1
|
Shoemaker LN, Wilson LC, Lucas SJE, Machado L, Walker RJ, Cotter JD. Indomethacin markedly blunts cerebral perfusion and reactivity, with little cognitive consequence in healthy young and older adults. J Physiol 2020; 599:1097-1113. [DOI: 10.1113/jp280118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- L. N. Shoemaker
- School of Physical Education, Sport and Exercise Sciences University of Otago Dunedin New Zealand
| | - L. C. Wilson
- Department of Medicine Otago Medical School ‐ Dunedin Campus University of Otago Dunedin New Zealand
| | - S. J. E. Lucas
- Department of Physiology University of Otago Dunedin New Zealand
- School of Sport, Exercise and Rehabilitation Sciences College of Life and Environmental Sciences University of Birmingham Birmingham UK
- Centre for Human Brain Health University of Birmingham Birmingham UK
| | - L. Machado
- Department of Psychology University of Otago Dunedin New Zealand
| | - R. J. Walker
- Department of Medicine Otago Medical School ‐ Dunedin Campus University of Otago Dunedin New Zealand
| | - J. D. Cotter
- School of Physical Education, Sport and Exercise Sciences University of Otago Dunedin New Zealand
| |
Collapse
|
2
|
Martín‐Saborido C, López‐Alcalde J, Ciapponi A, Sánchez Martín CE, Garcia Garcia E, Escobar Aguilar G, Palermo MC, Baccaro FG, Cochrane Injuries Group. Indomethacin for intracranial hypertension secondary to severe traumatic brain injury in adults. Cochrane Database Syst Rev 2019; 2019:CD011725. [PMID: 31752052 PMCID: PMC6872435 DOI: 10.1002/14651858.cd011725.pub2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Among people who have suffered a traumatic brain injury, increased intracranial pressure continues to be a major cause of early death; it is estimated that about 11 people per 100 with traumatic brain injury die. Indomethacin (also known as indometacin) is a powerful cerebral vasoconstrictor that can reduce intracranial pressure and, ultimately, restore cerebral perfusion and oxygenation. Thus, indomethacin may improve the recovery of a person with traumatic brain injury. OBJECTIVES To assess the effects of indomethacin for adults with severe traumatic brain injury. SEARCH METHODS We ran the searches from inception to 23 August 2019. We searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2019, Issue 8) in the Cochrane Library, Ovid MEDLINE, Ovid Embase, CINAHL Plus (EBSCO), four other databases, and clinical trials registries. We also screened reference lists and conference abstracts, and contacted experts in the field. SELECTION CRITERIA Our search criteria included randomised controlled trials (RCTs) that compared indomethacin with any control in adults presenting with severe traumatic brain injury associated with elevated intracranial pressure, with no previous decompressive surgery. DATA COLLECTION AND ANALYSIS Two review authors independently decided on the selection of the studies. We followed standard Cochrane methods. MAIN RESULTS We identified no eligible studies for this review, either completed or ongoing. AUTHORS' CONCLUSIONS We found no studies, either completed or ongoing, that assessed the effects of indomethacin in controlling intracranial hypertension secondary to severe traumatic brain injury. Thus, we cannot draw any conclusions about the effects of indomethacin on intracranial pressure, mortality rates, quality of life, disability or adverse effects. This absence of evidence should not be interpreted as evidence of no effect for indomethacin in controlling intracranial hypertension secondary to severe traumatic brain injury. It means that we have not identified eligible research for this review.
