1
|
Kawabe H, Manfio L, Magana Pena S, Zhou NA, Bradley KM, Chen C, McLendon C, Benner SA, Levy K, Yang Z, Marchand JA, Fuhrmeister ER. Harnessing Non-standard Nucleic Acids for Highly Sensitive Icosaplex (20-Plex) Detection of Microbial Threats for Environmental Surveillance. ACS Synth Biol 2025; 14:470-484. [PMID: 39898969 PMCID: PMC11854376 DOI: 10.1021/acssynbio.4c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
Environmental surveillance and clinical diagnostics heavily rely on the polymerase chain reaction (PCR) for target detection. A growing list of microbial threats warrants new PCR-based detection methods that are highly sensitive, specific, and multiplexable. Here, we introduce a PCR-based icosaplex (20-plex) assay for detecting 18 enteropathogen and two antimicrobial resistance genes. This multiplexed PCR assay leverages the self-avoiding molecular recognition system (SAMRS) to avoid primer dimer formation, the artificially expanded genetic information system (AEGIS) for amplification specificity, and next-generation sequencing for amplicon identification. Using parallelized multitarget TaqMan Array Cards (TAC) to benchmark performance of the 20-plex assay on wastewater, soil, and human stool samples, we found 90% agreement on positive calls and 89% agreement on negative calls. Additionally, we show how long-read and short-read sequencing information from the 20-plex can be used to further classify allelic variants of genes and distinguish subspecies. The strategy presented offers sensitive, affordable, and robust multiplex detection that can be used to support efforts in wastewater-based epidemiology, environmental monitoring, and human/animal diagnostics.
Collapse
Affiliation(s)
- Hinako Kawabe
- Chemical
Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Luran Manfio
- Foundation
for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, Florida 32615, United States
| | - Sebastian Magana Pena
- Foundation
for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, Florida 32615, United States
| | - Nicolette A. Zhou
- Department
of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Kevin M. Bradley
- Foundation
for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, Florida 32615, United States
- Firebird
Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, Florida 32615, United States
| | - Cen Chen
- Foundation
for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, Florida 32615, United States
- Firebird
Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, Florida 32615, United States
| | - Chris McLendon
- Firebird
Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, Florida 32615, United States
| | - Steven A. Benner
- Foundation
for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, Florida 32615, United States
- Firebird
Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, Florida 32615, United States
| | - Karen Levy
- Department
of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Zunyi Yang
- Foundation
for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, Florida 32615, United States
- Firebird
Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, Florida 32615, United States
| | - Jorge A. Marchand
- Chemical
Engineering, University of Washington, Seattle, Washington 98195, United States
- Molecular
Engineering and Science Institute, University
of Washington, Seattle, Washington 98195, United States
| | - Erica R. Fuhrmeister
- Department
of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
- Molecular
Engineering and Science Institute, University
of Washington, Seattle, Washington 98195, United States
- Civil and
Environmental Engineering, University of
Washington, Seattle, Washington 98195, United States
| |
Collapse
|
2
|
Kawabe H, Manfio L, Pena SM, Zhou NA, Bradley KM, Chen C, McLendon C, Benner SA, Levy K, Yang Z, Marchand JA, Fuhrmeister ER. Harnessing non-standard nucleic acids for highly sensitive icosaplex (20-plex) detection of microbial threats. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.09.24313328. [PMID: 39314929 PMCID: PMC11419210 DOI: 10.1101/2024.09.09.24313328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Environmental surveillance and clinical diagnostics heavily rely on the polymerase chain reaction (PCR) for target detection. A growing list of microbial threats warrants new PCR-based detection methods that are highly sensitive, specific, and multiplexable. Here, we introduce a PCR-based icosaplex (20-plex) assay for detecting 18 enteropathogen and two antimicrobial resistance genes. This multiplexed PCR assay leverages the self-avoiding molecular recognition system (SAMRS) to avoid primer dimer formation, the artificially expanded genetic information system (AEGIS) for amplification specificity, and next-generation sequencing for amplicon identification. We benchmarked this assay using a low-cost, portable sequencing platform (Oxford Nanopore) on wastewater, soil, and human stool samples. Using parallelized multi-target TaqMan Array Cards (TAC) to benchmark performance of the 20-plex assay, there was 74% agreement on positive calls and 97% agreement on negative calls. Additionally, we show how sequencing information from the 20-plex can be used to further classify allelic variants of genes and distinguish sub-species. The strategy presented offers sensitive, affordable, and robust multiplex detection that can be used to support efforts in wastewater-based epidemiology, environmental monitoring, and human/animal diagnostics.
