1
|
Zhu Y, Cheng Z, Wang X, Zhang C, Li X, Wei Y, Wang J, Fang Y, Wang Y, Zhang D. Synergistic optimization strategies for the development of multienzymatic cascade system-based electrochemical biosensors with enhanced performance. Biosens Bioelectron 2025; 274:117222. [PMID: 39908851 DOI: 10.1016/j.bios.2025.117222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
Multienzymatic cascade system (MCS) strategies have been a topic of growing interest in the electrochemical biosensor research field owing to their many advantages. By combining two or more enzymes in an appropriate manner, MCS approaches can extend the range of detection for particular analytes while improving the overall efficiency of biocatalytic cascade reactions. Compared with mono-enzyme biosensors, the integration of MCS and electrochemical biosensor platforms is inherently more challenging owing to the increased complexity of the resultant system. In recent years, substantial progress in the development of MCS-based electrochemical biosensors with enhanced analytical performance has been made. This review provides an overview of the types of MCS strategies and their biosensor applications, together with a summary of synergistic optimization approaches that can help improve key parameters including sensitivity, selectivity, and stability when designing MCS-based electrochemical biosensors. These discussions include examples of published biosensor platforms (2016-2024) while also surveying key advances in associated research areas including redox mediators/enzyme co-immobilization, enzyme engineering, multienzyme spatial regulation, enzyme-nanozyme integration and others. Lastly, a brief overview of current challenges and future perspectives pertaining to MCS-based electrochemical biosensor design is provided.
Collapse
Affiliation(s)
- Yuzhuo Zhu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Zhaoming Cheng
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Xueqi Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Chuanjun Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Xuwen Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Yanxue Wei
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Jiajia Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Yuxin Fang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin, 301617, PR China; Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 301617, PR China.
| | - Yi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; State Key Laboratory of Chinese Medicine Modernization, Tianjin, 301617, PR China.
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin, 301617, PR China; State Key Laboratory of Chinese Medicine Modernization, Tianjin, 301617, PR China.
| |
Collapse
|
2
|
Miura D, Hayashi W, Hirano K, Sasaki I, Tsukakoshi K, Kakizoe H, Asai S, Vavricka CJ, Takemae H, Mizutani T, Tsugawa W, Sode K, Ikebukuro K, Asano R. Proximity-Unlocked Luminescence by Sequential Enzymatic Reactions from Antibody and Antibody/Aptamer (PULSERAA): A Platform for Detection and Visualization of Virus-Containing Spots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403871. [PMID: 39316377 DOI: 10.1002/advs.202403871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/23/2024] [Indexed: 09/25/2024]
Abstract
The SARS-CoV-2 pandemic has challenged more scientists to detect viruses and to visualize virus-containing spots for diagnosis and infection control; however, detection principles of commercially available technologies are not optimal for visualization. Here, a convenient and universal homogeneous detection platform named proximity-unlocked luminescence by sequential enzymatic reactions from antibody and antibody/aptamer (PULSERAA) is developed. This is designed so that the signal appears only when the donor and acceptor are in proximity on the viral surface. PULSERAA specifically detected in the range of 25-500 digital copies/mL of inactivated SARS-CoV-2 after simply mixing reagents; it is elucidated that the accumulation of chemical species in a limited space of the viral surface contributed to such high sensitivity. PULSERAA was quickly adapated to detect another virus variant, inactivated influenza A virus, and infectious SARS-CoV-2 in a clinical sample. Furthermore, on-site (direct, rapid, and portable) visualization of the inactivated SARS-CoV-2-containing spots by a conventional smartphone camera was achieved, demonstrating that PULSERAA can be a practical tool for preventing the next pandemic in the future.
