1
|
Geng F, Huang M, Zhang X, Wang Y, Shao C, Xu M. Sensitive colorimetric sensing of dopamine and TYR based on enhanced HRP-like activity of CuNi/Fe LDHs nanozymes. Mikrochim Acta 2025; 192:197. [PMID: 40024977 DOI: 10.1007/s00604-025-07056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
CuNi/Fe LDHs with HRP-like activity (nanozyme) have been prepared. Contrary to the expected design, free dopamine (DA) was found to greatly enhance the catalytic performances of CuNi/Fe LDHs nanozyme. As far as we know, this is the first report that free DA boosts the catalytic performances of LDHs. Given the superior HRP-like enzyme activity of DA-CuNi/Fe LDHs, a colorimetric method for DA and tyrosinase (TYR) assay with high sensitivity and specificity was established, and it was successfully applied to quantify DA in artificial cerebrospinal fluid and TYR in newborn calf serum. The acquired insights in DA-CuNi/Fe LDHs will contribute to future rational design of other high-performance nanozymes. In addition, the novel DA and TYR assay pave a way for designing further nanozymes-based colorimetric chemo/biosensors.
Collapse
Affiliation(s)
- Fenghua Geng
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China
| | - Min Huang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Material Science, Huaibei Normal University, Huaibei, 235000, China
| | - Xiaoli Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China
| | - Yongxiang Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Material Science, Huaibei Normal University, Huaibei, 235000, China.
| | - Congying Shao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Material Science, Huaibei Normal University, Huaibei, 235000, China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China
| |
Collapse
|
2
|
Humayun M, Bououdina M, Usman M, Khan A, Luo W, Wang C. Designing State-of-the-Art Gas Sensors: From Fundamentals to Applications. CHEM REC 2024; 24:e202300350. [PMID: 38355899 DOI: 10.1002/tcr.202300350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/23/2023] [Indexed: 02/16/2024]
Abstract
Gas sensors are crucial in environmental monitoring, industrial safety, and medical diagnostics. Due to the rising demand for precise and reliable gas detection, there is a rising demand for cutting-edge gas sensors that possess exceptional sensitivity, selectivity, and stability. Due to their tunable electrical properties, high-density surface-active sites, and significant surface-to-volume ratio, nanomaterials have been extensively investigated in this regard. The traditional gas sensors utilize homogeneous material for sensing where the adsorbed surface oxygen species play a vital role in their sensing activity. However, their performance for selective gas sensing is still unsatisfactory because the employed high temperature leads to the poor stability. The heterostructures nanomaterials can easily tune sensing performance and their different energy band structures, work functions, charge carrier concentration and polarity, and interfacial band alignments can be precisely designed for high-performance selective gas sensing at low temperature. In this review article, we discuss in detail the fundamentals of semiconductor gas sensing along with their mechanisms. Further, we highlight the existed challenges in semiconductor gas sensing. In addition, we review the recent advancements in semiconductor gas sensor design for applications from different perspective. Finally, the conclusion and future perspectives for improvement of the gas sensing performance are discussed.
Collapse
Affiliation(s)
- Muhammad Humayun
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | - Mohamed Bououdina
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | - Muhammad Usman
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Abbas Khan
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
- Department of Chemistry, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Wei Luo
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Chundong Wang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| |
Collapse
|
3
|
He X, Zheng Y, Hu C, Lei B, Zhang X, Liu Y, Zhuang J. The afterglow of carbon dots shining in inorganic matrices. MATERIALS HORIZONS 2024; 11:113-133. [PMID: 37856234 DOI: 10.1039/d3mh01034a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Carbon dots (CDs) are a new type of quasi-spherical and zero-dimension carbon nanomaterial with a diameter less than 10 nm. They exhibit a broad absorption spanning from the ultraviolet (UV) to visible light regions and inspire growing interests due to their excellent performance. In recent years, it was identified that the CDs embedded in various inorganic matrices (IMs) can effectively activate afterglow emission by suppressing the nonradiative transitions of molecules and protecting the triplet excitons of CDs, which hold broad application prospects. Herein, recent advances in CDs@IMs are reviewed in detail, and the interaction and luminescence mechanisms between CDs and IMs are also summarized. We highlight the synthetic strategies of constructing composites and the roles of IMs in facilitating the applications of CDs in diverse areas. Finally, some directions and challenges of future research in this field are proposed.
