1
|
Vespa P, Wolahan S, Buitrago-Blanco M, Real C, Ruiz-Tejeda J, McArthur DL, Chiang JN, Agoston D, Glenn TC. Exogenous lactate infusion (ELI) in traumatic brain injury: higher dose is better? Crit Care 2025; 29:153. [PMID: 40229764 PMCID: PMC11998250 DOI: 10.1186/s13054-025-05374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/15/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND/OBJECTIVE Traumatic brain injury (TBI) is a life-threatening critical neurological injury resulting in widespread metabolic dysfunction in need of novel metabolic therapy. Exogenous lactate appears to improve brain metabolism, but the dose of lactate required remains uncertain. However, the ideal dose of lactate remains unclear. We present a comparison of low vs high dose exogenous sodium lactate infusion in a small cohort and the previous existing literature. We propose a systematic protocol to better study the question of dose-effect n in a future larger study. METHODS We analyzed the metabolic and physiologic effects of various doses of exogenous sodium lactate infusion (ELI) in the existing published literature and our own, single center cohort of patients with coma from severe TBI. Low dose ELI targeting arterial lactate concentration of 2-3 mMol was compared with high dose ELI targeting 4-6 mM. Effects of ELI on brain metabolism and intracranial pressure (ICP) were reviewed. A precision high-dose protocol was piloted and results compared against the existing literature. RESULTS Across various studies, metabolic response to ELI was variable and not consistently beneficial. High-dose ELI targeting arterial concentration of 4-6 mM resulted in consistent metabolic improvement and in ICP reduction (p < 0.01). The precision high dose protocol reliably resulted in higher arterial concentration. CONCLUSIONS High dose ELI appears to have more consistent beneficial effects on brain metabolism and intracranial pressure. TRIAL REGISTRATION ClinicalTrials.gov ID NCT02776488. Date registered: 2016-05-17. Retrospectively Registered.
Collapse
Affiliation(s)
- Paul Vespa
- UCLA Department of Neurology, UCLA Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, 757 Westwood Blvd., Room 6236 A, Los Angeles, CA, 90095, USA.
| | - Stephanie Wolahan
- UCLA Department of Neurology, UCLA Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, 757 Westwood Blvd., Room 6236 A, Los Angeles, CA, 90095, USA
| | - Manuel Buitrago-Blanco
- UCLA Department of Neurology, UCLA Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, 757 Westwood Blvd., Room 6236 A, Los Angeles, CA, 90095, USA
| | - Courtney Real
- UCLA Department of Neurology, UCLA Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, 757 Westwood Blvd., Room 6236 A, Los Angeles, CA, 90095, USA
| | - Jesus Ruiz-Tejeda
- Department of Oncology, University of California, Irvine, Irvine, USA
| | - David L McArthur
- UCLA Department of Neurology, UCLA Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, 757 Westwood Blvd., Room 6236 A, Los Angeles, CA, 90095, USA
| | - Jeffrey N Chiang
- UCLA Department of Neurology, UCLA Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, 757 Westwood Blvd., Room 6236 A, Los Angeles, CA, 90095, USA
| | | | - Thomas C Glenn
- UCLA Department of Neurology, UCLA Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, 757 Westwood Blvd., Room 6236 A, Los Angeles, CA, 90095, USA
| |
Collapse
|
2
|
Chen Y, Xiao D, Li X. Lactylation and Central Nervous System Diseases. Brain Sci 2025; 15:294. [PMID: 40149815 PMCID: PMC11940311 DOI: 10.3390/brainsci15030294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
As the final product of glycolysis, lactate serves as an energy substrate, metabolite, and signaling molecule in various diseases and mediates lactylation, an epigenetic modification that occurs under both physiological and pathological conditions. Lactylation is a crucial mechanism by which lactate exerts its functions, participating in vital biological activities such as glycolysis-related cellular functions, macrophage polarization, and nervous system regulation. Lactylation links metabolic regulation to central nervous system (CNS) diseases, such as traumatic brain injury, Alzheimer's disease, acute ischemic stroke, and schizophrenia, revealing the diverse functions of lactylation in the CNS. In the future, further exploration of lactylation-associated enzymes and proteins is needed to develop specific lactylation inhibitors or activators, which could provide new tools and strategies for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Ye Chen
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (D.X.)
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
| | - Dongqiong Xiao
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (D.X.)
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
| | - Xihong Li
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (D.X.)
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
| |
Collapse
|
3
|
Qiu LL, Tan XX, Yang JJ, Zhang H, Xu N, Zhao C, Sun J. Lactate improves postoperative cognitive function through attenuating oxidative stress and neuroinflammation in aged mice via activating the SIRT1 pathway. Exp Neurol 2025; 385:115136. [PMID: 39746462 DOI: 10.1016/j.expneurol.2024.115136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/20/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Postoperative cognitive dysfunction (POCD) is a recognized clinical phenomenon characterized by cognitive impairment in patients following anesthesia and surgery, especially in the elderly. However, the pathogenesis of POCD remains unclear. In the last decades, lactate's neuroprotective properties have been increasingly mentioned. The study tested the hypothesis that lactate may attenuate the cognitive impairment induced by anesthesia and surgery in aged mice through SIRT1-dependent antioxidant and anti-inflammatory effects. We used 18-month-old C57BL/6 mice to establish the POCD animal model by exploratory laparotomy with isoflurane anesthesia. For the interventional study, mice were administered lactate, with or without the potent and selective SIRT1 inhibitor EX-527. Behavioral tests including open field (OF), Y maze and fear conditioning (FC) tests were performed from 4 to 7 days after anesthesia and surgery. Immunofluorescence staining and Western blot were employed to assess oxidative damage, activation of microglia and astrocytes, levels of proinflammatory cytokines, and the expression of plasticity-related proteins. Lactate treatment can ameliorate oxidative stress, neuroinflammation, and the decreased levels of plasticity-related proteins induced by anesthesia and surgery, ultimately improving cognitive impairment in aged mice. However, co-treatment with lactate and EX-527 diminished the beneficial effects. Our study indicates that the mechanisms underlying neuroprotective properties of lactate might be related to its antioxidant and anti-inflammatory effects, and improvement of hippocampal synaptic plasticity through activation of SIRT1 pathway.
Collapse
Affiliation(s)
- Li-Li Qiu
- Department of Anesthesiology, surgery and pain management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiao-Xiang Tan
- Department of Anesthesiology, surgery and pain management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jiao-Jiao Yang
- Department of Anesthesiology, surgery and pain management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hui Zhang
- Department of Anesthesiology, surgery and pain management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ning Xu
- Department of Anesthesiology, surgery and pain management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| | - Jie Sun
- Department of Anesthesiology, surgery and pain management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
4
|
Wang Y, Li P, Xu Y, Feng L, Fang Y, Song G, Xu L, Zhu Z, Wang W, Mei Q, Xie M. Lactate metabolism and histone lactylation in the central nervous system disorders: impacts and molecular mechanisms. J Neuroinflammation 2024; 21:308. [PMID: 39609834 PMCID: PMC11605911 DOI: 10.1186/s12974-024-03303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
Brain takes up approximately 20% of the total body oxygen and glucose consumption due to its relatively high energy demand. Glucose is one of the major sources to generate ATP, the process of which can be realized via glycolysis, oxidative phosphorylation, pentose phosphate pathways and others. Lactate serves as a hub molecule amid these metabolic pathways, as it may function as product of glycolysis, substrate of a variety of enzymes and signal molecule. Thus, the roles of lactate in central nervous system (CNS) diseases need to be comprehensively elucidated. Histone lactylation is a novel lactate-dependent epigenetic modification that plays an important role in immune regulation and maintaining homeostasis. However, there's still a lack of studies unveiling the functions of histone lactylation in the CNS. In this review, we first comprehensively reviewed the roles lactate plays in the CNS under both physiological and pathological conditions. Subsequently, we've further discussed the functions of histone lactylation in various neurological diseases. Furthermore, future perspectives regarding histone lactylation and its therapeutic potentials in stroke are also elucidated, which may possess potential clinical applications.