Collapse
Affiliation(s)
- Daimei Miura
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo, 183-8538, Japan
| | - Wakana Hayashi
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kensuke Hirano
- Department of Industrial Technology and Innovation, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Ikkei Sasaki
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Hidehumi Kakizoe
- Department of Laboratory Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Satomi Asai
- Department of Laboratory Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Division of Infection Control, Tokai University Hospital, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Christopher J Vavricka
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo, 183-8538, Japan
| | - Hitoshi Takemae
- Center for Infectious Disease Epidemiology and Prevention Research, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Tetsuya Mizutani
- Center for Infectious Disease Epidemiology and Prevention Research, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Wakako Tsugawa
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Koji Sode
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo, 183-8538, Japan
| |
Collapse
|
3
|
Li Z, Ma X, Yang Y, Wang Y, Zhu W, Deng X, Chen T, Gao C, Zhang Y, Yang W, Xing H, Ye X, Wu A, Zhang X. Crizotinib resistance reversal in ALK-positive lung cancer through zeolitic imidazolate framework-based mitochondrial damage. Acta Biomater 2024; 185:381-395. [PMID: 39067643 DOI: 10.1016/j.actbio.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Crizotinib (CRZ), one of anaplastic lymphoma kinase tyrosine kinase inhibitors (ALK-TKIs), has emerged as a frontline treatment for ALK-positive (ALK+) lung adenocarcinoma. However, the overexpression of P-glycoprotein (P-gp, a mitochondrial adenosine triphosphate (ATP)-dependent protein) in lung adenocarcinoma lesions causes multidrug resistance (MDR) and limits the efficacy of CRZ treatment. Herein, a mitochondria-targeting nanosystem, zeolitic imidazolate framework-90@indocyanine green (ZIF-90@ICG), was fabricated to intervene in mitochondria and overcome drug resistance. Due to the zinc ion (Zn2+) interference of ZIF-90 and the photodynamic therapy (PDT) of ICG, this nanosystem is well suited for damaging mitochondrial functions, thus downregulating the intracellular ATP level and inhibiting P-gp expression. In addition, systematic bioinformatics analysis revealed the upregulation of CD44 in CRZ-resistant cells. Therefore, hyaluronic acid (HA, a critical target ligand of CD44) was further modified on the surface of ZIF-90@ICG for active targeting. Overall, this ZIF-90@ICG nanosystem synergistically increased the intracellular accumulation of CRZ and reversed CRZ resistance to enhance its anticancer effect, which provides guidance for nanomedicine design to accurately target tumours and induce mitochondrial damage and represents a viable regimen for improving the prognosis of patients with ALK-TKIs resistance. STATEMENT OF SIGNIFICANCE: The original aim of our research was to combat multidrug resistance (MDR) in highly aggressive and lethal lymphoma kinase-positive (ALK+) lung adenocarcinoma. For this purpose, a cascade-targeted system was designed to overcome MDR, integrating lung adenocarcinoma-targeted hyaluronic acid (HA), mitochondrion-targeted zeolitic imidazolate framework-90 (ZIF-90), the clinically approved drug crizotinib (CRZ), and the fluorescence imaging agent/photosensitizer indocyanine green (ICG). Moreover, using a "two birds with one stone" strategy, ion interference and oxidative stress induced by ZIF-90 and photodynamic therapy (PDT), respectively, disrupt mitochondrial homeostasis, thus downregulating adenosine triphosphate (ATP) levels, inhibiting MDR-relevant P-glycoprotein (P-gp) expression and suppressing tumour metastasis. Overall, this research represents an attempt to implement the concept of MDR reversal and realize the trade-offs between MDR and therapeutic effectiveness.
Collapse
Affiliation(s)
- Zhouhua Li
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Xuehua Ma
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China.
| | - Yanqiang Yang
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yanan Wang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China
| | - Weihao Zhu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China
| | - Xiaoxia Deng
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China
| | - Tianxiang Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Changyong Gao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Yongchang Zhang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Weichang Yang
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Hongquan Xing
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Xiaoqun Ye
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China.
| | - Xinyi Zhang
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
4
|
Le PG, Le HTN, Kim HE, Cho S. SAM-Support-Based Electrochemical Sensor for Aβ Biomarker Detection of Alzheimer's Disease. BIOSENSORS 2023; 13:809. [PMID: 37622895 PMCID: PMC10452698 DOI: 10.3390/bios13080809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Alzheimer's disease has taken the spotlight as a neurodegenerative disease which has caused crucial issues to both society and the economy. Specifically, aging populations in developed countries face an increasingly serious problem due to the increasing budget for patient care and an inadequate labor force, and therefore a solution is urgently needed. Recently, diverse techniques for the detection of Alzheimer's biomarkers have been researched and developed to support early diagnosis and treatment. Among them, electrochemical biosensors and electrode modification proved their effectiveness in the detection of the Aβ biomarker at appropriately low concentrations for practice and point-of-care application. This review discusses the production and detection ability of amyloid beta, an Alzheimer's biomarker, by electrochemical biosensors with SAM support for antibody conjugation. In addition, future perspectives on SAM for the improvement of electrochemical biosensors are also proposed and discussed.
