1
|
Adil O, Shamsi MH. Transformative biomedical devices to overcome biomatrix effects. Biosens Bioelectron 2025; 279:117373. [PMID: 40120290 PMCID: PMC11975494 DOI: 10.1016/j.bios.2025.117373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
The emergence of high-performance biomedical devices and sensing technologies highlights the technological advancements in the field. Recently during COVID-19 pandemic, biosensors played an important role in medical diagnostics and disease monitoring. In the past few decades, biosensors have made impressive advances in terms of sensing capability, methodology, and applications, and modern biosensors show higher performance and functionality compared to traditional biosensing platforms. Currently, various biomedical devices are already in the market or on the verge of commercialization, such as disposable paper-based devices, lab-on-a-chip devices, wearable sensors, and artificial intelligence-assisted systems, all contributing to the evolution of digital health. Despite the promising features of detection methods for developing practical biosensors, there are substantial barriers to the commercialization of biomedical devices. An important challenge is the matrix effect in the detection of clinical samples. Although achieving low limit of detection values under controlled laboratory conditions is feasible, maintaining performance in real clinical samples is difficult. Matrix molecules present in these samples can interact with analytes, potentially affecting sensitivity, specificity, and sensor response. Approaches to reduce nonspecific adsorption and cross-reactivity are imperative for improving sensor performance. The detection of diagnostic biomarkers in complex biological matrices often requires laborious sample preparation, which may affect accuracy and precision. In this review, we highlight the recent efforts to detect analytes in real samples, both invasively and noninvasively, and underline technological advancements that mitigate the biomatrix effects. We also discuss commercially available biosensors and technologies promising commercial success, highlighting their potential effect on healthcare and diagnostics.
Collapse
Affiliation(s)
- Omair Adil
- School of Chemical and Biomolecular Sciences, Southern Illinois University at Carbondale, IL, 62901, USA; Department of Mechanical Engineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Mohtashim H Shamsi
- School of Chemical and Biomolecular Sciences, Southern Illinois University at Carbondale, IL, 62901, USA.
| |
Collapse
|
2
|
Singh AK, Agrahari S, Gautam RK, Tiwari I. A highly efficient NiCo 2O 4 decorated g-C 3N 4 nanocomposite for screen-printed carbon electrode based electrochemical sensing and adsorptive removal of fast green dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:67339-67354. [PMID: 37837595 DOI: 10.1007/s11356-023-30373-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
Herein, we demonstrate the preparation and application of NiCo2O4 decorated over a g-C3N4-based novel nanocomposite (NiCo2O4@g-C3N4). The prepared material was well characterized through several physicochemical techniques, including FT-IR, XRD, SEM, and TEM. The electrochemical characterizations via electrochemical impedance spectroscopy show the low electron transfer resistance of NiCo2O4@g-C3N4 owing to the successful incorporation of NiCo2O4 nanoparticles on the sheets of g-C3N4. NiCo2O4@g-C3N4 nanocomposite was employed in the fabrication of a screen-printed carbon electrode-based innovative electrochemical sensing platform and the adsorptive removal of a food dye, i.e., fast green FCF dye (FGD). The electrochemical oxidation of FGD at the developed NiCo2O4@g-C3N4 nanocomposite modified screen-printed carbon electrode (NiCo2O4@g-C3N4/SPCE) was observed at an oxidation potential of 0.65 V. A wide dual calibration range for electrochemical determination of FGD was successfully established at the prepared sensing platform, showing an excellent LOD of 0.13 µM and sensitivity of 0.6912 µA.µM-1.cm-2 through differential pulse voltammetry. Further, adsorbent dose, pH, contact time, and temperature were optimized to study the adsorption phenomena. The adsorption thermodynamics, isotherm, and kinetics were also investigated for efficient removal of FGD at NiCo2O4@g-C3N4-based adsorbents. The adsorption phenomenon of FGD on NiCo2O4@g-C3N4 was best fitted (R2 = 0.99) with the Langmuir and Henry model, and the corresponding value of Langmuir adsorption efficiency (qm) was 3.72 mg/g for the removal of FGD. The reaction kinetics for adsorption phenomenon were observed to be pseudo-second order. The sensitive analysis of FGD in a real sample was also studied.