Collapse
Affiliation(s)
- Yao Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Ping Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yuan Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Linyu Feng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yongkang Fang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Guini Song
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Li Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Zhou Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Qi Mei
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China.
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
5
|
Wang Z, Zhang L, Xing T, Zhao L, Gao F. Effects of sodium lactate injection on meat quality and lactate content in broiler chickens: emphasis on injection method and dosage. Poult Sci 2024; 103:104084. [PMID: 39067126 PMCID: PMC11338084 DOI: 10.1016/j.psj.2024.104084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024] Open
Abstract
This study aims to develop an experimental model of high lactate levels in broilers to mimic the condition of birds under stress or diseases and evaluate its consequent effects on meat quality. The injection sites and dosage effects were compared separately in 2 experiments. Experiment 1 includes 3 injection sites: intraperitoneal injection, intramuscular injection, and subcutaneous injection. Experiment 2 was a dosage experiment based on the results of Experiment 1: sodium lactate intraperitoneal injection group with 1.5, 3, 6 mM concentration. The results showed that injecting sodium lactate intraperitoneally, intramuscularly, or subcutaneously all significantly decreased body weight and breast muscle weight while elevating lactic acid levels in both the blood and breast muscle of broilers. Moreover, all 3 injection methods caused a significant reduction in pH24h and an increase in the shear force value of breast muscle. In addition, dose-response experiments of intraperitoneal injection showed that a concentration of 3 mM and 6 mM were significantly decreased body weight and breast muscle weight in broiler chickens, accompanied by a notable increase in breast muscle lactate content. Compared to the control group, intraperitoneal injections of 1.5 mM, 3 mM, and 6 mM sodium lactate treatments significantly reduced the yellowness values of the breast muscle. As the dose of sodium lactate increased, the shear force value of the breast meat exhibited linear and quadratic increments, while the drip loss decreased linearly. Intraperitoneal injection of 3 mM sodium lactate also significantly reduced the pH24h of broiler breast muscle. In addition, an increased dose of lactate injections up-regulated the glycolytic pathway responsible for endogenous lactate production in the breast muscle by upregulating the expression of phosphofructokinase, pyruvate kinase and lactate dehydrogenase A. In conclusion, intraperitoneal injection of sodium lactate at 3 mM directly increased breast muscle lactate levels, providing a valuable method for establishing a high-level lactate model in poultry.
Collapse
Affiliation(s)
- Zhenxin Wang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Liang Zhao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
6
|
Fedoruk RP, Lee CH, Banoei MM, Winston BW. Metabolomics in severe traumatic brain injury: a scoping review. BMC Neurosci 2023; 24:54. [PMID: 37845610 PMCID: PMC10577974 DOI: 10.1186/s12868-023-00824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Diagnosis and prognostication of severe traumatic brain injury (sTBI) continue to be problematic despite years of research efforts. There are currently no clinically reliable biomarkers, though advances in protein biomarkers are being made. Utilizing Omics technology, particularly metabolomics, may provide new diagnostic biomarkers for sTBI. Several published studies have attempted to determine the specific metabolites and metabolic pathways involved; these studies will be reviewed. AIMS This scoping review aims to summarize the current literature concerning metabolomics in sTBI, review the comprehensive data, and identify commonalities, if any, to define metabolites with potential clinical use. In addition, we will examine related metabolic pathways through pathway analysis. METHODS Scoping review methodology was used to examine the current literature published in Embase, Scopus, PubMed, and Medline. An initial 1090 publications were identified and vetted with specific inclusion criteria. Of these, 20 publications were selected for further examination and summary. Metabolic data was classified using the Human Metabolome Database (HMDB) and arranged to determine the 'recurrent' metabolites and classes found in sTBI. To help understand potential mechanisms of injury, pathway analysis was performed using these metabolites and the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Database. RESULTS Several metabolites related to sTBI and their effects on biological pathways were identified in this review. Across the literature, proline, citrulline, lactate, alanine, valine, leucine, and serine all decreased in adults post sTBI, whereas both octanoic and decanoic acid increased. Hydroxy acids and organooxygen compounds generally increased following sTBI, while most carboxylic acids decreased. Pathway analysis showed significantly affected glycine and serine metabolism, glycolysis, branched-chain amino acid (BCAA) metabolism, and other amino acid metabolisms. Interestingly, no tricarboxylic acid cycle metabolites were affected. CONCLUSION Aside from a select few metabolites, classification of a metabolic profile proved difficult due to significant ambiguity between study design, sample size, type of sample, metabolomic detection techniques, and other confounding variables found in sTBI literature. Given the trends found in some studies, further metabolomics investigation of sTBI may be useful to identify clinically relevant metabolites.
Collapse
Affiliation(s)
- Riley Page Fedoruk
- Department of Critical Care, Cumming School of Medicine, Alberta Health Services and University of Calgary, Calgary, Canada
| | - Chel Hee Lee
- Department of Critical Care, Cumming School of Medicine, Alberta Health Services and University of Calgary, Calgary, Canada
- Department of Mathematics and Statistics, Faculty of Science, University of Calgary, Calgary, Canada
| | | | - Brent W Winston
- Department of Critical Care, Cumming School of Medicine, Alberta Health Services and University of Calgary, Calgary, Canada.
- Departments of Medicine and Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
7
|
Deng Q, Wu C, Liu TCY, Duan R, Yang L. Exogenous lactate administration: A potential novel therapeutic approach for neonatal hypoxia-ischemia. Exp Neurol 2023; 367:114450. [PMID: 37268250 DOI: 10.1016/j.expneurol.2023.114450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is the primary reason for neonatal mortality and prolonged disablement. Currently, hypothermia is the only approved clinical treatment available for HIE. However, hypothermia's limited therapeutic efficacy and adverse effects suggest an urgent need to advance our knowledge of its molecular pathogenesis and develop novel therapies. The leading cause of HIE is impaired cerebral blood flow and oxygen deprivation-initiated primary and secondary energy failure. Lactate was traditionally regarded as a marker of energy failure or a waste product of anaerobic glycolysis. Recently, the beneficial aspects of lactate as supplementary energy for neurons have been demonstrated. Under the conditions of HI, lactate supports various functions of neuronal cells, including learning and memory formation, motor coordination, and somatosensory. Furthermore, lactate contributes to the regeneration of blood vessels and has shown its beneficial effects on the immune system. This review first introduces the hypoxic or ischemic events-induced fundamental pathophysiological changes in HIE and then discusses the potential neuroprotective properties of lactate for the treatment and prevention of HIE. Finally, we discuss the possible protective mechanisms of lactate in the context of the pathological features of perinatal HIE. We conclude that exogenous and endogenous lactate exert neuroprotective effects in HIE. Lactate administration may be a potential approach to treating HIE injury.