Collapse
Affiliation(s)
- Xiaoyan He
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Yihao Zheng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China
| | - Chaofan Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | - Yingliang Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Jianle Zhuang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Li K, Ji Q, Liang H, Hua Z, Hang X, Zeng L, Han H. Biomedical application of 2D nanomaterials in neuroscience. J Nanobiotechnology 2023; 21:181. [PMID: 37280681 DOI: 10.1186/s12951-023-01920-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
Two-dimensional (2D) nanomaterials, such as graphene, black phosphorus and transition metal dichalcogenides, have attracted increasing attention in biology and biomedicine. Their high mechanical stiffness, excellent electrical conductivity, optical transparency, and biocompatibility have led to rapid advances. Neuroscience is a complex field with many challenges, such as nervous system is difficult to repair and regenerate, as well as the early diagnosis and treatment of neurological diseases are also challenged. This review mainly focuses on the application of 2D nanomaterials in neuroscience. Firstly, we introduced various types of 2D nanomaterials. Secondly, due to the repairment and regeneration of nerve is an important problem in the field of neuroscience, we summarized the studies of 2D nanomaterials applied in neural repairment and regeneration based on their unique physicochemical properties and excellent biocompatibility. We also discussed the potential of 2D nanomaterial-based synaptic devices to mimic connections among neurons in the human brain due to their low-power switching capabilities and high mobility of charge carriers. In addition, we also reviewed the potential clinical application of various 2D nanomaterials in diagnosing and treating neurodegenerative diseases, neurological system disorders, as well as glioma. Finally, we discussed the challenge and future directions of 2D nanomaterials in neuroscience.
Collapse
Affiliation(s)
- Kangchen Li
- School of Medicine, Institute of Brain and Cognitive Science, Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China
| | - Qianting Ji
- School of Medicine, Institute of Brain and Cognitive Science, Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China
| | - Huanwei Liang
- School of Medicine, Institute of Brain and Cognitive Science, Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China
| | - Zixuan Hua
- School of Medicine, Institute of Brain and Cognitive Science, Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China
| | - Xinyi Hang
- School of Medicine, Institute of Brain and Cognitive Science, Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China
| | - Linghui Zeng
- School of Medicine, Institute of Brain and Cognitive Science, Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China.
| | - Haijun Han
- School of Medicine, Institute of Brain and Cognitive Science, Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China.
| |
Collapse
|
5
|
Chen J, Wang Y, Yu Y, Wang J, Liu J, Ihara H, Qiu H. Composite materials based on covalent organic frameworks for multiple advanced applications. EXPLORATION (BEIJING, CHINA) 2023; 3:20220144. [PMID: 37933382 PMCID: PMC10624394 DOI: 10.1002/exp.20220144] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/10/2023] [Indexed: 11/08/2023]
Abstract
Covalent organic frameworks (COFs) stand for a class of emerging crystalline porous organic materials, which are ingeniously constructed with organic units through strong covalent bonds. Their excellent design capabilities, and uniform and tunable pore structure make them potential materials for various applications. With the continuous development of synthesis technique and nanoscience, COFs have been successfully combined with a variety of functional materials to form COFs-based composites with superior performance than individual components. This paper offers an overview of the development of different types of COFs-based composites reported so far, with particular focus on the applications of COFs-based composites. Moreover, the challenges and future development prospects of COFs-based composites are presented. We anticipate that the review will provide some inspiration for the further development of COFs-based composites.
Collapse
Affiliation(s)
- Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouChina
| | - Yuting Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of SciencesNortheastern UniversityShenyangChina
| | - Yongliang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of SciencesNortheastern UniversityShenyangChina
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of SciencesNortheastern UniversityShenyangChina
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooOntarioCanada
| | - Hirotaka Ihara
- Department of Applied Chemistry and BiochemistryKumamoto UniversityChuo‐kuKumamotoJapan
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouChina
| |
Collapse
|
6
|
Ji M, Zhong Y, Li M, Tan R, Hu Y, Li G. Determination of acetic acid in enzymes based on the cataluminescence activity of graphene oxide-supported carbon nanotubes coated with NiMn layered double hydroxides. Mikrochim Acta 2023; 190:231. [PMID: 37209139 DOI: 10.1007/s00604-023-05808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/19/2023] [Indexed: 05/22/2023]
Abstract
A cataluminescence (CTL) method has been developed for the rapid determination of acetic acid in enzyme products. The NiMn LDH/CNT/GO was synthesized based on the nanohybridization of NiMn layered double hydroxide (NiMn LDH), carbon nanotubes (CNTs), and graphene oxide (GO). The composite has excellent CTL activity against acetic acid. It could be ascribed to the larger specific surface area and more exposure to active sites. NiMn LDH/CNT/GO is used as a catalyst in the CTL method based on its special structure and advantages. There is a linear relationship between CTL response and the acetic acid concentration in the range 0.31-12.00 mg·L-1 with the detection limit of 0.10 mg·L-1. The developed method is rapid and takes only about 13 s. The method is applied to the determination of acetic acid in enzyme samples with little sample preparation. The result of the CTL method shows good agreement with that of the gas chromatography method. The proposed CTL method possesses promising potential in the quality monitoring of enzymes.