Collapse
Affiliation(s)
- Carlos Martín‐Saborido
- San Juan De Dios Foundation, Health Sciences University Centre, Antonio de Nebrija UniversityResearch on Evidence and Decision Making GroupPaseo de la Habana 70 bisMadridComunidad de MadridSpain28036
| | - Jesús López‐Alcalde
- Cochrane Associate Centre of MadridCtra. Colmenar Km. 9,100MadridMadridSpain28034
- Universidad Francisco de VitoriaFaculty of MedicineCtra. M‐515 Pozuelo‐MajadahondaPozuelo de AlarcónMadridSpain28223
- Instituto Ramón y Cajal de Investigación SanitariaClinical Biostatistics UnitCtra. Colmenar, km. 9.100MadridSpain28034
| | - Agustín Ciapponi
- Institute for Clinical Effectiveness and Health Policy (IECS‐CONICET)Argentine Cochrane CentreDr. Emilio Ravignani 2024Buenos AiresCapital FederalArgentinaC1414CPV
| | | | - Elena Garcia Garcia
- San Juan De Dios FoundationHealth Services Research DepartmentC/Herreros de TejadaMadridSpain3‐28016
| | - Gema Escobar Aguilar
- San Juan de Dios Foundation/San Rafael‐Nebrija Health Sciences Center, Nebrija UniversityHealth Services Research UnitHerreros de Tejada, 5MadridSpain28036
| | - Maria Carolina Palermo
- University of Buenos AiresInstitute for Clinical Effectiveness and Health Policy (IECS‐CONICET)Buenos AiresArgentina
| | - Fernando G Baccaro
- Juan A Fernández HospitalIntensive Care UnitCerviño 3356Buenos AiresArgentina1425
| | | |
Collapse
|
3
|
Godoy DA, Lubillo S, Rabinstein AA. Pathophysiology and Management of Intracranial Hypertension and Tissular Brain Hypoxia After Severe Traumatic Brain Injury: An Integrative Approach. Neurosurg Clin N Am 2018; 29:195-212. [PMID: 29502711 DOI: 10.1016/j.nec.2017.12.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Monitoring intracranial pressure in comatose patients with severe traumatic brain injury (TBI) is considered necessary by most experts. Acute intracranial hypertension (IHT), when severe and sustained, is a life-threatening complication that demands emergency treatment. Yet, secondary anoxic-ischemic injury after brain trauma can occur in the absence of IHT. In such cases, adding other monitoring modalities can alert clinicians when the patient is in a state of energy failure. This article reviews the mechanisms, diagnosis, and treatment of IHT and brain hypoxia after TBI, emphasizing the need to develop a physiologically integrative approach to the management of these complex situations.
Collapse
Affiliation(s)
- Daniel Agustín Godoy
- Intensive Care Unit, San Juan Bautista Hospital, Catamarca, Argentina; Neurointensive Care Unit, Sanatorio Pasteur, Catamarca, Argentina.
| | - Santiago Lubillo
- Intensive Care Unit, Hospital Universitario NS de Candelaria, Tenerife, Spain
| | | |
Collapse
|
4
|
de-Lima-Oliveira M, Salinet ASM, Nogueira RC, de Azevedo DS, Paiva WS, Teixeira MJ, Bor-Seng-Shu E. Intracranial Hypertension and Cerebral Autoregulation: A Systematic Review and Meta-Analysis. World Neurosurg 2018; 113:110-124. [PMID: 29421451 DOI: 10.1016/j.wneu.2018.01.194] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To present a systematic review and meta-analysis to establish the relation between cerebral autoregulation (CA) and intracranial hypertension. METHODS An electronic search using the term "Cerebral autoregulation and intracranial hypertension" was designed to identify studies that analyzed cerebral blood flow autoregulation in patients undergoing intracranial pressure (ICP) monitoring. The data were used in meta-analyses and sensitivity analyses. RESULTS A static CA technique was applied in 10 studies (26.3%), a dynamic technique was applied in 25 studies (65.8%), and both techniques were used in 3 studies (7.9%). Static CA studies using the cerebral blood flow technique revealed impaired CA in patients with an ICP ≥20 (standardized mean difference [SMD] 5.44%, 95% confidence interval [CI] 0.25-10.65, P = 0.04); static CA studies with transcranial Doppler revealed a tendency toward impaired CA in patients with ICP ≥20 (SMD -7.83%, 95% CI -17.52 to 1.85, P = 0.11). Moving correlation studies reported impaired CA in patients with ICP ≥20 (SMD 0.06, 95% CI 0.07-0.14, P < 0.00001). A comparison of CA values and mean ICP revealed a correlation between greater ICP and impaired CA (SMD 5.47, 95% CI 1.39-10.1, P = 0.01). Patients with ICP ≥20 had an elevated risk of impaired CA (OR 2.27, 95% CI 1.20-4.31, P = 0.01). CONCLUSIONS A clear tendency toward CA impairment was observed in patients with increased ICP.