Collapse
Affiliation(s)
- Hinako Kawabe
- Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Luran Manfio
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, FL 32615, USA
| | - Sebastian Magana Pena
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, FL 32615, USA
| | - Nicolette A. Zhou
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Seattle, WA, 98195, USA
| | - Kevin M. Bradley
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, FL 32615, USA
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, FL 32615, USA
| | - Cen Chen
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, FL 32615, USA
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, FL 32615, USA
| | - Chris McLendon
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, FL 32615, USA
| | - Steven A. Benner
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, FL 32615, USA
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, FL 32615, USA
| | - Karen Levy
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Seattle, WA, 98195, USA
| | - Zunyi Yang
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, FL 32615, USA
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, FL 32615, USA
| | - Jorge A. Marchand
- Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
- Molecular Engineering and Science Institute, University of Washington, Seattle, Seattle, WA, 98195, USA
| | - Erica R. Fuhrmeister
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Seattle, WA, 98195, USA
- Civil and Environmental Engineering, University of Washington, Seattle, Seattle, WA, 98195, USA
| |
Collapse
|
3
|
Flores-Contreras EA, González-González E, Trujillo-Rodríguez GDJ, Rodríguez-Sánchez IP, Ancer-Rodríguez J, Pérez-Maya AA, Alvarez-Cuevas S, Martinez-Fierro ML, Marino-Martínez IA, Garza-Veloz I. Isothermal Technologies for HPV Detection: Current Trends and Future Perspectives. Pathogens 2024; 13:653. [PMID: 39204253 PMCID: PMC11357395 DOI: 10.3390/pathogens13080653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
The human papillomavirus (HPV) is a non-enveloped DNA virus transmitted through skin-to-skin contact that infects epithelial and mucosal tissue. It has over 200 known genotypes, classified by their pathogenicity as high-risk and low-risk categories. High-risk HPV genotypes are associated with the development of different types of cancers, including cervical cancer, which is a leading cause of mortality in women. In clinical practice and the market, the principal tests used to detect HPV are based on cytology, hybrid detection, and qPCR. However, these methodologies may not be ideal for the required timely diagnosis. Tests have been developed based on isothermal nucleic acid amplification tests (INAATs) as alternatives. These tests offer multiple advantages over the qPCR, such as not requiring specialized laboratories, highly trained personnel, or expensive equipment like thermocyclers. This review analyzes the different INAATs applied for the detection of HPV, considering the specific characteristics of each test, including the HPV genotypes, gene target, the limit of detection (LOD), detection methods, and detection time. Additionally, we discuss the tests available on the market that are approved by the Food and Drug Administration (FDA). Finally, we address the challenges and potential solutions for the large-scale implementation of INAATs, particularly in rural or underserved areas.
Collapse
Affiliation(s)
- Elda A. Flores-Contreras
- Departamento de Patología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Francisco I. Madero y Dr. E. Aguirre Pequeño s/n, Mitras Centro, Monterrey 64460, Mexico; (E.A.F.-C.); (J.A.-R.); (S.A.-C.)
| | - Everardo González-González
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (E.G.-G.); (G.d.J.T.-R.); (M.L.M.-F.)
| | - Gerardo de Jesús Trujillo-Rodríguez
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (E.G.-G.); (G.d.J.T.-R.); (M.L.M.-F.)
| | - Iram P. Rodríguez-Sánchez
- Laboratorio de Fisiología Molecular y Estructural, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico;
| | - Jesús Ancer-Rodríguez
- Departamento de Patología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Francisco I. Madero y Dr. E. Aguirre Pequeño s/n, Mitras Centro, Monterrey 64460, Mexico; (E.A.F.-C.); (J.A.-R.); (S.A.-C.)
| | - Antonio Alí Pérez-Maya
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Francisco I. Madero y Dr. E. Aguirre Pequeño s/n, Mitras Centro, Monterrey 64460, Mexico;
| | - Salomon Alvarez-Cuevas
- Departamento de Patología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Francisco I. Madero y Dr. E. Aguirre Pequeño s/n, Mitras Centro, Monterrey 64460, Mexico; (E.A.F.-C.); (J.A.-R.); (S.A.-C.)
| | - Margarita L. Martinez-Fierro
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (E.G.-G.); (G.d.J.T.-R.); (M.L.M.-F.)
| | - Iván A. Marino-Martínez
- Departamento de Patología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Francisco I. Madero y Dr. E. Aguirre Pequeño s/n, Mitras Centro, Monterrey 64460, Mexico; (E.A.F.-C.); (J.A.-R.); (S.A.-C.)
