409498 DOI: 10.1007/s00604-021-04947-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/15/2021] [Indexed: 01/01/2023]
Abstract
An ultrathin micro-patterned MXene/PEDOT:PSS-based organic electrochemical transistor biosensor was constructed, which can significantly amplify the amperometric signal and transistor's performance. A novel interdigitated OECTs biosensor has been developed for reliable determination of survivin for the following considerations: (1) The synergistic effect of intercalated MXene and ionic PEDOT:PSS enhanced the mobility and volumetric capacitance of OECTs biosensor. (2) Compared with the best previous literatures, our assay demonstrated enhanced detection limit of survivin down to 10 pg mL-1, as well as satisfactory selectivity, reproducibility, and reliability. (3) Comparison of OECTs against commercial ELISA kit yielded favorable linearity (Y = 1.0015*X + 0.0039) and correlation coefficient (R2 = 0.9717). Those advantages are expected to pave the way to design of an OECTs biosensor with robustness, non-invasiveness, and miniaturization for the point-of-care applications.
Collapse
Affiliation(s)
- Ping Xu
- Department of Orthopedics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Chunwen Lu
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Dahui Wang
- Department of Orthopedics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| | - Dong Fu
- Department of Orthopedics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| |
Collapse
|
10
|
Spanu A, Martines L, Bonfiglio A. Interfacing cells with organic transistors: a review of in vitro and in vivo applications. LAB ON A CHIP 2021; 21:795-820. [PMID: 33565540 DOI: 10.1039/d0lc01007c] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, organic bioelectronics has attracted considerable interest in the scientific community. The impressive growth that it has undergone in the last 10 years has allowed the rise of the completely new field of cellular organic bioelectronics, which has now the chance to compete with consolidated approaches based on devices such as micro-electrode arrays and ISFET-based transducers both in in vitro and in vivo experimental practice. This review focuses on cellular interfaces based on organic active devices and has the intent of highlighting the recent advances and the most innovative approaches to the ongoing and everlasting challenge of interfacing living matter to the "external world" in order to unveil the hidden mechanisms governing its behavior. Device-wise, three different organic structures will be considered in this work, namely the organic electrochemical transistor (OECT), the solution-gated organic transistor (SGOFET - which is presented here in two possible different versions according to the employed active material, namely: the electrolyte-gated organic transistor - EGOFET, and the solution gated graphene transistor - gSGFET), and the organic charge modulated field effect transistor (OCMFET). Application-wise, this work will mainly focus on cellular-based biosensors employed in in vitro and in vivo cellular interfaces, with the aim of offering the reader a comprehensive retrospective of the recent past, an overview of the latest innovations, and a glance at the future prospects of this challenging, yet exciting and still mostly unexplored scientific field.
Collapse
Affiliation(s)
- Andrea Spanu
- Department of Electrical and Electronic Engineering, University of Cagliari, Via Marengo, 09123 Cagliari, CA, Italy.
| | | | | |
Collapse
|