Collapse
Affiliation(s)
- Mengmeng Ji
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yanhui Zhong
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ming Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Rongxia Tan
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yufei Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Sohrabi H, Dezhakam E, Khataee A, Nozohouri E, Majidi MR, Mohseni N, Trofimov E, Yoon Y. Recent trends in layered double hydroxides based electrochemical and optical (bio)sensors for screening of emerging pharmaceutical compounds. ENVIRONMENTAL RESEARCH 2022; 211:113068. [PMID: 35283073 DOI: 10.1016/j.envres.2022.113068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/19/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
The rapid expansion of the human population has given rise to new environmental and biomedical concerns, contributing to different advancements in the pharmaceutical industry. In the field of analytical chemistry over the last few years, layered double hydroxides (LDHs) have drawn significant attention, owing to their extraordinary properties. Furthermore, the novel advancement of LDH-based optical and electrochemical platforms to detect different pharmaceutical materials has acquired substantial attention because of their outstanding specificity, actual-time controlling, and user-friendliness. This review aims to recapitulate advanced LDHs-based optical and electrochemical sensors and biosensors to identify and measure important pharmaceutical compounds, such as anti-depressant, anti-inflammatory, anti-viral, anti-bacterial, anti-cancer, and anti-fungal drugs. Additionally, fundamental parameters, namely interactions between sensor and analyte, design rationale, classification, selectivity, and specificity are considered. Finally, the development of high-efficiency techniques for optical and electrochemical sensors and biosensors is featured to deliver scientists and readers a complete toolbox to identify a broad scope of pharmaceutical substances. Our goals are: (i) to elucidate the characteristics and capabilities of available LDHs for the identification of pharmaceutical compounds; and (ii) to deliver instances of the feasible opportunities that the existing devices have for the developed sensing of pharmaceuticals regarding the protection of ecosystems and human health at the global level.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Ehsan Dezhakam
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Department of Material Science and Physical Chemistry of Materials, South Ural State University, 454080, Chelyabinsk, Russian Federation.
| | - Ehsan Nozohouri
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Nazanin Mohseni
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Evgeny Trofimov
- Department of Material Science and Physical Chemistry of Materials, South Ural State University, 454080, Chelyabinsk, Russian Federation
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea.
| |
Collapse
|
8
|
Tan X, Yu C, Tang J, Wu W, Yang Q, Hou X. Progress in Nanomaterials-Based Enzyme and Aptamer Biosensor for the Detection of Organophosphorus Pesticides. Crit Rev Anal Chem 2022; 54:247-268. [PMID: 35549956 DOI: 10.1080/10408347.2022.2072678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
With the improvement of people's safety awareness, the requirement of pesticide detection is gradually increasing, and many new detection methods toward Organophosphorus pesticide (OPs) has been further developed and applied. Nanomaterials-based biosensors have played an important role in the trace detection of OPs. This article mainly introduces the detection principle of enzymes and aptamers as the identification element of biosensors. Various nanomaterials (i.e., metals and metal oxides, carbon nanotubes, graphene and graphene oxide, quantum dots, metal organic frameworks, molecular imprinted polymers, etc.) possess their unique properties and play different roles in the enzyme and aptamer-based biosensors toward OPs: (a) to produce the optical or electrochemical signal; (b) as a carrier to load the enzyme or aptamer; (c) to enhance the signal response. Besides, the intelligent portable devices provide the possibility to realize the onsite and real-time detection. The limitations of some nanomaterials and the future development are discussed. Finally, the future of enzyme and aptamer-based biosensors has prospected.