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (E.G.-G.); (G.d.J.T.-R.); (M.L.M.-F.)
| |
Collapse
|
4
|
Wang S, Song H, Wang T, Xue H, Fei Y, Xiong X. Recent advancements with loop-mediated isothermal amplification (LAMP) in assessment of the species authenticity with meat and seafood products. Crit Rev Food Sci Nutr 2024; 65:2214-2235. [PMID: 38494899 DOI: 10.1080/10408398.2024.2329979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Species adulteration or mislabeling with meat and seafood products could negatively affect the fair trade, wildlife conservation, food safety, religion aspect, and even the public health. While PCR-based methods remain the gold standard for assessment of the species authenticity, there is an urgent need for alternative testing platforms that are rapid, accurate, simple, and portable. Owing to its ease of use, low cost, and rapidity, LAMP is becoming increasingly used method in food analysis for detecting species adulteration or mislabeling. In this review, we outline how the features of LAMP have been leveraged for species authentication test with meat and seafood products. Meanwhile, as the trend of LAMP detection is simple, rapid and instrument-free, it is of great necessity to carry out end-point visual detection, and the principles of various end-point colorimetry methods are also reviewed. Moreover, with the aim to enhance the LAMP reaction, different strategies are summarized to either suppress the nonspecific amplification, or to avoid the results of nonspecific amplification. Finally, microfluidic chip is a promising point-of-care method, which has been the subject of a great deal of research directed toward the development of microfluidic platforms-based LAMP systems for the species authenticity with meat and seafood products.
Collapse
Affiliation(s)
- Shihui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Hongwei Song
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Tianlong Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Hanyue Xue
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Yanjin Fei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Xiong Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
5
|
Li B, Zhai G, Dong Y, Wang L, Ma P. Recent progress on the CRISPR/Cas system in optical biosensors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:798-816. [PMID: 38259224 DOI: 10.1039/d3ay02147e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) protein systems are adaptive immune systems unique to archaea and bacteria, with the characteristics of targeted recognition and gene editing to resist the invasion of foreign nucleic acids. Biosensors combined with the CRISPR/Cas system and optical detection technology have attracted much attention in medical diagnoses, food safety, agricultural progress, and environmental monitoring owing to their good sensitivity, high selectivity, and fast detection efficiency. In this review, we introduce the mechanism of CRISPR/Cas systems and developments in this area, followed by summarizing recent progress on CRISPR/Cas system-based optical biosensors combined with colorimetric, fluorescence, electrochemiluminescence and surface-enhanced Raman scattering optical techniques in various fields. Finally, we discuss the challenges and future perspectives of CRISPR/Cas systems in optical biosensors.
Collapse
Affiliation(s)
- Bingqian Li
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, China.
| | - Guangyu Zhai
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yaru Dong
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Lan Wang
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, China.
| | - Peng Ma
- School of Basic Medicine, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
6
|
Ying J, Mao L, Tang Y, Fassatoui M, Song W, Xu X, Tang X, Li J, Liu H, Jian F, Du Q, Wong G, Feng W, Berthet N. Development and validation of real-time recombinase polymerase amplification-based assays for detecting HPV16 and HPV18 DNA. Microbiol Spectr 2023; 11:e0120723. [PMID: 37787547 PMCID: PMC10714791 DOI: 10.1128/spectrum.01207-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/08/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE HPV DNA screening is an effective approach for the prevention of cervical cancer. The novel real-time recombinase polymerase amplification-based HPV detection systems we developed constitute an improvement over the HPV detection methods currently used in clinical practice and should help to extend cervical cancer screening in the future, particularly in point-of-care test settings.