Collapse
Affiliation(s)
- Qianting Deng
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, GD 510006, China
| | - Chongyun Wu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, GD 510006, China
| | - Timon Cheng-Yi Liu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, GD 510006, China
| | - Rui Duan
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, GD 510006, China.
| | - Luodan Yang
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, GD 510006, China.
| |
Collapse
|
8
|
Colucci ACM, Tassinari ID, Loss EDS, de Fraga LS. History and Function of the Lactate Receptor GPR81/HCAR1 in the Brain: A Putative Therapeutic Target for the Treatment of Cerebral Ischemia. Neuroscience 2023; 526:144-163. [PMID: 37391123 DOI: 10.1016/j.neuroscience.2023.06.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
GPR81 is a G-protein coupled receptor (GPCR) discovered in 2001, but deorphanized only 7 years later, when its affinity for lactate as an endogenous ligand was demonstrated. More recently, GPR81 expression and distribution in the brain were also confirmed and the function of lactate as a volume transmitter has been suggested since then. These findings shed light on a new function of lactate acting as a signaling molecule in the central nervous system, in addition to its well-known role as a metabolic fuel for neurons. GPR81 seems to act as a metabolic sensor, coupling energy metabolism, synaptic activity, and blood flow. Activation of this receptor leads to Gi-mediated downregulation of adenylyl cyclase and subsequent reduction in cAMP levels, regulating several downstream pathways. Recent studies have also suggested the potential role of lactate as a neuroprotective agent, mainly under brain ischemic conditions. This effect is usually attributed to the metabolic role of lactate, but the underlying mechanisms need further investigation and could be related to lactate signaling via GPR81. The activation of GPR81 showed promising results for neuroprotection: it modulates many processes involved in the pathophysiology of ischemia. In this review, we summarize the history of GPR81, starting with its deorphanization; then, we discuss GPR81 expression and distribution, signaling transduction cascades, and neuroprotective roles. Lastly, we propose GPR81 as a potential target for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Anna Clara Machado Colucci
- Laboratório de Neurobiologia e Metabolismo (NeuroMet), Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, lab. 660, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre, Brazil
| | - Isadora D'Ávila Tassinari
- Laboratório de Neurobiologia e Metabolismo (NeuroMet), Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, lab. 660, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre, Brazil
| | - Eloísa da Silveira Loss
- Laboratório de Endocrinologia Experimental (LABENEX), Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, lab. 660, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil
| | - Luciano Stürmer de Fraga
- Laboratório de Neurobiologia e Metabolismo (NeuroMet), Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, lab. 660, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre, Brazil.
| |
Collapse
|
9
|
Kang BS, Choi BY, Kho AR, Lee SH, Hong DK, Park MK, Lee SH, Lee CJ, Yang HW, Woo SY, Park SW, Kim DY, Park JB, Chung WS, Suh SW. Effects of Pyruvate Kinase M2 (PKM2) Gene Deletion on Astrocyte-Specific Glycolysis and Global Cerebral Ischemia-Induced Neuronal Death. Antioxidants (Basel) 2023; 12:491. [PMID: 36830049 PMCID: PMC9952809 DOI: 10.3390/antiox12020491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/04/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Ischemic stroke is caused by insufficient blood flow to the brain. Astrocytes have a role in bidirectionally converting pyruvate, generated via glycolysis, into lactate and then supplying it to neurons through astrocyte-neuron lactate shuttle (ANLS). Pyruvate kinase M2 (PKM2) is an enzyme that dephosphorylates phosphoenolpyruvate to pyruvate during glycolysis in astrocytes. We hypothesized that a reduction in lactate supply in astrocyte PKM2 gene deletion exacerbates neuronal death. Mice harboring a PKM2 gene deletion were established by administering tamoxifen to Aldh1l1-CreERT2; PKM2f/f mice. Upon development of global cerebral ischemia, mice were immediately injected with sodium l-lactate (250 mg/kg, i.p.). To verify our hypothesis, we compared oxidative damage, microtubule disruption, ANLS disruption, and neuronal death between the gene deletion and control subjects. We observed that PKM2 gene deletion increases the degree of neuronal damage and impairment of lactate metabolism in the hippocampal region after GCI. The lactate administration groups showed significantly reduced neuronal death and increases in neuron survival and cognitive function. We found that lactate supply via the ANLS in astrocytes plays a crucial role in maintaining energy metabolism in neurons. Lactate administration may have potential as a therapeutic tool to prevent neuronal damage following ischemic stroke.
Collapse
Affiliation(s)
- Beom-Seok Kang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Bo-Young Choi
- Department of Physical Education, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Sport Science, Hallym University, Chuncheon 24252, Republic of Korea
| | - A-Ra Kho
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, College of Medicine, Johns Hopkins University School, Baltimore, MD 21205, USA
- Department of Neurology, College of Medicine, Johns Hopkins University School, Baltimore, MD 21205, USA
| | - Song-Hee Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Dae-Ki Hong
- Department of Pathology and Laboratory Medicine, College of Medicine, Emory University School, Atlanta, GA 30322, USA
| | - Min-Kyu Park
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Si-Hyun Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Chang-Juhn Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hyeun-Wook Yang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Seo-Young Woo
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Se-Wan Park
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Dong-Yeon Kim
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, College of Medicine, Chuncheon 24252, Republic of Korea
| | - Won-Suk Chung
- Department of Biological Sciences and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34051, Republic of Korea
| | - Sang-Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
10
|
Omori NE, Woo GH, Mansor LS. Exogenous Ketones and Lactate as a Potential Therapeutic Intervention for Brain Injury and Neurodegenerative Conditions. Front Hum Neurosci 2022; 16:846183. [PMID: 36267349 PMCID: PMC9577611 DOI: 10.3389/fnhum.2022.846183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Metabolic dysfunction is a ubiquitous underlying feature of many neurological conditions including acute traumatic brain injuries and chronic neurodegenerative conditions. A central problem in neurological patients, in particular those with traumatic brain injuries, is an impairment in the utilization of glucose, which is the predominant metabolic substrate in a normally functioning brain. In such patients, alternative substrates including ketone bodies and lactate become important metabolic candidates for maintaining brain function. While the potential neuroprotective benefits of ketosis have been recognized for up to almost a century, the majority of work has focused on the use of ketogenic diets to induce such a state, which is inappropriate in cases of acute disease due to the prolonged periods of time (i.e., weeks to months) required for the effects of a ketogenic diet to be seen. The following review seeks to explore the neuroprotective effects of exogenous ketone and lactate preparations, which have more recently become commercially available and are able to induce a deep ketogenic response in a fraction of the time. The rapid response of exogenous preparations makes their use as a therapeutic adjunct more feasible from a clinical perspective in both acute and chronic neurological conditions. Potentially, their ability to globally moderate long-term, occult brain dysfunction may also be relevant in reducing lifetime risks of certain neurodegenerative conditions. In particular, this review explores the association between traumatic brain injury and contusion-related dementia, assessing metabolic parallels and highlighting the potential role of exogenous ketone and lactate therapies.