Collapse
Affiliation(s)
- Phan Gia Le
- Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Republic of Korea; (P.G.L.); (H.T.N.L.)
| | - Hien T. Ngoc Le
- Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Republic of Korea; (P.G.L.); (H.T.N.L.)
| | - Hee-Eun Kim
- Department of Dental Hygiene, Gachon University, Incheon 21936, Republic of Korea;
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Republic of Korea; (P.G.L.); (H.T.N.L.)
- Department of Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
5
|
Khan S, Cho WC, Sepahvand A, Haji Hosseinali S, Hussain A, Nejadi Babadaei MM, Sharifi M, Falahati M, Jaragh-Alhadad LA, ten Hagen TLM, Li X. Electrochemical aptasensor based on the engineered core-shell MOF nanostructures for the detection of tumor antigens. J Nanobiotechnology 2023; 21:136. [PMID: 37101280 PMCID: PMC10131368 DOI: 10.1186/s12951-023-01884-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
It is essential to develop ultrasensitive biosensors for cancer detection and treatment monitoring. In the development of sensing platforms, metal-organic frameworks (MOFs) have received considerable attention as potential porous crystalline nanostructures. Core-shell MOF nanoparticles (NPs) have shown different diversities, complexities, and biological functionalities, as well as significant electrochemical (EC) properties and potential bio-affinity to aptamers. As a result, the developed core-shell MOF-based aptasensors serve as highly sensitive platforms for sensing cancer biomarkers with an extremely low limit of detection (LOD). This paper aimed to provide an overview of different strategies for improving selectivity, sensitivity, and signal strength of MOF nanostructures. Then, aptamers and aptamers-modified core-shell MOFs were reviewed to address their functionalization and application in biosensing platforms. Additionally, the application of core-shell MOF-assisted EC aptasensors for detection of several tumor antigens such as prostate-specific antigen (PSA), carbohydrate antigen 15-3 (CA15-3), carcinoembryonic antigen (CEA), human epidermal growth factor receptor-2 (HER2), cancer antigen 125 (CA-125), cytokeratin 19 fragment (CYFRA21-1), and other tumor markers were discussed. In conclusion, the present article reviews the advancement of potential biosensing platforms toward the detection of specific cancer biomarkers through the development of core-shell MOFs-based EC aptasensors.
Collapse
Affiliation(s)
- Suliman Khan
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Medical Lab Technology, The University of Haripur, Haripur, Pakistan
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong China
| | - Afrooz Sepahvand
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Haji Hosseinali
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Mohammad Mahdi Nejadi Babadaei
- Department of Molecular Genetics, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Depatment of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, The Netherlands
| | | | - Timo L. M. ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, The Netherlands
| | - Xin Li
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Xie P, Wang D, Zhao H, Yin N, Hu S, Qin W, Meng L, Pan X, Yuan Y, Yuan R, Peng K. Electrochemical biomimetic enzyme cascade amplification combined with target-induced DNA walker for detection of thrombin. Mikrochim Acta 2023; 190:188. [PMID: 37079080 DOI: 10.1007/s00604-023-05769-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/29/2023] [Indexed: 04/21/2023]
Abstract
Fe-N-doped carbon nanomaterials (Fe-N/CMs) were designed as a novel biomimetic enzyme with excellent peroxidase-like activity to achieve high-efficient enzyme cascade catalytic amplification with the aid of glucose oxidase (GOx), which was further combined with target-induced DNA walker amplification to develop a sensitive electrochemical biosensor for thrombin detection. Impressively, massive output DNA was transformed from small amounts of target thrombin by highly effective DNA walker amplification as protein-converting strategy, which could then induce the immobilization of functionalized nanozyme on the electrode surface to achieve the high-efficient electrochemical biomimetic enzyme cascade amplification. As a result, an amplified enzyme cascade catalytic signal was measured for thrombin detection ranging from 0.01 pM to 1 nM with a low detection limit of 3 fM. Importantly, the new biomimetic enzyme cascade reaction coupled the advantages of natural enzyme and nanozyme, which paved an avenue to construct varied artificial multienzymes amplification systems for biosensing, bioanalysis, and disease diagnosis applications.