Collapse
Affiliation(s)
- Jiaxu Ying
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai, China
- Viral Hemorrhagic Fevers Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Lingjing Mao
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai, China
- Viral Hemorrhagic Fevers Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yujing Tang
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meriem Fassatoui
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai, China
| | - Wei Song
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaosheng Xu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojian Tang
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Li
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangfang Jian
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinwen Du
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gary Wong
- Viral Hemorrhagic Fevers Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Weiwei Feng
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nicolas Berthet
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai, China
- Institut Pasteur, Université Paris-Cite, Unité Environnement et Risque Infectieux, Cellule d’Intervention Biologique d’Urgence, Paris, France
- Institut Pasteur, Université Paris-cite, Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| |
Collapse
|
7
|
Fan M, Yang J, Wang X, Xu Y, Li B, Yang H, Lu Q, Min X, Huang M, Huang J. Highly specific detection of Neisseria gonorrhoeae based on recombinase polymerase amplification-initiated strand displacement amplification. Anal Chim Acta 2023; 1283:341956. [PMID: 37977801 DOI: 10.1016/j.aca.2023.341956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
Neisseria gonorrhoeae is the only pathogen that causes gonorrhea, and can have serious consequences if left untreated. A simple and accurate detection method for N. gonorrhoeae is essential for the diagnosis of gonorrhea and the appropriate prescription of antibiotics. The application of isothermal recombinase polymerase amplification (RPA) to detect this pathogen is advantageous because of its rapid performance, high sensitivity, and minimal dependency on equipment. However, this simplicity is offset by the risk of false-positive signals from primer-dimers and primer-probe dimers. In this study, RPA-initiated strand displacement amplification (SDA) was established for the detection of N. gonorrhoeae, and eliminated false-positive signals from primer-dimers and primer-probe dimers. The developed biosensor allows for the reduced generation of nonspecific RPA amplification through the design of enzyme cleavage sites on primers, introduction of SDA, and detection of the final product using a molecular beacon (MB). Using this system, the DNA double strand is transformed into single-stranded DNA following SDA, thereby providing a more suitable binding substrate and improving the efficiency of MB detection. Amplification can be conducted below 37 °C, and the process can be completed within 90 min. The limit of detection was determined to be 0.81 copies/μL. This system is highly specific for N. gonorrhoeae and exhibits no cross-reactivity with other common urogenital pathogens. The results of this study are consistent with those of real-time PCR performed on clinical specimens of urogenital secretions. In summary, the biosensor is a simple and specific detection method for N. gonorrhoeae.
Collapse
Affiliation(s)
- Mengnan Fan
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Jianru Yang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Xiaosu Wang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Yongjie Xu
- Department of Laboratory Medicine, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Bing Li
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Hui Yang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Qin Lu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Xun Min
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Meirong Huang
- Department of Blood Transfusion, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Jian Huang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
8
|
Xiao J, Li J, Quan S, Wang Y, Jiang G, Wang Y, Huang H, Jiao W, Shen A. Development and preliminary assessment of a CRISPR-Cas12a-based multiplex detection of Mycobacterium tuberculosis complex. Front Bioeng Biotechnol 2023; 11:1233353. [PMID: 37711452 PMCID: PMC10497956 DOI: 10.3389/fbioe.2023.1233353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023] Open
Abstract
Since the onset of the COVID-19 pandemic in 2020, global efforts towards tuberculosis (TB) control have encountered unprecedented challenges. There is an urgent demand for efficient and cost-effective diagnostic technologies for TB. Recent advancements in CRISPR-Cas technologies have improved our capacity to detect pathogens. The present study established a CRISPR-Cas12a-based multiplex detection (designated as MCMD) that simultaneously targets two conserved insertion sequences (IS6110 and IS1081) to detect Mycobacterium tuberculosis complex (MTBC). The MCMD integrated a graphene oxide-assisted multiplex recombinase polymerase amplification (RPA) assay with a Cas12a-based trans-cleavage assay identified with fluorescent or lateral flow biosensor (LFB). The process can be performed at a constant temperature of around 37°C and completed within 1 h. The limit of detection (LoD) was 4 copies μL-1, and no cross-reaction was observed with non-MTBC bacteria strains. This MCMD showed 74.8% sensitivity and 100% specificity in clinical samples from 107 patients with pulmonary TB and 40 non-TB patients compared to Xpert MTB/RIF assay (63.6%, 100%). In this study, we have developed a straightforward, rapid, highly sensitive, specific, and cost-effective assay for the multiplex detection of MTBC. Our assay showed superior diagnostic performance when compared to the widely used Xpert assay. The novel approach employed in this study makes a substantial contribution to the detection of strains with low or no copies of IS6110 and facilitates point-of-care (POC) testing for MTBC in resource-limited countries.