Collapse
Affiliation(s)
- Marcelo de-Lima-Oliveira
- Division of Neurosurgery, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Angela S M Salinet
- Division of Neurosurgery, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ricardo C Nogueira
- Division of Neurosurgery, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Daniel S de Azevedo
- Division of Neurosurgery, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Wellingson S Paiva
- Division of Neurosurgery, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Manoel J Teixeira
- Division of Neurosurgery, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Edson Bor-Seng-Shu
- Division of Neurosurgery, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
5
|
Zeiler FA, Donnelly J, Calviello L, Menon DK, Smielewski P, Czosnyka M. Pressure Autoregulation Measurement Techniques in Adult Traumatic Brain Injury, Part I: A Scoping Review of Intermittent/Semi-Intermittent Methods. J Neurotrauma 2017; 34:3207-3223. [PMID: 28648106 DOI: 10.1089/neu.2017.5085] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The purpose of this study was to perform a systematic, scoping review of commonly described intermittent/semi-intermittent autoregulation measurement techniques in adult traumatic brain injury (TBI). Nine separate systematic reviews were conducted for each intermittent technique: computed tomographic perfusion (CTP)/Xenon-CT (Xe-CT), positron emission tomography (PET), magnetic resonance imaging (MRI), arteriovenous difference in oxygen (AVDO2) technique, thigh cuff deflation technique (TCDT), transient hyperemic response test (THRT), orthostatic hypotension test (OHT), mean flow index (Mx), and transfer function autoregulation index (TF-ARI). MEDLINE®, BIOSIS, EMBASE, Global Health, Scopus, Cochrane Library (inception to December 2016), and reference lists of relevant articles were searched. A two tier filter of references was conducted. The total number of articles utilizing each of the nine searched techniques for intermittent/semi-intermittent autoregulation techniques in adult TBI were: CTP/Xe-CT (10), PET (6), MRI (0), AVDO2 (10), ARI-based TCDT (9), THRT (6), OHT (3), Mx (17), and TF-ARI (6). The premise behind all of the intermittent techniques is manipulation of systemic blood pressure/blood volume via either chemical (such as vasopressors) or mechanical (such as thigh cuffs or carotid compression) means. Exceptionally, Mx and TF-ARI are based on spontaneous fluctuations of cerebral perfusion pressure (CPP) or mean arterial pressure (MAP). The method for assessing the cerebral circulation during these manipulations varies, with both imaging-based techniques and TCD utilized. Despite the limited literature for intermittent/semi-intermittent techniques in adult TBI (minus Mx), it is important to acknowledge the availability of such tests. They have provided fundamental insight into human autoregulatory capacity, leading to the development of continuous and more commonly applied techniques in the intensive care unit (ICU). Numerous methods of intermittent/semi-intermittent pressure autoregulation assessment in adult TBI exist, including: CTP/Xe-CT, PET, AVDO2 technique, TCDT-based ARI, THRT, OHT, Mx, and TF-ARI. MRI-based techniques in adult TBI are yet to be described, with the main focus of MRI techniques on metabolic-based cerebrovascular reactivity (CVR) and not pressure-based autoregulation.