Collapse
Affiliation(s)
- Ankit Kumar Singh
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shreanshi Agrahari
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ravindra Kumar Gautam
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ida Tiwari
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
3
|
Ma S, Xiao S, Hong Y, Bao Y, Xu Z, Chen D, Huang X. Coupling metal organic frameworks nanozyme with carbon nanotubes on the gradient porous hollow fiber membrane for nonenzymatic electrochemical H 2O 2 detection. Anal Chim Acta 2024; 1293:342285. [PMID: 38331554 DOI: 10.1016/j.aca.2024.342285] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
In this paper, we present a gradient porous hollow fiber structure integrated the signal transduction within a microspace, serving as a platform for cellular metabolism monitoring. We developed a nonenzymatic electrochemical electrode by coupling carbon nanotubes (CNT) and metal organic frameworks (MOF) nanozyme on three-dimensional (3D) gradient porous hollow fiber membrane (GPF) for in-situ detection of cell released hydrogen peroxide (H2O2). The GPF was used as a substrate for cell culture as well as the supporting matrix of the working electrode. The ultrasonically coupled CNT@MOF composite was immobilized on the outer surface of the GPF by means of pressure filtration. Notably, the MOF, acting as a peroxidase mimic, exhibits superior stability compared to traditional horseradish peroxidase. The incorporation of CNT not only provided sufficient specific surface area to improve the uniform distribution of MOF nanozyme, but also formed 3D conductive network. This network efficiently facilitates the electrons transfer during the catalytic process of the MOF, addressing the inherent poor conductivity of MOFs. The GPF-CNT@MOF nonenzymatic bioelectrode demonstrated excellent electrocatalytic performance including rapid response, satisfactory sensing selectivity, and attractive stability, which enabled the development of a robust in-situ cellular metabolic monitoring platform.
Collapse
Affiliation(s)
- Shuyan Ma
- Key Laboratory of Macromolecular Synthesis and Functionalization (MOE), Engineering Research Center for Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shenghao Xiao
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yinhui Hong
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yuheng Bao
- Key Laboratory of Macromolecular Synthesis and Functionalization (MOE), Engineering Research Center for Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhikang Xu
- Key Laboratory of Macromolecular Synthesis and Functionalization (MOE), Engineering Research Center for Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dajing Chen
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Xiaojun Huang
- Key Laboratory of Macromolecular Synthesis and Functionalization (MOE), Engineering Research Center for Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
4
|
Rahman MM, Bhuiyan NH, Park M, Uddin MJ, Jin GJ, Shim JS. Lithography-free interdigitated electrodes by trench-filling patterning on polymer substrate for Alzheimer's disease detection. Biosens Bioelectron 2024; 244:115803. [PMID: 37956638 DOI: 10.1016/j.bios.2023.115803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023]
Abstract
Microelectrodes have played a crucial role in electrochemistry for the last few decades. However, the conventional lithographic processes, the key players in fabrication, are nonetheless technologically challenging, pricey, and lack reproducibility. In this work has developed a novel and low-cost patterned-replication fabrication technology for interdigitated electrode array (IDA) electrodes on the polymer substrate. Conventional UV-lithography has been utilized to fabricate the nickel IDA electrode pattern as a master mold on the stainless-steel substrate, which was replicated onto the polymer substrate by the hot-emboss technique. Then, gold was deposited on the replicated wafer by electron beam evaporation, and finally adhesive tape lift-off was used to obtain the gold IDA electrode. The fabricated IDA electrode was applied for electrochemical detection of various p-aminophenol (PAP) concentrations as a representative biomarker with a detection limit of 0.01 nM. Finally, different levels of amyloid beta 42 (Aß42) and amyloid beta aggregated (Aß Agg.), two Alzheimer's disease (AD) biomarkers, were measured using the developed IDA electrode via e-ELISA using enzyme by-products PAP. While quantified, the proposed IDA electrode successfully detects Aß42 and Aß Agg. with the lower detection limit (LOD) of 3.9 and 7.81 pg/ml, respectively.