Collapse
Affiliation(s)
- Jing Xiao
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, National Center for Children’s Health, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Jieqiong Li
- Medical Research Center, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shuting Quan
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, National Center for Children’s Health, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Yacui Wang
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, National Center for Children’s Health, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Guanglu Jiang
- National Tuberculosis Clinical Laboratory, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Hairong Huang
- National Tuberculosis Clinical Laboratory, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Weiwei Jiao
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, National Center for Children’s Health, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Adong Shen
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, National Center for Children’s Health, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Wang F, Wang H, Zhang L, Ji T, Gao Y, Wang Y, Dong S, Gao X. An improved recombinase polymerase amplification assay for the visual detection of Staphylococcus epidermidis with lateral flow strips. Clin Chim Acta 2023; 548:117455. [PMID: 37394163 DOI: 10.1016/j.cca.2023.117455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
Staphylococcus epidermidis is an opportunistic pathogenic microorganism that is an important cause of cross-infection in hospitals. The development of rapid and effective detection techniques is important for its control. The application of traditional identification and PCR-based methods is limited by their requirements for both laboratory instrumentation and trained personnel. To overcome this issue, we developed a fast detection approach for S. epidermidis that was based on recombinase polymerase amplification (RPA) and lateral flow strips (LFS). First, five pairs of primers were designed for molecular diagnosis using the sesB gene as the target, and were screened for their amplification performance and the formation of primer dimers. Specific probes were then designed based on the best primer pairs screened, which were susceptible to primer-dependent artifacts and generated false-positive signals when used for LFS detection. This weakness of the LFS assay was overcome by modifying the sequences of the primers and probes. The efficacy of these measures was rigorously tested, and improved the RPA-LFS system. Standardized systems completed the amplification process within 25 min at a constant temperature of 37 °C, followed by visualization of the LFS within 3 min. The approach was very sensitive (with a detection limit of 8.91 CFU/μL), with very good interspecies specificity. In the analysis of clinical samples, the approach produced results consistent with PCR and 97.78% consistent with the culture-biochemical method, with a kappa index of 0.938. Our method was rapid, accurate, and less dependent on equipment and trained personnel than traditional methods, and provided information for the timely development of rational antimicrobial treatment plans. It has high potential utility in clinical settings, particularly in resource-constrained locations.
Collapse
Affiliation(s)
- Fang Wang
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University), Lianyungang 222023, China; Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang 222023, China
| | - Hui Wang
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University), Lianyungang 222023, China
| | - Linhai Zhang
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University), Lianyungang 222023, China
| | - Tuo Ji
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University), Lianyungang 222023, China; Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang 222023, China
| | - Yuzhi Gao
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University), Lianyungang 222023, China; Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang 222023, China
| | - Yan Wang
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University), Lianyungang 222023, China
| | - Shude Dong
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University), Lianyungang 222023, China.
| | - Xuzhu Gao
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University), Lianyungang 222023, China; Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang 222023, China.
| |
Collapse
|
10
|
Tang R, Yan X, Li M, Du A, Yang H, Yin H, Xie M. A wash-free, elution-free and low protein adsorption paper-based material for nucleic acid extraction. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37366244 DOI: 10.1039/d3ay00695f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Nucleic acid detection technologies have been widely utilized for various diseases. Conventional laboratory tests are less suitable for use in resource-limited settings as they are time-consuming, high-cost, complex, and heavily dependent on benchtop equipment. Rapid nucleic acid detection methods that consist of rapid nucleic acid extraction steps could overcome these challenges. A paper-based platform has been utilized to develop various rapid nucleic acid extraction methods owing to its cost-effectiveness, portability, and easy-modification. However, the existing paper-based nucleic acid extraction technologies mainly focus on improving the adsorption capacity of nucleic acids without reducing the non-specific adsorption capacity of proteins. In this study, paper-based nucleic acid extraction technology with wash-free, elution-free, and low protein adsorption was developed. The fabrication of paper involves the mixing of polyethylene glycol (PEG)-modified cotton fiber, chitosan (COS)-modified cotton fiber, and cotton fiber to form PEG-modified cotton fiber/chitosan-modified cotton fiber/cotton fiber (PEG-CF/COS-CF/CF) paper by the wet molding method. The result showed that PEG-CF/COS-CF/CF paper has a desirable pore size (23.9 ± 4.03 μm), good mechanical strength (dry: 9.37 Mpa and wet: 0.28 Mpa), and hydrophilicity (contact angle: 42.6° ± 0.36°). NH3+ groups of COS and OH- groups of PEG were observed on its surface and the adsorption efficiency of nucleic acid in TE buffer was 42.48% ± 0.30%. The limit of detection of pure DNA with this PEG-CF/COS-CF/CF paper by qPCR was as low as 25 ng. Additionally, this platform could successfully extract nucleic acid from 30 μL of a saliva sample, highlighting its potential use for clinical sample testing. The proposed paper-based nucleic acid extraction platform shows tremendous potential for disease diagnosis in resource-limited settings.