Collapse
Affiliation(s)
- Frederick A Zeiler
- 1 Division of Anaesthesia, University of Cambridge , Cambridge, United Kingdom
- 2 Clinician Investigator Program, University of Manitoba , Winnipeg, Canada
- 3 Section of Neurosurgery, Department of Surgery, University of Manitoba , Winnipeg, Canada
| | - Joseph Donnelly
- 4 Section of Brain Physics, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge , Cambridge, United Kingdom
| | - Leanne Calviello
- 4 Section of Brain Physics, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge , Cambridge, United Kingdom
| | - David K Menon
- 1 Division of Anaesthesia, University of Cambridge , Cambridge, United Kingdom
| | - Peter Smielewski
- 4 Section of Brain Physics, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge , Cambridge, United Kingdom
| | - Marek Czosnyka
- 4 Section of Brain Physics, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge , Cambridge, United Kingdom
| |
Collapse
|
6
|
Godoy DA, Videtta W, Di Napoli M. Practical Approach to Posttraumatic Intracranial Hypertension According to Pathophysiologic Reasoning. Neurol Clin 2017; 35:613-640. [DOI: 10.1016/j.ncl.2017.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Abstract
This article provides a review of cerebral autoregulation, particularly as it relates to the clinician scientist experienced in neuroscience in anesthesia and critical care. Topics covered are biological mechanisms; methods used for assessment of autoregulation; effects of anesthetics; role in control of cerebral hemodynamics in health and disease; and emerging areas, such as role of age and sex in contribution to dysautoregulation. Emphasis is placed on bidirectional translational research wherein the clinical informs the study design of basic science studies, which, in turn, informs the clinical to result in development of improved therapies for treatment of central nervous system conditions.
Collapse
Affiliation(s)
- William M Armstead
- Department of Anesthesiology and Critical Care, University of Pennsylvania, 3620 Hamilton Walk, JM3, Philadelphia, PA l9l04, USA; Department of Pharmacology, University of Pennsylvania, Philadelphia, PA l9l04, USA.
| |
Collapse
|
8
|
Multimodality monitoring consensus statement: monitoring in emerging economies. Neurocrit Care 2015; 21 Suppl 2:S239-69. [PMID: 25208665 DOI: 10.1007/s12028-014-0019-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The burden of disease and so the need for care is often greater at hospitals in emerging economies. This is compounded by frequent restrictions in the delivery of good quality clinical care due to resource limitations. However, there is substantial heterogeneity in this economically defined group, such that advanced brain monitoring is routinely practiced at certain centers that have an interest in neurocritical care. It also must be recognized that significant heterogeneity in the delivery of neurocritical care exists even within individual high-income countries (HICs), determined by costs and level of interest. Direct comparisons of data between HICs and the group of low- and middle-income countries (LAMICs) are made difficult by differences in patient demographics, selection for ICU admission, therapies administered, and outcome assessment. Evidence suggests that potential benefits of multimodality monitoring depend on an appropriate environment and clinical expertise. There is no evidence to suggest that patients in LAMICs where such resources exist should be treated any differently to patients from HICs. The potential for outcome benefits in LAMICs is arguably greater in absolute terms because of the large burden of disease; however, the relative cost/benefit ratio of such monitoring in this setting must be viewed in context of the overall priorities in delivering health care at individual institutions.
Collapse
|
9
|
The physiologic effects of indomethacin test on CPP and ICP in severe traumatic brain injury (sTBI). Neurocrit Care 2014; 20:230-9. [PMID: 24233815 DOI: 10.1007/s12028-013-9924-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Refractory intracranial hypertension (RICH) is associated with high mortality in severe traumatic brain injury (sTBI). Indomethacin (INDO) can decrease intracranial cerebral pressure (ICP) improving cerebral pressure perfusion (CPP). Our aim was to determine modifications in ICP and CPP following INDO in RICH secondary to sTBI. METHODS INDO was administered in a loading dose (0.8 mg/kg/15 min), followed by continuous 2-h infusion period (0.5 mg/kg/h). Clinical outcome was assessed at 30 days according to Glasgow Outcome Scale (GOS). Differences in ICP and CPP values were assessed using repeated-measures ANOVA. Receiver operating characteristic curve (AUC) was used for discrimination in predicting 30-day survival and good functional outcome (GOS 4 or 5). Analysis of INDO safety profile was also conducted. RESULTS Thirty-two patients were included. Median GCS score was 6 (interquartile range: 4-7). The most frequent CT finding was the evacuated mass lesion (EML) according to Marshall classification (28.1 %). Mortality rate was 34.4 %. Within 15 min of INDO infusion, ICP decreased (Δ%: -54.6 %; P < 0.0001), CPP increased (Δ%: +44.0 %; P < 0.0001), and the remaining was stable during the entire infusion period. Patients with good outcome (n = 12) showed a greater increase of CPP during INDO test (P = 0.028). CPP response to INDO test discriminated moderately well surviving patients (AUC = 0.751; P = 0.0098) and those with good functional recovery (AUC = 0.763; P = 0.0035) from those who died and from those with worse functional outcome, respectively. No adverse events were observed. CONCLUSIONS INDO appears effective in reducing ICP and improving CPP in RICH. INDO test could be a useful tool in identifying RICH patients with favorable outcome. Future studies are needed.