Collapse
Affiliation(s)
- M Mahabubur Rahman
- Bio IT Convergence Laboratory, Department of Electronic Convergence Engineering, KwangWoon University, Seoul, 01897, Republic of Korea
| | - Nabil H Bhuiyan
- Bio IT Convergence Laboratory, Department of Electronic Convergence Engineering, KwangWoon University, Seoul, 01897, Republic of Korea
| | - MinJun Park
- Bio IT Convergence Laboratory, Department of Electronic Convergence Engineering, KwangWoon University, Seoul, 01897, Republic of Korea
| | - M Jalal Uddin
- Bio IT Convergence Laboratory, Department of Electronic Convergence Engineering, KwangWoon University, Seoul, 01897, Republic of Korea; NanoGenesis Inc., 20 Kwangwoon-ro, Nowon-gu, Seoul, 01897, Republic of Korea
| | - Gyeong J Jin
- Bio IT Convergence Laboratory, Department of Electronic Convergence Engineering, KwangWoon University, Seoul, 01897, Republic of Korea
| | - Joon S Shim
- Bio IT Convergence Laboratory, Department of Electronic Convergence Engineering, KwangWoon University, Seoul, 01897, Republic of Korea; NanoGenesis Inc., 20 Kwangwoon-ro, Nowon-gu, Seoul, 01897, Republic of Korea.
| |
Collapse
|
5
|
Agrahari S, Singh AK, Gautam RK, Tiwari I. Electrochemical oxidation and sensing of para benzoquinone using a novel SPE based disposable sensor. CHEMOSPHERE 2023; 342:140078. [PMID: 37714484 DOI: 10.1016/j.chemosphere.2023.140078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/31/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
Para-benzoquinone (PBQ) is an emerging micro-contaminant owing to its chronic toxicity to plants and animals as well as its potential to induce cytotoxicity in primary rat hepatocytes and kidney cell injury. Hence, it is of utmost importance to monitor this contaminant in industrial wastewater and groundwater. In this article, we devised a unique disposable sensor that is based on a screen-printed electrode using MnO2@Co-Ni MOFs/fMWCNTs nanocomposite and is able to detect PBQ. The as-produced nanocomposite was prepared via ultrasonic assisted reflux condition and thoroughly examined by several physicochemical characterisation methods such as SEM, EDX, TEM, Raman, AFM, UV-visible, and FT-IR. Moreover, electrochemical methods like CV, DPV, EIS, and chronoamperometry were used for detecting PBQ on MnO2@Co-Ni MOFs/fMWCNTs/SPCE. Sensor performance has been investigated thoroughly and optimized to enhance the analytical potential of the fabricated sensor. DPV analysis was done on MnO2@Co-Ni MOFs/fMWCNTs that exhibit high selectivity, low peak potential, a broader linear detection range (0.005 mM-30 mM), and a LOD of 0.0027 ± 0.0005 mM. The designed electrode has shown remarkable reproducibility and excellent repeatability, with relative standard deviations of 0.12%, and 0.17%, respectively. Additionally, MnO2@Co-Ni MOFs/fMWCNTs/SPCE have been used to analyse PBQ in industrial wastewater samples, and the results have shown a significant level of recovery between 96.91 and 105.67%. Moreover, the PBQ sensor displays high applicability and was verified via the use of HPLC techniques. This disposable sensor is quick, easy, and cost-effective, so it can be useful in the future for analysing other phenolic contaminants present in environmental samples.
Collapse
Affiliation(s)
- Shreanshi Agrahari
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Ankit Kumar Singh
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Ravindra Kumar Gautam
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Ida Tiwari
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
6
|
Štukovnik Z, Fuchs-Godec R, Bren U. Nanomaterials and Their Recent Applications in Impedimetric Biosensing. BIOSENSORS 2023; 13:899. [PMID: 37887092 PMCID: PMC10605062 DOI: 10.3390/bios13100899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023]
Abstract
Impedimetric biosensors measure changes in the electrical impedance due to a biochemical process, typically the binding of a biomolecule to a bioreceptor on the sensor surface. Nanomaterials can be employed to modify the biosensor's surface to increase the surface area available for biorecognition events, thereby improving the sensitivity and detection limits of the biosensor. Various nanomaterials, such as carbon nanotubes, carbon nanofibers, quantum dots, metal nanoparticles, and graphene oxide nanoparticles, have been investigated for impedimetric biosensors. These nanomaterials have yielded promising results in improving sensitivity, selectivity, and overall biosensor performance. Hence, they offer a wide range of possibilities for developing advanced biosensing platforms that can be employed in various fields, including healthcare, environmental monitoring, and food safety. This review focuses on the recent developments in nanoparticle-functionalized electrochemical-impedimetric biosensors.