Collapse
Affiliation(s)
- Ruihua Tang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Xueyan Yan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Min Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Aoqi Du
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Huancai Yin
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Mingyue Xie
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| |
Collapse
|
11
|
Zeng Y, Zhou L, Yang Z, Yu X, Song Z, He Y. High sensitivity SARS-CoV-2 detection using graphene oxide-multiplex qPCR. Anal Chim Acta 2022; 1234:340533. [PMID: 36328724 PMCID: PMC9578719 DOI: 10.1016/j.aca.2022.340533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/09/2022] [Accepted: 10/16/2022] [Indexed: 11/25/2022]
Abstract
The emerging pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) critically challenges early and accurate virus diagnoses. However, the current gold standard for SARS-CoV-2 detection, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), has reportedly failed to detect low-viral loads. One compound, graphene oxide (GO), which adsorbs single-stranded DNA (ssDNA), has been widely applied in molecular pathogen detection. This study presents a highly sensitive GO-multiplex qPCR method for simultaneous detection of two SARS-CoV-2 genes (RdRP and E) and one reference gene (RNase P). In a GO-multiplex qPCR system, GO pre-absorbs each forward primer to form specific GO-forward primer composites before entering the amplification system. Target gene amplification is confined within the primer-enriched composites, thus, improving the sensitivity of the assay. Compared to conventional multiplex qPCR, GO-multiplex qPCR reduces the limit of detection by 10-fold to 10 copies/reaction. Hence, the GO-multiplex qPCR assay can be effectively used for SARS-CoV-2 detection.
Collapse
Affiliation(s)
- Yuanyuan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Lili Zhou
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Zhongzhu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Xiuzhong Yu
- Department of Laboratory Medicine, People's Hospital of Xinjin District, Chengdu, Sichuan, 611430, China
| | - Zhen Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yang He
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| |
Collapse
|
12
|
Gong L, Jin Z, Liu E, Tang F, Yuan F, Liang J, Wang Y, Liu X, Wang Y. Highly Sensitive and Specific Detection of Mobilized Colistin Resistance Gene mcr-1 by CRISPR-Based Platform. Microbiol Spectr 2022; 10:e0188422. [PMID: 36043860 PMCID: PMC9602551 DOI: 10.1128/spectrum.01884-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/15/2022] [Indexed: 12/31/2022] Open
Abstract
Mobilized colistin resistance (mcr-1) gene mediated by plasmid can cause the speediness dissemination of colistin-resistant strains, which have given rise to a great threat to the treatment of human infection. Hence, a rapid and accurate diagnosis technology for detecting mcr-1 is essential for the control of resistance gene. Here, a recombinase polymerase amplification (RPA) coupled with CRISPR/Cas12a platform was established for rapid, sensitive, and specific detection of mcr-1 gene. The analytical sensitivity of our assay is 420 fg per reaction in pure mcr-1-positive isolates, and the threshold of this method in spiked clinical samples was down to 1.6 × 103 ~ 6.2 × 103 CFU/mL (1.6 ~ 6.2 CFU/reaction). Moreover, the RPA-CRISPR/Cas12a system perspicuously demonstrated no cross-reactivity with other resistant genes. The entire experimental process included rapid DNA extraction (15 min), RPA reaction (30 min), CRISPR/Cas12a cleavage (5 min), and fluorescence testing (<10 min), which could be completed within 60 min. In summary, the RPA-CRISPR/Cas12a assay designed here provides a rapid diagnostic way for monitoring mcr-1 in clinic and livestock farm. IMPORTANCE This study promises a rapid and accurate assay (RPA-CRISPR/Cas12a) for the surveillance of mcr-1 gene, which causes the efficacy loss of colistin in clinical treatments. In addition, the established method is fit for "on-site" surveillance especially.