Collapse
Affiliation(s)
- Xin Tan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Chundi Yu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Juan Tang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Xiudan Hou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| |
Collapse
|
9
|
Chen H, Chang Y, Wei R, Zhang P. Gold nanoclusters encapsulated into zinc-glutamate metal organic frameworks for efficient detection of H 2O 2. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1439-1444. [PMID: 35322264 DOI: 10.1039/d2ay00195k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gold nanoclusters (AuNCs) have large Stokes shifts and long fluorescence life, which make them have high application value in bioanalytical applications. However, the quantum yield (QY) of AuNCs was lower, which hinders their wide application. Herein, a facile, novel and one-pot approach was developed to synthesize AuNCs@zinc-glutamate metal organic frameworks (AuNCs@ZnGlu-MOFs (product)). The product was easily prepared via mixing the glutathione (GSH) protected AuNCs with ZnGlu-MOF precursors. Compared with GSH-AuNCs, the ultrahigh QY (33.18%) of the AuNCs@ZnGlu-MOF is nearly 6 times higher. In addition, the product possesses better water stability and longer luminescence life (9.86 μs) due to the protective and confinement effects of the ZnGlu-MOF. Particularly, the product has a unique spatial structure, which can effectively prevent the interaction between large-size biothiols (such as cysteine and homocysteine) and the product, thus significantly improving the selectivity of it. Based on the excellent optical advantages of this product, it was capable of being applied as a selectable and sensitive fluorescence probe to detect H2O2 and H2O2-related analytes. This method has also been further employed in the precise H2O2-monitoring in serum, which is promising in the application of clinical bioassay.
Collapse
Affiliation(s)
- Hongyu Chen
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China.
| | - Yuan Chang
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China.
| | - Ran Wei
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China.
| | - Pengcheng Zhang
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China.
| |
Collapse
|
10
|
Wang X, Xia Z, Fodjo EK, Deng W, Li D. A dual-responsive nanozyme sensor with ultra-high sensitivity and ultra-low cross-interference towards metabolic biomarker monitoring. J Mater Chem B 2022; 10:3023-3031. [PMID: 35352076 DOI: 10.1039/d1tb02796d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accurate, sensitive and selective detection of metabolic biomarkers in biofluids are of vital significance for health self-monitoring and chronic disease prevention. Here, for the first time, a smart dual-responsive nanozyme sensor (DNS) was developed for simultaneous analysis of glucose and caffeine utilizing stimuli-responsive yolk-shell gold nanoparticles (GNPs)-embedded MIL-53 (Al) (GNPs@MIL-53) structures. After the introduction of glucose, GNPs@MIL-53 displays excellent glucose oxidase (GOx)-like activity to induce the conversion of glucose to gluconic acid and H2O2. H2O2 can oxidize 3,3',5,5'-tetramethylbenzidine (TMB) with the generation a bright-blue color, enabling in-field visualization and surface enhanced Raman scattering (SERS) detection of glucose. Upon the addition of caffeine, 2-aminoterephthalic acid modified MIL-53 can react with the caffeine to form intermolecular hydrogen-bonded complexes, leading to strong cyan fluorescence and significant Raman enhancements. The DNS with multi-channel signal outputs can simultaneously determine glucose and caffeine at concentrations of as low as 3 × 10-8 M and 1.2 × 10-11 M, respectively. Importantly, the DNS-based analytical system not only enables visual discrimination and accurate assay of glucose and caffeine in biofluids, but also exhibits negligible cross-interference between glucose and caffeine determination. The combined characteristics of high selectivity, enhanced accuracy and superior quantitative performance make our platform suitable for the point-of-care monitoring of chronic-disease-related metabolic biomarkers.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China.
| | - Zhaoping Xia
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China.
| | - Essy Kouadio Fodjo
- Laboratory of Physical Chemistry, UFR SSMT, Felix Houphouet Boigny University, 22 BP 582 Abidjan 22, Côte d'Ivoire
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China.
| | - Dan Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China.
| |
Collapse
|
11
|
Liu Y, Ping J, Ying Y. Anion-Selective Layered Double Hydroxide Composites-Based Osmotic Energy Conversion for Real-Time Nutrient Solution Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103696. [PMID: 34989168 PMCID: PMC8867156 DOI: 10.1002/advs.202103696] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Nanofluidic channels based on 2D nanomaterials are promising to harvest osmotic energy for their high ion selectivity and osmotic conductivity. However, anion-selective nanofluidic channels are rare and chemical modification is necessary through fabrication. Here, a naturally anion-selective composite membrane is reported, that is, NiAl-Layered double hydroxide (LDH) coated anodic aluminum oxide (LDH@AAO), using a simple precipitant-free in situ growth technique. Positively charged LDH plates growing in channels of AAO function as screening layers for anions. Both experiments and theoretical simulations are enforced to certify the vital role of LDH growth in ion distribution and salinity gradient energy conversion. The composite membrane achieves high output performance and long-term stability. Furthermore, novel applications of nanofluidic channels are explored in hydroponic production and design a real-time detecting system based on LDH@AAO composite membranes for nutrient solution. This work provides insights into naturally anion-selective nanofluidic channels for osmotic energy harvesting and broadens the application in agricultural information sensing.