Collapse
|
11
|
Taylor J, Parker M, Casey CP, Tanabe S, Kunkel D, Rivera C, Zetterberg H, Blennow K, Pearce RA, Lennertz RC, Sanders RD. Postoperative delirium and changes in the blood-brain barrier, neuroinflammation, and cerebrospinal fluid lactate: a prospective cohort study. Br J Anaesth 2022; 129:219-230. [PMID: 35144802 PMCID: PMC9465948 DOI: 10.1016/j.bja.2022.01.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Case-control studies have associated delirium with blood-brain barrier (BBB) permeability. However, this approach cannot determine whether delirium is attributable to high pre-existing permeability or to perioperative changes. We tested whether perioperative changes in cerebrospinal fluid/plasma albumin ratio (CPAR) and plasma S100B were associated with delirium severity. METHODS Participants were recruited to two prospective cohort studies of non-intracranial surgery (NCT01980511, NCT03124303, and NCT02926417). Delirium severity was assessed using the Delirium Rating Scale-98. Delirium incidence was diagnosed with the 3D-Confusion Assessment Method (3D-CAM) or CAM-ICU (CAM for the ICU). CSF samples from 25 patients and plasma from 78 patients were analysed for albumin and S100B. We tested associations between change in CPAR (n=11) and S100B (n=61) and delirium, blood loss, CSF interleukin-6 (IL-6), and CSF lactate. RESULTS The perioperative increase in CPAR and S100B correlated with delirium severity (CPAR ρ=0.78, P=0.01; S100B ρ=0.41, P<0.001), delirium incidence (CPAR P=0.012; S100B P<0.001) and CSF IL-6 (CPAR ρ=0.66 P=0.04; S100B ρ=0.75, P=0.025). Linear mixed-effect analysis also showed that decreased levels of S100B predicted recovery from delirium symptoms (P=0.001). Linear regression demonstrated that change in plasma S100B was independently associated with surgical risk, cardiovascular surgery, blood loss, and hypotension. Blood loss also correlated with CPAR (ρ=0.64, P=0.04), S100B (ρ=0.70, P<0.001), CSF lactate (R=0.81, P=0.01), and peak delirium severity (ρ=0.36, P=0.01). CONCLUSION Postoperative delirium is associated with a breakdown in the BBB. This increased permeability is dynamic and associated with a neuroinflammatory and lactate response. Strategies to mitigate blood loss may protect the BBB.
Collapse
Affiliation(s)
- Jennifer Taylor
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Department of Anaesthetics, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, Australia
| | - Margaret Parker
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Cameron P Casey
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Sean Tanabe
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - David Kunkel
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Cameron Rivera
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Robert A Pearce
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Richard C Lennertz
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Robert D Sanders
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Department of Anaesthetics, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, Australia.
| |
Collapse
|
12
|
Hashimoto T, Tsukamoto H, Ando S, Ogoh S. Effect of Exercise on Brain Health: The Potential Role of Lactate as a Myokine. Metabolites 2021; 11:metabo11120813. [PMID: 34940571 PMCID: PMC8709217 DOI: 10.3390/metabo11120813] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/24/2022] Open
Abstract
It has been well established in epidemiological studies and randomized controlled trials that habitual exercise is beneficial for brain health, such as cognition and mental health. Generally, it may be reasonable to say that the physiological benefits of acute exercise can prevent brain disorders in late life if such exercise is habitually/chronically conducted. However, the mechanisms of improvement in brain function via chronic exercise remain incompletely understood because such mechanisms are assumed to be multifactorial, such as the adaptation of repeated acute exercise. This review postulates that cerebral metabolism may be an important physiological factor that determines brain function. Among metabolites, the provision of lactate to meet elevated neural activity and regulate the cerebrovascular system and redox states in response to exercise may be responsible for exercise-enhanced brain health. Here, we summarize the current knowledge regarding the influence of exercise on brain health, particularly cognitive performance, with the underlying mechanisms by means of lactate. Regarding the influence of chronic exercise on brain function, the relevance of exercise intensity and modality, particularly high-intensity interval exercise, is acknowledged to induce “metabolic myokine” (i.e., lactate) for brain health.
Collapse
Affiliation(s)
- Takeshi Hashimoto
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga 525-8577, Japan; (T.H.); (H.T.)
| | - Hayato Tsukamoto
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga 525-8577, Japan; (T.H.); (H.T.)
| | - Soichi Ando
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan;
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Saitama 350-8585, Japan
- Correspondence:
| |
Collapse
|
13
|
Pandya JD, Leung LY, Hwang HM, Yang X, Deng-Bryant Y, Shear DA. Time-Course Evaluation of Brain Regional Mitochondrial Bioenergetics in a Pre-Clinical Model of Severe Penetrating Traumatic Brain Injury. J Neurotrauma 2021; 38:2323-2334. [PMID: 33544034 DOI: 10.1089/neu.2020.7379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial dysfunction is a pivotal target for neuroprotection strategies for traumatic brain injury (TBI). However, comprehensive time-course evaluations of mitochondrial dysfunction are lacking in the pre-clinical penetrating TBI (PTBI) model. The current study was designed to characterize temporal responses of mitochondrial dysfunction from 30 min to 2 weeks post-injury after PTBI. Anesthetized adult male rats were subjected to either PTBI or sham craniectomy (n = 6 animals per group × 7 time points). Animals were euthanized at 30 min, 3 h, 6 h, 24 h, 3 days, 7 days, and 14 days post-PTBI, and mitochondria were isolated from the ipsilateral hemisphere of brain regions near the injury core (i.e., frontal cortex [FC] and striatum [ST]) and a more distant region from the injury core (i.e., hippocampus [HIP]). Mitochondrial bioenergetics parameters were measured in real time using the high-throughput procedures of the Seahorse Flux Analyzer (Agilent Technologies, Santa Clara, CA). The post-injury time course of FC + ST showed a biphasic mitochondrial bioenergetics dysfunction response, indicative of reduced adenosine triphosphate synthesis rate and maximal respiratory capacity after PTBI. An initial phase of energy crisis was detected at 30 min (-42%; p < 0.05 vs. sham), which resolved to baseline levels between 3 and 6 h (non-significant vs. sham). This was followed by a second and more robust phase of bioenergetics dysregulation detected at 24 h that remained unresolved out to 14 days post-injury (-55% to -90%; p < 0.05 vs. sham). In contrast, HIP mitochondria showed a delayed onset of mitochondrial dysfunction at 7 days (-74%; p < 0.05 vs. sham) that remained evident out to 14 days (-51%; p < 0.05 vs. sham) post-PTBI. Collectively, PTBI-induced mitochondrial dysfunction responses were time and region specific, evident differentially at the injury core and distant region of PTBI. The current results provide the basis that mitochondrial dysfunction may be targeted differentially based on region specificity post-PTBI. Even more important, these results suggest that therapeutic interventions targeting mitochondrial dysfunction may require extended dosing regimens to achieve clinical efficacy after TBI.