Collapse
Affiliation(s)
- Lin Gong
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Zhengjiang Jin
- Department of Clinical Laboratory, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, China
| | - Ernan Liu
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Fei Tang
- Institute of Environmental Medicine, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fengyun Yuan
- Institute of Environmental Medicine, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiansheng Liang
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Yimei Wang
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Xiaoli Liu
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
13
|
Wang F, Wang Y, Liu X, Wang L, Wang K, Xu C, Huang G, Gao X. Rapid, Simple, and Highly Specific Detection of Streptococcus pneumoniae With Visualized Recombinase Polymerase Amplification. Front Cell Infect Microbiol 2022; 12:878881. [PMID: 35719347 PMCID: PMC9201913 DOI: 10.3389/fcimb.2022.878881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
Streptococcus pneumoniae is a major pathogen that causes microbiological illness in humans. The introduction of polyvalent vaccines has resulted in a significant decrease in pneumococcal-related mortality. However, pneumococcal infections continue to be a leading cause of death in children under the age of 5 and adults over the age of 65 worldwide. A speedy and highly sensitive diagnostic tool is necessary for routine adoption to adequately manage patients and control the spread of infection. In this study, we investigated a new nucleic acid amplification technique, isothermal recombinase polymerase amplification (RPA), which amplifies DNA at 37°C under isothermal conditions with high specificity, efficiency, and rapidity. Using the autolysin gene lytA as the molecular diagnostic target, an RPA primer-probe combination was designed and optimized for the detection of S. pneumoniae. This RPA reaction produced amplification products labeled with specific chemical markers, to be detected with gold-nanoparticle-based lateral flow strips (LFS), reducing the reliance on equipment and trained personnel. The high specificity of the RPA-LFS technique was demonstrated with the specific detection of 22 strains of S. pneumoniae but not 25 closely related pathogenic bacteria. The assay showed good sensitivity, and detected S. pneumoniae down to 3.32 colony-forming units/μL. When used on clinical samples, the assay provided accurate and consistent results compared with PCR. The compliance with the culture-biochemistry method was 98.18% and the kappa index was 0.977. These results reveal that the RPA–LFS test significantly improved S. pneumoniae identification, particularly in resource-limited areas.
Collapse
Affiliation(s)
| | | | | | | | | | - Chenglai Xu
- *Correspondence: Chenglai Xu, ; Guanhong Huang, ; Xuzhu Gao,
| | - Guanhong Huang
- *Correspondence: Chenglai Xu, ; Guanhong Huang, ; Xuzhu Gao,
| | - Xuzhu Gao
- *Correspondence: Chenglai Xu, ; Guanhong Huang, ; Xuzhu Gao,
| |
Collapse
|
14
|
Jin X, Fu R, Du W, Shan X, Mao Z, Deng A, Lin X, Su Y, Yang H, Lv W, Zhong H, Huang G. Rapid, Highly Sensitive, and Label-Free Pathogen Assay System Using a Solid-Phase Self-Interference Recombinase Polymerase Amplification Chip and Hyperspectral Interferometry. Anal Chem 2022; 94:2926-2933. [PMID: 35107980 DOI: 10.1021/acs.analchem.1c04858] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recombinase polymerase amplification (RPA) is a useful pathogen identification method. Several label-free detection methods for RPA amplicons have been developed in recent years. However, these methods still lack sensitivity, specificity, efficiency, or simplicity. In this study, we propose a rapid, highly sensitive, and label-free pathogen assay system based on a solid-phase self-interference RPA chip (SiSA-chip) and hyperspectral interferometry. The SiSA-chips amplify and capture RPA amplicons on the chips, rather than irrelevant amplicons such as primer dimers, and the SiSA-chips are then analysed by hyperspectral interferometry. Optical length increases of SiSA-chips are used to demonstrate RPA detection results, with a limit of detection of 1.90 nm. This assay system can detect as few as six copies of the target 18S rRNA gene of Plasmodium falciparum within 20 min, with a good linear relationship between the detection results and the concentration of target genes (R2 = 0.9903). Single nucleotide polymorphism (SNP) genotyping of the dhfr gene of Plasmodium falciparum is also possible using the SiSA-chip, with as little as 1% of mutant gene distinguished from wild-type loci (m/wt). This system offers a high-efficiency (20 min), high-sensitivity (6 copies/reaction), high-specificity (1% m/wt), and low-cost (∼1/50 of fluorescence assays for RPA) diagnosis method for pathogen DNA identification. Therefore, this system is promising for fast identification of pathogens to help diagnose infectious diseases, including SNP genotyping.