Collapse
|
10
|
|
11
|
Capillary transit time heterogeneity and flow-metabolism coupling after traumatic brain injury. J Cereb Blood Flow Metab 2014; 34:1585-98. [PMID: 25052556 PMCID: PMC4269727 DOI: 10.1038/jcbfm.2014.131] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 06/10/2014] [Accepted: 06/20/2014] [Indexed: 12/26/2022]
Abstract
Most patients who die after traumatic brain injury (TBI) show evidence of ischemic brain damage. Nevertheless, it has proven difficult to demonstrate cerebral ischemia in TBI patients. After TBI, both global and localized changes in cerebral blood flow (CBF) are observed, depending on the extent of diffuse brain swelling and the size and location of contusions and hematoma. These changes vary considerably over time, with most TBI patients showing reduced CBF during the first 12 hours after injury, then hyperperfusion, and in some patients vasospasms before CBF eventually normalizes. This apparent neurovascular uncoupling has been ascribed to mitochondrial dysfunction, hindered oxygen diffusion into tissue, or microthrombosis. Capillary compression by astrocytic endfeet swelling is observed in biopsies acquired from TBI patients. In animal models, elevated intracranial pressure compresses capillaries, causing redistribution of capillary flows into patterns argued to cause functional shunting of oxygenated blood through the capillary bed. We used a biophysical model of oxygen transport in tissue to examine how capillary flow disturbances may contribute to the profound changes in CBF after TBI. The analysis suggests that elevated capillary transit time heterogeneity can cause critical reductions in oxygen availability in the absence of 'classic' ischemia. We discuss diagnostic and therapeutic consequences of these predictions.
Collapse
|
12
|
Smirl JD, Tzeng YC, Monteleone BJ, Ainslie PN. Influence of cerebrovascular resistance on the dynamic relationship between blood pressure and cerebral blood flow in humans. J Appl Physiol (1985) 2014; 116:1614-22. [PMID: 24744385 DOI: 10.1152/japplphysiol.01266.2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the hypothesis that changes in the cerebrovascular resistance index (CVRi), independent of blood pressure (BP), will influence the dynamic relationship between BP and cerebral blood flow in humans. We altered CVRi with (via controlled hyperventilation) and without [via indomethacin (INDO, 1.2 mg/kg)] changes in PaCO2. Sixteen subjects (12 men, 27 ± 7 yr) were tested on two occasions (INDO and hypocapnia) separated by >48 h. Each test incorporated seated rest (5 min), followed by squat-stand maneuvers to increase BP variability and improve assessment of the pressure-flow dynamics using linear transfer function analysis (TFA). Beat-to-beat BP, middle cerebral artery velocity (MCAv), posterior cerebral artery velocity (PCAv), and end-tidal Pco2 were monitored. Dynamic pressure-flow relations were quantified using TFA between BP and MCAv/PCAv in the very low and low frequencies through the driven squat-stand maneuvers at 0.05 and 0.10 Hz. MCAv and PCAv reductions by INDO and hypocapnia were well matched, and CVRi was comparably elevated (P < 0.001). During the squat-stand maneuvers (0.05 and 0.10 Hz), the point estimates of absolute gain were universally reduced, and phase was increased under both conditions. In addition to an absence of regional differences, our findings indicate that alterations in CVRi independent of PaCO2 can alter cerebral pressure-flow dynamics. These findings are consistent with the concept of CVRi being a key factor that should be considered in the correct interpretation of cerebral pressure-flow dynamics as indexed using TFA metrics.