Collapse
Affiliation(s)
- Jignesh D Pandya
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Lai Yee Leung
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
- Department of Surgery, Uniformed Services University of the Health Science (USUHS), Bethesda, Maryland, USA
| | - Hye M Hwang
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Xiaofang Yang
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Ying Deng-Bryant
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Deborah A Shear
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| |
Collapse
|
14
|
Brooks GA, Arevalo JA, Osmond AD, Leija RG, Curl CC, Tovar AP. Lactate in contemporary biology: a phoenix risen. J Physiol 2021; 600:1229-1251. [PMID: 33566386 PMCID: PMC9188361 DOI: 10.1113/jp280955] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
After a century, it's time to turn the page on understanding of lactate metabolism and appreciate that lactate shuttling is an important component of intermediary metabolism in vivo. Cell‐cell and intracellular lactate shuttles fulfil purposes of energy substrate production and distribution, as well as cell signalling under fully aerobic conditions. Recognition of lactate shuttling came first in studies of physical exercise where the roles of driver (producer) and recipient (consumer) cells and tissues were obvious. Moreover, the presence of lactate shuttling as part of postprandial glucose disposal and satiety signalling has been recognized. Mitochondrial respiration creates the physiological sink for lactate disposal in vivo. Repeated lactate exposure from regular exercise results in adaptive processes such as mitochondrial biogenesis and other healthful circulatory and neurological characteristics such as improved physical work capacity, metabolic flexibility, learning, and memory. The importance of lactate and lactate shuttling in healthful living is further emphasized when lactate signalling and shuttling are dysregulated as occurs in particular illnesses and injuries. Like a phoenix, lactate has risen to major importance in 21st century biology.
![]()
Collapse
Affiliation(s)
- George A Brooks
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Jose A Arevalo
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Adam D Osmond
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Robert G Leija
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Casey C Curl
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Ashley P Tovar
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
15
|
Cho HS, Lee WS, Yoon KJ, Park SH, Shin HE, Kim YS, Chang H, Moon HY. Lactate consumption mediates repeated high-intensity interval exercise-enhanced executive function in adult males. Phys Act Nutr 2021; 24:15-23. [PMID: 33539690 PMCID: PMC7931649 DOI: 10.20463/pan.2020.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/04/2020] [Indexed: 11/22/2022] Open
Abstract
[Purpose] Lactate is a principal energy substrate for the brain during exercise. A single bout of high-intensity interval exercise (HIIE) can increase the blood lactate level, brain lactate uptake, and executive function (EF). However, repeated HIIE can attenuate exercise-induced increases in lactate level and EF. The lactate levels in the brain and blood are reported to be correlated with exercise-enhanced EF. However, research is yet to explain the cause-and-effect relationship between lactate and EF. This study examined whether lactate consumption improves the attenuated exerciseenhanced EF caused by repeated HIIE. [Methods] Eleven healthy men performed two sets of HIIE, and after each set, 30 min were given for rest and examination. In the 2nd set, the subjects consumed experimental beverages containing (n = 6) and not containing (n = 5) lactate. Blood, cardiovascular, and psychological variables were measured, and EF was evaluated by the computerized color–word Stroop test. [Results] The lactate group had a higher EF (P < 0.05) and tended to have a higher blood lactate level (P = 0.082) than the control group in the 2nd set of HIIE. Moreover, blood lactate concentration was correlated with the interference score (i.e., reverse score of EF) (r = -0.394; P < 0.05). [Conclusion] Our results suggest that the attenuated exercise-enhanced EF after repeated HIIE can be improved through lactate consumption. However, the role of lactate needs to be elucidated in future studies, as it can be used for improving athletes’ performance and also in cognitive decline-related clinical studies.
Collapse
Affiliation(s)
- Hae-Sung Cho
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea
| | - Won Sang Lee
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea
| | - Kyeong Jin Yoon
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea
| | - Soo Hong Park
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea
| | - Hyung Eun Shin
- Health and Exercise Science Laboratory, Seoul National University, Seoul, Republic of Korea
| | - Yeon-Soo Kim
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea.,Institute of Sport Science, Seoul National University, Seoul, Republic of Korea
| | - Hyukki Chang
- Department of Human Movement Science, Seoul Women's University, Seoul, Republic of Korea
| | - Hyo Youl Moon
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea.,Institute of Sport Science, Seoul National University, Seoul, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Rocha-Mendoza D, Kosmerl E, Krentz A, Zhang L, Badiger S, Miyagusuku-Cruzado G, Mayta-Apaza A, Giusti M, Jiménez-Flores R, García-Cano I. Invited review: Acid whey trends and health benefits. J Dairy Sci 2020; 104:1262-1275. [PMID: 33358165 DOI: 10.3168/jds.2020-19038] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022]
Abstract
In recent years, acid whey production has increased due to a growing demand for Greek yogurt and acid-coagulated cheeses. Acid whey is a dairy by-product for which the industry has long struggled to find a sustainable application. Bulk amounts of acid whey associated with the dairy industry have led to increasing research on ways to valorize it. Industry players are finding ways to use acid whey on-site with ultrafiltration techniques and biodigesters, to reduce transportation costs and provide energy for the facility. Academia has sought to further investigate practical uses and benefits of this by-product. Although modern research has shown many other possible applications for acid whey, no comprehensive review yet exists about its composition, utilization, and health benefits. In this review, the industrial trends, the applications and uses, and the potential health benefits associated with the consumption of acid whey are discussed. The proximal composition of acid whey is discussed in depth. In addition, the potential applications of acid whey, such as its use as a starting material in the production of fermented beverages, as growth medium for cultivation of lactic acid bacteria in replacement of commercial media, and as a substrate for the isolation of lactose and minerals, are reviewed. Finally, the potential health benefits of the major protein constituents of acid whey, bioactive phospholipids, and organic acids such as lactic acid are described. Acid whey has promising applications related to potential health benefits, ranging from antibacterial effects to cognitive development for babies to human gut health.
Collapse
Affiliation(s)
- Diana Rocha-Mendoza
- Department of Food Science and Technology, The Ohio State University, Columbus 43210
| | - Erica Kosmerl
- Department of Food Science and Technology, The Ohio State University, Columbus 43210
| | - Abigail Krentz
- Department of Food Science and Technology, The Ohio State University, Columbus 43210
| | - Lin Zhang
- Department of Food Science and Technology, The Ohio State University, Columbus 43210
| | - Shivani Badiger
- Department of Food Science and Technology, The Ohio State University, Columbus 43210
| | | | - Alba Mayta-Apaza
- Department of Food Science and Technology, The Ohio State University, Columbus 43210
| | - Monica Giusti
- Department of Food Science and Technology, The Ohio State University, Columbus 43210
| | - Rafael Jiménez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus 43210.
| | - Israel García-Cano
- Department of Food Science and Technology, The Ohio State University, Columbus 43210.
| |
Collapse
|
17
|
Hypertonic Sodium Lactate to Alleviate Functional Deficits Following Diffuse Traumatic Brain Injury: An Osmotic or a Lactate-Related Effect? Neurocrit Care 2020; 34:795-803. [PMID: 32901380 DOI: 10.1007/s12028-020-01090-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/26/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND There has been growing interest in the use of hypertonic sodium lactate (HSL) solution following traumatic brain injury (TBI) in humans. However, little is known about the effects of HSL on functional deficits with respect to the hyperosmotic nature of HSL. METHODS We have compared the effects of HSL solution and isotonic saline solution using sensorimotor and cognitive tests for 14 days post-trauma in animals. Thirty minutes after trauma (impact-acceleration model), anesthetized rats were randomly allocated to receive a 2-h infusion of isotonic saline solution (TBI-saline group) or HSL (TBI-HSL group) (n = 10 rats per group). In another series of experiments using a similar protocol, the effects of equiosmolar doses of HSL and hypertonic saline solution (HSS) were compared in TBI rats (n = 10 rats per group). Blood lactate and ion concentrations were measured during the 2-h infusions. RESULTS Compared to the TBI-saline group, the TBI-HSL group had a reduced latency to complete the adhesive removal test: 6 s (5-9) (median [25-75th centiles]) versus 13 s (8-17) on day 7, and 5 s (5-9) versus 11 s (8-26) on day 14 (P < 0.05), respectively, and a shorter delay to complete the radial arm maze test on day 7: 99 s (73-134) versus 176 s (127-300), respectively (P < 0.05). However, no differences were found between the TBI-HSL and TBI-HSS groups in neurocognitive tests performance. Compared to the TBI-saline group, the HSL and HSS groups had higher serum osmolality: 318 mOsm/Kg (315-321) and 315 mOsm/Kg (313-316) versus 307 mOsm/Kg (305-309), respectively (P < 0.05), and the HSL group had a higher serum lactate concentration: 6.4 mmol/L (5.3-7.2) versus 1.5 mmol/L (1.1-1.9) and 1.6 mmol/L (1.5-1.7), respectively (P < 0.05). CONCLUSIONS These results indicate that improvements in cognitive and sensorimotor tests with HSL infusion post-TBI could be related to elevation of serum osmolality, not to exogenous administration of lactate.