Collapse
Affiliation(s)
- Pan Xie
- Department of Nephrology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Ding Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Hongwen Zhao
- Department of Nephrology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Na Yin
- Department of Nephrology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Shuang Hu
- Department of Nephrology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Wenhan Qin
- Department of Nephrology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Li Meng
- Department of Nephrology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Xin Pan
- Department of Nephrology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Yali Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China.
| | - Kanfu Peng
- Department of Nephrology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
| |
Collapse
|
7
|
Chen H, Zhang J, Huang R, Wang D, Deng D, Zhang Q, Luo L. The Applications of Electrochemical Immunosensors in the Detection of Disease Biomarkers: A Review. Molecules 2023; 28:molecules28083605. [PMID: 37110837 PMCID: PMC10144570 DOI: 10.3390/molecules28083605] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Disease-related biomarkers may serve as indicators of human disease. The clinical diagnosis of diseases may largely benefit from timely and accurate detection of biomarkers, which has been the subject of extensive investigations. Due to the specificity of antibody and antigen recognition, electrochemical immunosensors can accurately detect multiple disease biomarkers, including proteins, antigens, and enzymes. This review deals with the fundamentals and types of electrochemical immunosensors. The electrochemical immunosensors are developed using three different catalysts: redox couples, typical biological enzymes, and nanomimetic enzymes. This review also focuses on the applications of those immunosensors in the detection of cancer, Alzheimer's disease, novel coronavirus pneumonia and other diseases. Finally, the future trends in electrochemical immunosensors are addressed in terms of achieving lower detection limits, improving electrode modification capabilities and developing composite functional materials.
Collapse
Affiliation(s)
- Huinan Chen
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jialu Zhang
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Rong Huang
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dejia Wang
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dongmei Deng
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Qixian Zhang
- School of Materials Science and Engineering, Shanghai University, Shanghai 200436, China
- Shaoxing Institute of Technology, Shanghai University, Shaoxing 312000, China
| | - Liqiang Luo
- College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
8
|
Ji Y, Gao W, Sohail M, Lin L, Zhang X. Post-synthesis modification of metal-organic framework boosts solvent-free enzymatic esterifications. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
9
|
Sun R, Lv R, Du T, Li Y, Zhang Y, Chen L, Qi Y. Freeze-thaw induced co-assembly of multi-enzyme immobilized AuNPs probes for fast detection of glucose and hypoxanthine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Chang Y, Lou J, Yang L, Liu M, Xia N, Liu L. Design and Application of Electrochemical Sensors with Metal-Organic Frameworks as the Electrode Materials or Signal Tags. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183248. [PMID: 36145036 PMCID: PMC9506444 DOI: 10.3390/nano12183248] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/01/2023]
Abstract
Metal-organic frameworks (MOFs) with fascinating chemical and physical properties have attracted immense interest from researchers regarding the construction of electrochemical sensors. In this work, we review the most recent advancements of MOF-based electrochemical sensors for the detection of electroactive small molecules and biological macromolecules (e.g., DNA, proteins, and enzymes). The types and functions of MOF-based nanomaterials in terms of the design of electrochemical sensors are also discussed. Furthermore, the limitations and challenges of MOF-based electrochemical sensing devices are explored. This work should be invaluable for the development of MOF-based advanced sensing platforms.