Collapse
Affiliation(s)
- J D Smirl
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia Okanagan, Kelowna, British Columbia, Canada;
| | - Y C Tzeng
- Cardiovascular Systems Laboratory, Centre for Translational Physiology, University of Otago, Wellington, New Zealand; and
| | - B J Monteleone
- Faculty of Medicine, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - P N Ainslie
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
13
|
Szabo K, Rosengarten B, Juhasz T, Lako E, Csiba L, Olah L. Effect of non-steroid anti-inflammatory drugs on neurovascular coupling in humans. J Neurol Sci 2013; 336:227-31. [PMID: 24262992 DOI: 10.1016/j.jns.2013.10.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 10/29/2013] [Accepted: 10/31/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Neuronal activation induced cerebral blood flow increase was shown in animal experiments to require the presence of functioning cyclooxygenase. Our aim was to study whether widely used, non-steroid anti-inflammatory drugs (NSAIDs), given orally in usual therapeutic doses, inhibit neurovascular coupling in humans. METHODS By using a visual cortex stimulation paradigm, the flow velocity response was measured by transcranial Doppler sonography in both posterior cerebral arteries of fifteen young healthy adults. The investigation was repeated in the same subjects after 2-day administration of 3×25 mg indomethacin (indomethacin phase) and 2×550 mg naproxen (naproxen phase). Visual-evoked-potentials were also recorded during the control phase and after administration of NSAIDs. RESULTS Basal flow velocity significantly decreased while the pulsatility index increased after administration of either indomethacin or naproxen (p<0.01). Despite unchanged visual-evoked-potentials, the visually evoked flow velocity increase (26±7% in the control phase) significantly declined after administration of indomethacin (19±5%; p<0.01) or naproxen (20±5%; p<0.02). CONCLUSION Oral administration of indomethacin or naproxen in their usual therapeutic doses significantly impaired the resting and the visually evoked blood flow regulations in healthy human subjects. Together with stable evoked potentials, our findings indicate disturbance of neurovascular coupling.
Collapse
Affiliation(s)
- Katalin Szabo
- Department of Neurology, Medical and Health Science Center, University of Debrecen, H-4032 Debrecen, Moricz Zs. str. 22, Hungary
| | - Bernhard Rosengarten
- Department of Neurology, Medical and Health Science Center, University of Debrecen, H-4032 Debrecen, Moricz Zs. str. 22, Hungary
| | - Tunde Juhasz
- Department of Neurology, Medical and Health Science Center, University of Debrecen, H-4032 Debrecen, Moricz Zs. str. 22, Hungary
| | - Eva Lako
- Department of Neurology, Medical and Health Science Center, University of Debrecen, H-4032 Debrecen, Moricz Zs. str. 22, Hungary
| | - Laszlo Csiba
- Department of Neurology, Medical and Health Science Center, University of Debrecen, H-4032 Debrecen, Moricz Zs. str. 22, Hungary
| | - Laszlo Olah
- Department of Neurology, Medical and Health Science Center, University of Debrecen, H-4032 Debrecen, Moricz Zs. str. 22, Hungary.
| |
Collapse
|
14
|
Vuletic V, Drenjancevic I, Rahelic D, Demarin V. Effect of indomethacin on cerebrovascular reactivity in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 2013; 101:81-7. [PMID: 23684449 DOI: 10.1016/j.diabres.2013.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/21/2013] [Accepted: 04/22/2013] [Indexed: 10/26/2022]
Abstract
AIM Impaired cerebral vasoreactivity to endothelium-dependent stimuli were described in type 2 diabetes mellitus (T2DM), but the mechanisms underlying that impairment are still unclear. The aim of this study was to investigate the role of cyclooxygenases' metabolites in response to acute hypercapnic stimulus in cerebral vessels, in patients with T2DM. METHODS Vascular responses in the breath-holding test (BHT) were assessed in the absence/presence of a non-selective, reversible-inhibitor of cyclooxygenases, indomethacin (INDO), by functional transcranial Doppler sonography of the middle cerebral artery (N of patients=50; 33 men and 17 women). The functional hemodynamic parameter mean flow velocity (MFV) was assessed at rest, before and 90min after 100mg of INDO, and during the BHT. Breath holding index (BHI) [(MFV at the end of BHT minus MFV at rest)/MFV at rest)×100/s of breath-holding] was calculated after BHT performed before and 90min after INDO. RESULTS MFV at rest significantly decreased after INDO administration compared with a control condition before INDO (at rest before INDO from 49.36±15.09 to 36.72±8.45 after INDO, p<0.001) However, overall cerebral vessel vasoreactivity to hypercapnia, evaluated with BHI, was significantly improved after INDO administration compared with the BHI before INDO administration (from 0.68±0.4 to 1.27±0.42, p<0.001). CONCLUSIONS The improvement in cerebral vasoreactivity in response to BHT after INDO administration suggests that the production of a vasoconstrictor metabolite of cyclooxygenase in diabetic patients was reduced by indomethacin consumption.