Collapse
|
18
|
Lactate Administration Reduces Brain Injury and Ameliorates Behavioral Outcomes Following Neonatal Hypoxia-Ischemia. Neuroscience 2020; 448:191-205. [PMID: 32905840 DOI: 10.1016/j.neuroscience.2020.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 01/02/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy is a major cause of mortality and disability in newborns and the only standard approach for treating this condition is therapeutic hypothermia, which shows some limitations. Thus, putative neuroprotective agents have been tested in animal models. The present study evaluated the administration of lactate, a potential energy substrate of the central nervous system (CNS) in an animal model of hypoxia-ischemia (HI), that mimics in neonatal rats the brain damage observed in human newborns. Seven-day-old (P7) male and female Wistar rats underwent permanent common right carotid occlusion combined with an exposition to a hypoxic atmosphere (8% oxygen) for 60 min. Animals were assigned to four experimental groups: HI, HI + LAC, SHAM, SHAM + LAC. Lactate was administered intraperitoneally 30 min and 2 h after hypoxia in HI + LAC and SHAM + LAC groups. HI and SHAM groups received vehicle at the same time points. The volume of brain lesion was evaluated in P9. Animals underwent behavioral assessments: negative geotaxis, righting reflex (P8 and P14), and cylinder test (P20). Lactate administration reduced the volume of brain lesion and improved behavioral parameters after HI in both sexes. Thus, lactate administration could be a neuroprotective strategy for the treatment of neonatal HI, a disorder still affecting a significant percentage of human newborns.
Collapse
|
19
|
Brooks GA. The tortuous path of lactate shuttle discovery: From cinders and boards to the lab and ICU. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:446-460. [PMID: 32444344 PMCID: PMC7498672 DOI: 10.1016/j.jshs.2020.02.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/04/2019] [Accepted: 12/16/2019] [Indexed: 05/11/2023]
Abstract
Once thought to be a waste product of oxygen limited (anaerobic) metabolism, lactate is now known to form continuously under fully oxygenated (aerobic) conditions. Lactate shuttling between producer (driver) and consumer cells fulfills at least 3 purposes; lactate is: (1) a major energy source, (2) the major gluconeogenic precursor, and (3) a signaling molecule. The Lactate Shuttle theory is applicable to diverse fields such as sports nutrition and hydration, resuscitation from acidosis and Dengue, treatment of traumatic brain injury, maintenance of glycemia, reduction of inflammation, cardiac support in heart failure and following a myocardial infarction, and to improve cognition. Yet, dysregulated lactate shuttling disrupts metabolic flexibility, and worse, supports oncogenesis. Lactate production in cancer (the Warburg effect) is involved in all main sequela for carcinogenesis: angiogenesis, immune escape, cell migration, metastasis, and self-sufficient metabolism. The history of the tortuous path of discovery in lactate metabolism and shuttling was discussed in the 2019 American College of Sports Medicine Joseph B. Wolffe Lecture in Orlando, FL.
Collapse
Affiliation(s)
- George A Brooks
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California Berkeley, CA 94720-3140, USA.
| |
Collapse
|
20
|
Shaito A, Hasan H, Habashy KJ, Fakih W, Abdelhady S, Ahmad F, Zibara K, Eid AH, El-Yazbi AF, Kobeissy FH. Western diet aggravates neuronal insult in post-traumatic brain injury: Proposed pathways for interplay. EBioMedicine 2020; 57:102829. [PMID: 32574954 PMCID: PMC7317220 DOI: 10.1016/j.ebiom.2020.102829] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury (TBI) is a global health burden and a major cause of disability and mortality. An early cascade of physical and structural damaging events starts immediately post-TBI. This primary injury event initiates a series of neuropathological molecular and biochemical secondary injury sequelae, that last much longer and involve disruption of cerebral metabolism, mitochondrial dysfunction, oxidative stress, neuroinflammation, and can lead to neuronal damage and death. Coupled to these events, recent studies have shown that lifestyle factors, including diet, constitute additional risk affecting TBI consequences and neuropathophysiological outcomes. There exists molecular cross-talk among the pathways involved in neuronal survival, neuroinflammation, and behavioral outcomes, that are shared among western diet (WD) intake and TBI pathophysiology. As such, poor dietary intake would be expected to exacerbate the secondary damage in TBI. Hence, the aim of this review is to discuss the pathophysiological consequences of WD that can lead to the exacerbation of TBI outcomes. We dissect the role of mitochondrial dysfunction, oxidative stress, neuroinflammation, and neuronal injury in this context. We show that currently available data conclude that intake of a diet saturated in fats, pre- or post-TBI, aggravates TBI, precludes recovery from brain trauma, and reduces the response to treatment.
Collapse
Affiliation(s)
- Abdullah Shaito
- Department of Biological and Chemical Sciences, Lebanese International University, Beirut, Lebanon and Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - Hiba Hasan
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | | | - Walaa Fakih
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samar Abdelhady
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Fatima Ahmad
- Neuroscience Research Center, Faculty of Medicine, Lebanese University
| | - Kazem Zibara
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Biomedical Sciences, College of Health Sciences, Doha, Qatar
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt.
| | - Firas H Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
21
|
Zhai X, Li J, Li L, Sun Y, Zhang X, Xue Y, Lv J, Gao Y, Li S, Yan W, Yin S, Xiao Z. L-lactate preconditioning promotes plasticity-related proteins expression and reduces neurological deficits by potentiating GPR81 signaling in rat traumatic brain injury model. Brain Res 2020; 1746:146945. [PMID: 32531223 DOI: 10.1016/j.brainres.2020.146945] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 01/16/2023]
Abstract
Currently, there is no efficacious pharmacological treatment for traumatic brain injury (TBI). Previous studies revealed that L-lactate preconditioning has shown rich neuroprotective effects against cerebral ischemia, and therefore has the potential to improve neurological outcomes after TBI. L-lactate played a neuroprotective role by activating GPR81 in diseases of the central nervous system (CNS) such as TBI and cerebral ischemia. In this study we investigated the effects of L-lactate preconditioning on TBI and explored the underlying mechanisms. In this study, the mNSS test revealed that L-lactate preconditioning alleviates the neurological deficit caused by TBI in rats. L-lactate preconditioning significantly increased the expression of GPR81, PSD95, GAP43, BDNF, and MCT2 24 h after TBI in the cortex and hippocampus compared with the sham group. Taken together, these data suggested that L-lactate preconditioning is an effective method with which to recover neurological function after TBI. This reveals the mechanism of L-lactate preconditioning on TBI and provides a potential therapeutic method for TBI in humans.