Collapse
Affiliation(s)
- Yaqian Liu
- Laboratory of Agricultural Information Intelligent SensingSchool of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent SensingSchool of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent SensingSchool of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
| |
Collapse
|
12
|
Li Z, Zhang J, Dai G, Luo F, Chu Z, Geng X, He P, Zhang F, Wang Q. A ratiometric electrochemical biosensor for glycated albumin detection based on enhanced nanozyme catalysis of cuprous oxide-modified reduced graphene oxide nanocomposites. J Mater Chem B 2021; 9:9324-9332. [PMID: 34710204 DOI: 10.1039/d1tb01912k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanozymes have enzyme-like characteristics and nanozyme-based electrochemical sensors have been widely studied for biomarker detection. In this work, cuprous oxide-modified reduced graphene oxide (Cu2O-rGO) nanozyme was prepared by simultaneous reduction of copper chloride and graphene oxide. This Cu2O-rGO nanozyme displayed an outstanding electrocatalytic activity to glucose oxidation and was used as the modified material of a glassy carbon electrode to fabricate an electrochemical ratiometric biosensor for glycated albumin (GA) detection. In this ratiometric biosensor, methylene blue-labeled DNA tripods (MB-tDNA) were adsorbed on the Cu2O-rGO/GCE surface to form a bioinspired electrode (MB-tDNA/Cu2O-rGO/GCE), in which the catalytic sites of Cu2O-rGO were covered by MB-tDNA. In the presence of target GA, GA could be identified by the aptamer sequence contained in MB-tDNA, and a MB-tDNA/GA complex was formed and released into the solution, so the reduced current of MB-tDNA was decreased. Simultaneously, the oxidized current of the outer added glucose was increased since more catalytic sites of Cu2O-rGO nanozyme on the substrate electrode surface were exposed. The ratio of the peak currents of glucose oxidation and methylene blue reduction (IGlu/IMB) was used to monitor the GA level and ultimately improve the accuracy of the method. The electrochemical sensor showed a low detection limit of 0.007 μg mL-1 and a wide linear range from 0.02 to 1500 μg mL-1. The proposed sensor was also successfully used to measure the GA expression level in the blood serum of a diabetic mouse model.
Collapse
Affiliation(s)
- Zhi Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| | - Jingwen Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| | - Ge Dai
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| | - Feifei Luo
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| | - Zhaohui Chu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| | - Xing Geng
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| | - Pingang He
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| | - Fan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| | - Qingjiang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| |
Collapse
|
13
|
Layered Double Hydroxides as a Drug Delivery Vehicle for S-Allyl-Mercapto-Cysteine (SAMC). Processes (Basel) 2021. [DOI: 10.3390/pr9101819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The intercalations of anionic molecules and drugs in layered double hydroxides (LDHs) have been intensively investigated in recent years. Due to their properties, such as versatility in chemical composition, good biocompatibility, high density and protection of loaded drugs, LDHs seem very promising nanosized systems for drug delivery. In this work, we report the intercalation of S-allyl-mercapto-cysteine (SAMC), which is a component of garlic that is well-known for its anti-tumor properties, inside ZnAl-LDH (hereafter LDH) nanostructured crystals. In order to investigate the efficacy of the intercalation and drug delivery of SAMC, the intercalated compounds were characterized using X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The increase in the interlayer distance of LDH from 8.9 Å, typical of the nitrate phase, to 13.9 Å indicated the intercalation of SAMC, which was also confirmed using FT-IR spectra. Indeed, compared to that of the pristine LDH precursor, the spectrum of LDH-SAMC was richly structured in the fingerprint region below 1300 cm−1, whose peaks corresponded to those of the functional groups in the SAMC molecular anion. The LDH-SAMC empirical formula, obtained from UV-Vis spectrophotometry and thermogravimetric analysis, was [Zn0.67Al0.33(OH)2]SAMC0.15(NO3)0.18·0.6H2O. The morphology of the sample was investigated using SEM: LDH-SAMC exhibited a more irregular size and shape of the flake-like crystals in comparison with the pristine LDH, with a reduction in the average crystallite size from 3 µm to about 2 µm. In vitro drug release studies were performed in a phosphate buffer solution at pH 7.2 and 37 °C and were analyzed using UV-Vis spectrophotometry. The SAMC release from LDH-SAMC was initially characterized by a burst effect in the first four hours, during which, 32% of the SAMC is released. Subsequently, the release percentage increased at a slower rate until 42% after 48 h; then it stabilized at 43% and remained constant for the remaining period of the investigation. The LDH-SAMC complex that was developed in this study showed the improved efficacy of the action of SAMC in reducing the invasive capacity of a human hepatoma cell line.
Collapse
|