Collapse
Affiliation(s)
- Vladimira Vuletic
- Department of Neurology, Dubrava University Hospital, Zagreb, Croatia.
| | - Ines Drenjancevic
- Department of Physiology and Immunology, Faculty of Medicine Osijek, University Josip, Juraj Strossmayer, Osijek, Croatia
| | - Dario Rahelic
- Department of Endocrinology, Diabetes and Metabolic Disorders, Dubrava University Hospital, Zagreb, Croatia
| | - Vida Demarin
- Medical Director, Medical Centre "Aviva", Zagreb, Croatia
| |
Collapse
|
15
|
Chaiwat O, Sharma D, Udomphorn Y, Armstead WM, Vavilala MS. Cerebral hemodynamic predictors of poor 6-month Glasgow Outcome Score in severe pediatric traumatic brain injury. J Neurotrauma 2009; 26:657-63. [PMID: 19292656 DOI: 10.1089/neu.2008.0770] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Little is known regarding the cerebral autoregulation in pediatric traumatic brain injury (TBI). We examined the relationship between cerebral hemodynamic predictors, including cerebral autoregulation, and long-term outcome after severe pediatric TBI. After Institutional Review Board (IRB) approval, a retrospective analysis of prospectively collected data (May 2002 to October 2007) for children age < or =16 years with severe TBI (admission Glasgow Coma Scale [GCS] score <9) was performed. Cerebral autoregulation was assessed within 72 h after TBI. Cerebral hemodynamic predictors (intracranial pressure [ICP], systolic blood pressure [SBP], and cerebral perfusion pressure [CPP]) through the first 72 h after TBI were abstracted. Univariate and multivariate analyses examined the relationship between impaired cerebral autoregulation (autoregulatory index <0.4), intracranial hypertension (ICP >20 mm Hg), and hypotension (SBP <5th percentile and CPP <40 mm Hg). Six-month Glasgow Outcome Scale (GOS) score of <4 defined poor outcome. Ten (28%) of the 36 children examined (9.1 +/- 5.3 [0.8-16] years; 74% male) had poor outcome. Univariate factors associated with poor outcome were impaired cerebral autoregulation (p = 0.005), SBP <5(th) percentile for age and gender (p = 0.02), and low middle cerebral artery flow velocity (<2 SD for age and gender; p = 0.04). Independent risk factors for poor 6-month GOS were impaired cerebral autoregulation (adjusted odds ratio [aOR] 12.0; 95% confidence interval [CI] 1.4-99.4) and hypotension (SBP <5th percentile; aOR 8.8; 95% CI 1.1-70.5), respectively. Previous studies of TBI describing poor outcome with hemodynamics did not consider the status of cerebral autoregulation. In this study, both impaired cerebral autoregulation and SBP <5th percentile were independent risk factors for poor 6-month GOS.
Collapse
Affiliation(s)
- Onuma Chaiwat
- Harborview Anesthesiology Research Center, University of Washington, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
16
|
|
17
|
Cerebral CO2 reactivity in severe head injury. A transcranial Doppler study. ACTA NEUROCHIRURGICA SUPPLEMENTS 2008; 102:171-5. [DOI: 10.1007/978-3-211-85578-2_34] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|