Collapse
Affiliation(s)
- Xiuli Zhai
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Jinying Li
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Liya Li
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Ye Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Xiaonan Zhang
- Department of Physiology, Dalian Medical University, Dalian 116044, China
| | - Ying Xue
- Department of Physiology, Dalian Medical University, Dalian 116044, China
| | - Jiaxin Lv
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Ye Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Shouxin Li
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Wei Yan
- Department of Physiology, Dalian Medical University, Dalian 116044, China
| | - Shengming Yin
- Department of Physiology, Dalian Medical University, Dalian 116044, China.
| | - Zhaoyang Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China.
| |
Collapse
|
22
|
Brooks GA. Lactate as a fulcrum of metabolism. Redox Biol 2020; 35:101454. [PMID: 32113910 PMCID: PMC7284908 DOI: 10.1016/j.redox.2020.101454] [Citation(s) in RCA: 379] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 12/17/2022] Open
Abstract
Mistakenly thought to be the consequence of oxygen lack in contracting skeletal muscle we now know that the L-enantiomer of the lactate anion is formed under fully aerobic conditions and is utilized continuously in diverse cells, tissues, organs and at the whole-body level. By shuttling between producer (driver) and consumer (recipient) cells lactate fulfills at least three purposes: 1] a major energy source for mitochondrial respiration; 2] the major gluconeogenic precursor; and 3] a signaling molecule. Working by mass action, cell redox regulation, allosteric binding, and reprogramming of chromatin by lactylation of lysine residues on histones, lactate has major influences in energy substrate partitioning. The physiological range of tissue [lactate] is 0.5–20 mM and the cellular Lactate/Pyruvate ratio (L/P) can range from 10 to >500; these changes during exercise and other stress-strain responses dwarf other metabolic signals in magnitude and span. Hence, lactate dynamics have rapid and major short- and long-term effects on cell redox and other control systems. By inhibiting lipolysis in adipose via HCAR-1, and muscle mitochondrial fatty acid uptake via malonyl-CoA and CPT1, lactate controls energy substrate partitioning. Repeated lactate exposure from regular exercise results in major effects on the expression of regulatory enzymes of glycolysis and mitochondrial respiration. Lactate is the fulcrum of metabolic regulation in vivo.
Collapse
Affiliation(s)
- George A Brooks
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, 94720-3140, USA.
| |
Collapse
|
23
|
Moriarty TA, Mermier C, Kravitz L, Gibson A, Beltz N, Zuhl M. Acute Aerobic Exercise Based Cognitive and Motor Priming: Practical Applications and Mechanisms. Front Psychol 2019; 10:2790. [PMID: 31920835 PMCID: PMC6920172 DOI: 10.3389/fpsyg.2019.02790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Acute exercise stimulates brain regions involved in motor and cognitive processes. Recent research efforts have explored the benefits of aerobic exercise on brain health and cognitive functioning with positive results reported for both healthy and neurocognitively impaired individuals. Specifically, exercise positioned near therapeutic (both behavioral and physical) activities may enhance outcomes associated with treatment outcomes (e.g., depression or motor skill) through neural plasticity promoting mechanisms (e.g., increased brain flow and oxygenation). This approach has been termed "exercise priming" and is a relatively new topic of exploration in the fields of exercise science and motor control. The authors report on physiological mechanisms that are related to the priming effect. In addition, parameters related to the exercise bout (e.g., intensity, duration) and the idea of combining exercise and therapeutic rehabilitation are explored. This exercise-based priming concept has the potential to be applied to many areas such as education, cognitive therapy, and motor rehabilitation.
Collapse
Affiliation(s)
- Terence A Moriarty
- Department of Health, Exercise, and Sports Sciences, The University of New Mexico, Albuquerque, NM, United States.,Department of Kinesiology, University of Northern Iowa, Cedar Falls, IA, United States
| | - Christine Mermier
- Department of Health, Exercise, and Sports Sciences, The University of New Mexico, Albuquerque, NM, United States
| | - Len Kravitz
- Department of Health, Exercise, and Sports Sciences, The University of New Mexico, Albuquerque, NM, United States
| | - Ann Gibson
- Department of Health, Exercise, and Sports Sciences, The University of New Mexico, Albuquerque, NM, United States
| | - Nicholas Beltz
- Department of Kinesiology, University of Wisconsin-Eau Claire, Eau Claire, WI, United States
| | - Micah Zuhl
- Department of Health, Exercise, and Sports Sciences, The University of New Mexico, Albuquerque, NM, United States.,School of Health Sciences, Central Michigan University, Mount Pleasant, MI, United States
| |
Collapse
|
24
|
Exercise factors as potential mediators of cognitive rehabilitation following traumatic brain injury. Curr Opin Neurol 2019; 32:808-814. [DOI: 10.1097/wco.0000000000000754] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Jorwal P, Sikdar SK. Lactate reduces epileptiform activity through HCA1 and GIRK channel activation in rat subicular neurons in an in vitro model. Epilepsia 2019; 60:2370-2385. [DOI: 10.1111/epi.16389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Pooja Jorwal
- Molecular Biophysics Unit Indian Institute of Science Bangalore India
| | | |
Collapse
|
26
|
Modelling outcomes after paediatric brain injury with admission laboratory values: a machine-learning approach. Pediatr Res 2019; 86:641-645. [PMID: 31349360 DOI: 10.1038/s41390-019-0510-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Accepted: 07/04/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Severe traumatic brain injury (TBI) is a leading cause of mortality in children, but the accurate prediction of outcomes at the point of admission remains very challenging. Admission laboratory results are a promising potential source of prognostic data, but have not been widely explored in paediatric cohorts. Herein, we use machine-learning methods to analyse 14 different serum parameters together and develop a prognostic model to predict 6-month outcomes in children with severe TBI. METHODS A retrospective review of patients admitted to Cambridge University Hospital's Paediatric Intensive Care Unit between 2009 and 2013 with a TBI. The data for 14 admission serum parameters were recorded. Logistic regression and a support vector machine (SVM) were trained with these data against dichotimised outcomes from the recorded 6-month Glasgow Outcome Scale. RESULTS Ninety-four patients were identified. Admission levels of lactate, H+, and glucose were identified as being the most informative of 6-month outcomes. Four different models were produced. The SVM using just the three most informative parameters was the best able to predict favourable outcomes at 6 months (sensitivity = 80%, specificity = 99%). CONCLUSIONS Our results demonstrate the potential for highly accurate outcome prediction after severe paediatric TBI using admission laboratory data.