Collapse
Affiliation(s)
- Xiangyu Jin
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Rongxin Fu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wenli Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaohui Shan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zeyin Mao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Anni Deng
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xue Lin
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ya Su
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Han Yang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wenqi Lv
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hao Zhong
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Guoliang Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.,National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
| |
Collapse
|
15
|
Chen XX, Liu JH, Kurniawan A, Li KJ, Zhou CH. Inclusion of organic species in exfoliated montmorillonite nanolayers towards hierarchical functional inorganic-organic nanostructures. SOFT MATTER 2021; 17:9819-9841. [PMID: 34698330 DOI: 10.1039/d1sm00975c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Montmorillonite (Mt) can readily undergo spontaneous delamination or exfoliation into nanolayers by various physical and chemical processes, which allow various strategies to engineer hierarchical functional inorganic-organic nanostructures. This review aims to discuss the recent progress in the liquid-phase exfoliation of Mt into individual nanolayers and the inclusion chemistry of functional organic species, ions, or molecules into the exfoliated Mt nanolayers to produce hierarchical functional inorganic-organic nanostructures. The exfoliation methods include mechanical force, ultrasonication, and intercalation-assisted exfoliation. Techniques for quickly assessing the quality of the exfoliated Mt nanolayers are still needed. Layer-by-layer (LbL) deposition, template, and evaporation-induced inclusions are examined to fabricate hierarchical Mt-organic species nanocomposites with unique functionalities and properties. The nanocomposites can be produced as multilayered porous films, brick-and-mortar coatings, hydrogels with a house-of-cards structure, core-shell materials, and hollow and mesoporous spherical nanocomposites, which exhibit significant potential for adsorption, catalysis, targeted delivery and controlled drug release, highly sensitive sensors, flame retardant coatings, and thermal energy storage and release (i.e. phase change materials). Finally, the challenges and prospects for the future development of hierarchical nanocomposites of exfoliated Mt nanolayers and organic species, particularly in hierarchical supramolecular nanostructured composites, are highlighted.
Collapse
Affiliation(s)
- Xi Xi Chen
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
- Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Jia Hui Liu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
- Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Alfin Kurniawan
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Ke Jin Li
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Chun Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
- Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| |
Collapse
|
16
|
Rapid Identification of Salmo salar Using a Combined Isothermal Recombinase Polymerase Amplification–Lateral Flow Strip Approach. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02128-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Kim HE, Schuck A, Lee SH, Lee Y, Kang M, Kim YS. Sensitive electrochemical biosensor combined with isothermal amplification for point-of-care COVID-19 tests. Biosens Bioelectron 2021; 182:113168. [PMID: 33780853 PMCID: PMC7970423 DOI: 10.1016/j.bios.2021.113168] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022]
Abstract
We report an electrochemical biosensor combined with recombinase polymerase amplification (RPA) for rapid and sensitive detection of severe acute respiratory syndrome coronavirus 2. The electrochemical biosensor based on a multi-microelectrode array allows the detection of multiple target genes by differential pulse voltammetry. The RPA reaction involves hybridization of the RPA amplicon with thiol-modified primers immobilized on the working electrodes, which leads to a reduction of current density as amplicons accumulate. The assay results in shorter "sample-to-answer" times than conventional PCR without expensive thermo-cycling equipment. The limits of detection are about 0.972 fg/μL (RdRP gene) and 3.925 fg/μL (N gene), which are slightly lower than or comparable to that of RPA assay results obtained by gel electrophoresis without post-amplification purification. The combination of electrochemical biosensors and the RPA assay is a rapid, sensitive, and convenient platform that can be potentially used as a point-of-care test for the diagnosis of COVID-19.
Collapse
Affiliation(s)
- Hyo Eun Kim
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ariadna Schuck
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - See Hi Lee
- Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yunjong Lee
- Department of Pharmacology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Minhee Kang
- Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Medical Device Management and Research, SAIHST (Samsung Advanced Institute for Health Sciences & Technology), Sungkyunkwan University, Seoul, Republic of Korea.
| | - Yong-Sang Kim
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|