Collapse
Affiliation(s)
- Zala Štukovnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia; (Z.Š.); (R.F.-G.)
| | - Regina Fuchs-Godec
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia; (Z.Š.); (R.F.-G.)
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia; (Z.Š.); (R.F.-G.)
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška Ulica 8, 6000 Koper, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska ulica 7, 2000 Maribor, Slovenia
| |
Collapse
|
7
|
Sun G, Wei X, Zhang D, Huang L, Liu H, Fang H. Immobilization of Enzyme Electrochemical Biosensors and Their Application to Food Bioprocess Monitoring. BIOSENSORS 2023; 13:886. [PMID: 37754120 PMCID: PMC10526424 DOI: 10.3390/bios13090886] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Electrochemical biosensors based on immobilized enzymes are among the most popular and commercially successful biosensors. The literature in this field suggests that modification of electrodes with nanomaterials is an excellent method for enzyme immobilization, which can greatly improve the stability and sensitivity of the sensor. However, the poor stability, weak reproducibility, and limited lifetime of the enzyme itself still limit the requirements for the development of enzyme electrochemical biosensors for food production process monitoring. Therefore, constructing sensing technologies based on enzyme electrochemical biosensors remains a great challenge. This article outlines the construction principles of four generations of enzyme electrochemical biosensors and discusses the applications of single-enzyme systems, multi-enzyme systems, and nano-enzyme systems developed based on these principles. The article further describes methods to improve enzyme immobilization by combining different types of nanomaterials such as metals and their oxides, graphene-related materials, metal-organic frameworks, carbon nanotubes, and conducting polymers. In addition, the article highlights the challenges and future trends of enzyme electrochemical biosensors, providing theoretical support and future perspectives for further research and development of high-performance enzyme chemical biosensors.
Collapse
Affiliation(s)
- Ganchao Sun
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| | - Xiaobo Wei
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| | - Dianping Zhang
- School of Mechanical Engineering, Ningxia University, Yinchuan 750021, China;
| | - Liben Huang
- Huichuan Technology (Zhuhai) Co., Ltd., Zhuhai 519060, China;
| | - Huiyan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| | - Haitian Fang
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| |
Collapse
|
8
|
Kilic NM, Singh S, Keles G, Cinti S, Kurbanoglu S, Odaci D. Novel Approaches to Enzyme-Based Electrochemical Nanobiosensors. BIOSENSORS 2023; 13:622. [PMID: 37366987 DOI: 10.3390/bios13060622] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
Electrochemistry is a genuinely interdisciplinary science that may be used in various physical, chemical, and biological domains. Moreover, using biosensors to quantify biological or biochemical processes is critical in medical, biological, and biotechnological applications. Nowadays, there are several electrochemical biosensors for various healthcare applications, such as for the determination of glucose, lactate, catecholamines, nucleic acid, uric acid, and so on. Enzyme-based analytical techniques rely on detecting the co-substrate or, more precisely, the products of a catalyzed reaction. The glucose oxidase enzyme is generally used in enzyme-based biosensors to measure glucose in tears, blood, etc. Moreover, among all nanomaterials, carbon-based nanomaterials have generally been utilized thanks to the unique properties of carbon. The sensitivity can be up to pM levels using enzyme-based nanobiosensor, and these sensors are very selective, as all enzymes are specific for their substrates. Furthermore, enzyme-based biosensors frequently have fast reaction times, allowing for real-time monitoring and analyses. These biosensors, however, have several drawbacks. Changes in temperature, pH, and other environmental factors can influence the stability and activity of the enzymes, affecting the reliability and repeatability of the readings. Additionally, the cost of the enzymes and their immobilization onto appropriate transducer surfaces might be prohibitively expensive, impeding the large-scale commercialization and widespread use of biosensors. This review discusses the design, detection, and immobilization techniques for enzyme-based electrochemical nanobiosensors, and recent applications in enzyme-based electrochemical studies are evaluated and tabulated.