Collapse
Affiliation(s)
- Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
- School of Chemistry and Materials Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiaxin Lou
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Luyao Yang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Miaomiao Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
11
|
Wei D, Xiong D, Zhu N, Wang Y, Hu X, Zhao B, Zhou J, Yin D, Zhang Z. Copper Peroxide Nanodots Encapsulated in a Metal–Organic Framework for Self-Supplying Hydrogen Peroxide and Signal Amplification of the Dual-Mode Immunoassay. Anal Chem 2022; 94:12981-12989. [DOI: 10.1021/acs.analchem.2c01068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Dali Wei
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dinghui Xiong
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nuanfei Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ying Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xialin Hu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Biying Zhao
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Jinhui Zhou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
12
|
Zhang B, Li F, Han F, Yang H, Jiang C, Tan S, Tu J, Qiao B, Wang X, Wu Q. A sandwich-type electrochemical immunosensor using trimetallic nanozyme as signal amplification for NT-proBNP sensitive detection. Bioelectrochemistry 2022; 145:108075. [DOI: 10.1016/j.bioelechem.2022.108075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/14/2021] [Accepted: 01/18/2022] [Indexed: 01/16/2023]
|
13
|
Ji Y, Gao W, Zhang S, Li B, Huang H, Zhang X. Confining Natural/Mimetic Enzyme Cascade in an Amorphous Metal-Organic Framework for the Construction of Recyclable Biomaterials with Catalytic Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:927-936. [PMID: 35018775 DOI: 10.1021/acs.langmuir.1c02093] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Integrating nanozymes with natural enzymes to form cascade reactions is one of the most promising ways to develop biocatalysts with versatile performance; however, the applicability of the cascade is typically hampered by the instability of enzymes and the hindrance of mass transfer in the host environment. Utilizing amorphous ZIF-90 (aZIF-90) as a host material, herein, we have reported a one-pot way to encapsulate glucose oxidase (GOx) and magnetic nanoparticles (MNP) to form GOx/MNP@aZIF-90. We reasoned that the amorphous structure of ZIF-90 not only provides a protected environment to confine the cascade reaction but also generates mesopores and internal voids to improve the performance of the enzymatic cascade. The catalytic activity of aZIF-90 was almost 4 times higher than that of crystalline composites, and the residual activity was higher than 80% after being stored for 9 days. This is the first time that GOx and MNP were simultaneously confined in aZIF-90 with mesopores, which suggested that an amorphous metal-organic framework is promising in the development of an enzymatic cascade.
Collapse
Affiliation(s)
- Yuan Ji
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Wanning Gao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Shilin Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
14
|
Du C, Wang Y, Pei K, Wu D, Qi W. An electrochemiluminescence dual “turn-on” strategy for alkaline phosphatase detection using a dual quenching Ru(bpy) 32+ encapsulated zeolite imidazole metal organic framework. Chem Commun (Camb) 2022; 58:12114-12117. [DOI: 10.1039/d2cc04270c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemiluminescence (ECL) dual “turn-on” strategy is first designed to detect alkaline phosphatase (ALP) using a dual quenching Ru(bpy)32+ encapsulated zeolite imidazole metal organic framework (Ru(bpy)32+@ZIF-90).
Collapse
Affiliation(s)
- Chengpei Du
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Yi Wang
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Kanglin Pei
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Di Wu
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Wenjing Qi
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, 401331, P. R. China
| |
Collapse
|
15
|
Lu L, Liu G, Lin C, Li K, He T, Zhang J, Luo Z, Cai K. Mitochondrial Metabolism Targeted Nanoplatform for Efficient Triple-Negative Breast Cancer Combination Therapy. Adv Healthc Mater 2021; 10:e2100978. [PMID: 34387391 DOI: 10.1002/adhm.202100978] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/02/2021] [Indexed: 12/17/2022]
Abstract
Tumor reprogram pathway of mitochondrial metabolism is an emerging approach for malignant tumor treatment, such as triple-negative breast cancer. In this study, a tumor/mitochondria cascaded targeting, adenosine-triphosphate (ATP) responsive nanocarrier of zeolitic imidazolate framework-90 (ZIF-90) for breast cancer combination therapy is reported. Atovaquone (AVO) and hemin are loaded into ZIF-90, then a peptide iRGD with tumor-targeting ability is modified on the ZIF-90 nanoplatform. Hemin can specifically degrade BTB and CNC homology1 (BACH1), resulting in the changes of mitochondrial metabolism, and AVO acts as the inhibitor of the electron transport chain (ETC). The degradation of BACH1 using hemin can effectively improve the anti-tumor efficiency of mitochondrial metabolism inhibitor AVO, by increasing dependency on mitochondrial respiration. This nanoplatform displays both tumor-targeting and mitochondria-targeting capacity with high level of ATP responsive drug release behavior. The specific characteristic of mitochondria-targeting ability of this nanoplatform can increase the accumulation of AVO in the mitochondria, and in turn, can effectively improve the inhibition of the ETC. Both in vitro and in vivo results reveal that this composite nanocarrier has excellent tumor inhibition ability with limited side effects. Accordingly, this study provides an attractive strategy in the mitochondrial metabolism for cancer targeted therapy.
Collapse
Affiliation(s)
- Lu Lu
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| | - Genhua Liu
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| | - Chuanchuan Lin
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| | - Ke Li
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| | - Tingting He
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| | - Zhong Luo
- School of Life Science Chongqing University Chongqing 400044 P. R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| |
Collapse
|