Collapse
Affiliation(s)
- Nur Melis Kilic
- Faculty of Science Biochemistry Department, Ege University, 35100 Bornova, Turkey
| | - Sima Singh
- Department of Pharmacy, University of Naples Federico II, 80138 Naples, Italy
| | - Gulsu Keles
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey
| | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, 80138 Naples, Italy
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey
| | - Dilek Odaci
- Faculty of Science Biochemistry Department, Ege University, 35100 Bornova, Turkey
| |
Collapse
|
9
|
Xu X, Li S, Luan X, Xuan C, Zhao P, Zhou T, Tian Q, Pan D. Sensitivity enhancement of a Cu (II) metal organic framework-acetylene black-based electrochemical sensor for ultrasensitive detection of imatinib in clinical samples. Front Chem 2023; 11:1191075. [PMID: 37284582 PMCID: PMC10239869 DOI: 10.3389/fchem.2023.1191075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023] Open
Abstract
Imatinib (IMB), an anticancer drug, is extensively used for chemotherapy to improve the quality of life of cancer patients. The aim of therapeutic drug monitoring (TDM) is to guide and evaluate the medicinal therapy, and then optimize the clinical effect of individual dosing regimens. In this work, a highly sensitive and selective electrochemical sensor based on glassy carbon electrode (GCE) modified with acetylene black (AB) and a Cu (II) metal organic framework (CuMOF) was developed to measure the concentration of IMB. CuMOF with preferable adsorbability and AB with excellent electrical conductivity functioned cooperatively to enhance the analytical determination of IMB. The modified electrodes were characterized using X-rays diffraction (XRD), X-ray photoelectron spectroscopy (XPS), fourier transform infrared (FT-IR), ultraviolet and visible spectrophotometry (UV-vis), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), brunauer‒emmett‒teller (BET) and barrett‒joyner‒halenda (BJH) techniques. Analytical parameters such as the ratio of CuMOF to AB, dropping volumes, pH, scanning rate and accumulation time were investigated through cyclic voltammetry (CV). Under optimal conditions, the sensor exhibited an excellent electrocatalytic response for IMB detection, and two linear detection ranges were obatined of 2.5 nM-1.0 μM and 1.0-6.0 μM with a detection limit (DL) of 1.7 nM (S/N = 3). Finally, the good electroanalytical ability of CuMOF-AB/GCE sensor facilitated the successful determination of IMB in human serum samples. Due to its acceptable selectivity, repeatability and long-term stability, this sensor shows promising application prospects in the detection of IMB in clinical samples.
Collapse
Affiliation(s)
| | | | | | | | | | - Tingting Zhou
- *Correspondence: Deng Pan, ; Qingwu Tian, ; Tingting Zhou,
| | - Qingwu Tian
- *Correspondence: Deng Pan, ; Qingwu Tian, ; Tingting Zhou,
| | - Deng Pan
- *Correspondence: Deng Pan, ; Qingwu Tian, ; Tingting Zhou,
| |
Collapse
|
10
|
Theyagarajan K, Kim YJ. Recent Developments in the Design and Fabrication of Electrochemical Biosensors Using Functional Materials and Molecules. BIOSENSORS 2023; 13:bios13040424. [PMID: 37185499 PMCID: PMC10135976 DOI: 10.3390/bios13040424] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 05/17/2023]
Abstract
Electrochemical biosensors are superior technologies that are used to detect or sense biologically and environmentally significant analytes in a laboratory environment, or even in the form of portable handheld or wearable electronics. Recently, imprinted and implantable biosensors are emerging as point-of-care devices, which monitor the target analytes in a continuous environment and alert the intended users to anomalies. The stability and performance of the developed biosensor depend on the nature and properties of the electrode material or the platform on which the biosensor is constructed. Therefore, the biosensor platform plays an integral role in the effectiveness of the developed biosensor. Enormous effort has been dedicated to the rational design of the electrode material and to fabrication strategies for improving the performance of developed biosensors. Every year, in the search for multifarious electrode materials, thousands of new biosensor platforms are reported. Moreover, in order to construct an effectual biosensor, the researcher should familiarize themself with the sensible strategies behind electrode fabrication. Thus, we intend to shed light on various strategies and methodologies utilized in the design and fabrication of electrochemical biosensors that facilitate sensitive and selective detection of significant analytes. Furthermore, this review highlights the advantages of various electrode materials and the correlation between immobilized biomolecules and modified surfaces.
Collapse
Affiliation(s)
- K Theyagarajan
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Young-Joon Kim
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|