Collapse
|
27
|
Romano D, Deiner S, Cherukuri A, Boateng B, Shrivastava R, Mocco J, Hadjipanayis C, Yong R, Kellner C, Yaeger K, Lin HM, Brallier J. Clinical impact of intraoperative hyperlactatemia during craniotomy. PLoS One 2019; 14:e0224016. [PMID: 31647826 PMCID: PMC6812741 DOI: 10.1371/journal.pone.0224016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/02/2019] [Indexed: 01/22/2023] Open
Abstract
OBJECT Patients often develop markedly elevated serum lactate levels during craniotomy although the reason for this is not entirely understood. Elevated lactate levels have been associated with poor outcomes in critically ill septic shock patients, as well as patients undergoing abdominal and cardiac surgeries. We investigated whether elevated lactate in craniotomy patients is associated with neurologic complications (new neurological deficits) as well as systemic complications. METHODS We performed a cohort study of elective craniotomy patients. Demographic and intraoperative data were collected, as well as three timed intraoperative arterial lactate values. Additional lactate, creatinine and troponin values were collected immediately postoperatively as well as 12 and 24 hours postoperatively. Assessment for neurologic deficit was performed at 6 hours and 2 weeks postoperatively. Hospital length-of-stay and 30-day mortality were collected. RESULTS Interim analysis of 81 patients showed that no patient had postoperative myocardial infarction, renal failure, or mortality within 30 days of surgery. There was no difference in the incidence of new neurologic deficit in patients with or without elevated lactate (10/26, 38.5% vs. 15/55 27.3%, p = 0.31). Median length of stay was significantly longer in patients with elevated lactate (6.5 vs. 3 days, p = 0.003). Study enrollment was terminated early due to futility (futility index 0.16). CONCLUSION Elevated intraoperative serum lactate was not associated with new postoperative neurologic deficits, other end organ events, or 30 day mortality. Serum lactate was related to longer hospital stay.
Collapse
Affiliation(s)
- Diana Romano
- Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Stacie Deiner
- Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Anjali Cherukuri
- University of Central Florida College of Medicine, Orlando, FL, United States of America
| | - Bernard Boateng
- Alabama College of Osteopathic Medicine, Dothan, AL, United States of America
| | - Raj Shrivastava
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - J. Mocco
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Constantinos Hadjipanayis
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Raymund Yong
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Christopher Kellner
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Kurt Yaeger
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Hung-Mo Lin
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Jess Brallier
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| |
Collapse
|
28
|
Role of rno-miR-124-3p in regulating MCT1 expression in rat brain after permanent focal cerebral ischemia. Genes Dis 2019; 6:398-406. [PMID: 31832520 PMCID: PMC6888718 DOI: 10.1016/j.gendis.2019.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/14/2019] [Indexed: 12/26/2022] Open
Abstract
This study aimed to assess the role of microRNAs (miRNAs) in regulating monocarboxylate transporter-1 (MCT1) expression in rat brain after permanent focal cerebral ischemia to identify a new target for early treatment of cerebral ischemia. Focal cerebral ischemia was induced by permanent middle cerebral artery occlusion (pMCAO) in rats. Morphology and protein expression levels of MCT1 were assessed by immunofluorescence and Western blotting. Using bioinformatics and double luciferase reporter assays, rno-miR-124-3p was selected as a direct target for rat MCT1. Expression of rno-miR-124-3p after pMCAO was detected. Then, rats were treated with rno-miR-124-3p agomir via lateral ventricle injection, and after 6 h or 24 h ischemia, rno-miR-124-3p expression and gene and protein expression of MCT-1 were detected by qRT-PCR and Western blotting. Brain infarction was identified by 2, 3, 5-triphenyltetrazolium chloride (TTC) staining. Results showed that pMCAO induced brain infarction and increased the expression of MCT1. The levels of rno-miR-124-3p after pMCAO were in contrast to those of MCT1 protein in ischemic region, while declined after 3, 6 and 12 h of pMCAO in ischemic penumbra. After administration of rno-miR-124-3p agomir, MCT1 mRNA and protein levels were increased after 6 h of pMCAO, while decreased after 24 h of pMCAO. Meanwhile, rno-miR-124-3p levels increased after both times. TTC staining showed treatment with rno-miR-124-3p agomir reduced brain infarction. The role of rno-miR-124-3p in regulating MCT1 was as a positive regulator after 6 h of pMCAO, while a negative regulator after 24 h of pMCAO, however, both activities had protective effects against cerebral ischemia.
Collapse
|
29
|
Metri V, Ghatak S, Raha S, Sikdar S. Patch clamp data driven stochastic modeling and simulation of hTREK1 potassium ion channel gating. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2018.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
The Science and Translation of Lactate Shuttle Theory. Cell Metab 2018; 27:757-785. [PMID: 29617642 DOI: 10.1016/j.cmet.2018.03.008] [Citation(s) in RCA: 746] [Impact Index Per Article: 106.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/06/2018] [Accepted: 03/16/2018] [Indexed: 02/07/2023]
Abstract
Once thought to be a waste product of anaerobic metabolism, lactate is now known to form continuously under aerobic conditions. Shuttling between producer and consumer cells fulfills at least three purposes for lactate: (1) a major energy source, (2) the major gluconeogenic precursor, and (3) a signaling molecule. "Lactate shuttle" (LS) concepts describe the roles of lactate in delivery of oxidative and gluconeogenic substrates as well as in cell signaling. In medicine, it has long been recognized that the elevation of blood lactate correlates with illness or injury severity. However, with lactate shuttle theory in mind, some clinicians are now appreciating lactatemia as a "strain" and not a "stress" biomarker. In fact, clinical studies are utilizing lactate to treat pro-inflammatory conditions and to deliver optimal fuel for working muscles in sports medicine. The above, as well as historic and recent studies of lactate metabolism and shuttling, are discussed in the following review.
Collapse
|
31
|
Millet A, Cuisinier A, Bouzat P, Batandier C, Lemasson B, Stupar V, Pernet-Gallay K, Crespy T, Barbier EL, Payen JF. Hypertonic sodium lactate reverses brain oxygenation and metabolism dysfunction after traumatic brain injury. Br J Anaesth 2018; 120:1295-1303. [PMID: 29793596 DOI: 10.1016/j.bja.2018.01.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/20/2017] [Accepted: 01/30/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The mechanisms by which hypertonic sodium lactate (HSL) solution act in injured brain are unclear. We investigated the effects of HSL on brain metabolism, oxygenation, and perfusion in a rodent model of diffuse traumatic brain injury (TBI). METHODS Thirty minutes after trauma, anaesthetised adult rats were randomly assigned to receive a 3 h infusion of either a saline solution (TBI-saline group) or HSL (TBI-HSL group). The sham-saline and sham-HSL groups received no insult. Three series of experiments were conducted up to 4 h after TBI (or equivalent) to investigate: 1) brain oedema using diffusion-weighted magnetic resonance imaging and brain metabolism using localized 1H-magnetic resonance spectroscopy (n = 10 rats per group). The respiratory control ratio was then determined using oxygraphic analysis of extracted mitochondria, 2) brain oxygenation and perfusion using quantitative blood-oxygenation-level-dependent magnetic resonance approach (n = 10 rats per group), and 3) mitochondrial ultrastructural changes (n = 1 rat per group). RESULTS Compared with the TBI-saline group, the TBI-HSL and the sham-operated groups had reduced brain oedema. Concomitantly, the TBI-HSL group had lower intracellular lactate/creatine ratio [0.049 (0.047-0.098) vs 0.097 (0.079-0.157); P < 0.05], higher mitochondrial respiratory control ratio, higher tissue oxygen saturation [77% (71-79) vs 66% (55-73); P < 0.05], and reduced mitochondrial cristae thickness in astrocytes [27.5 (22.5-38.4) nm vs 38.4 (31.0-47.5) nm; P < 0.01] compared with the TBI-saline group. Serum sodium and lactate concentrations and serum osmolality were higher in the TBI-HSL than in the TBI-saline group. CONCLUSIONS These findings indicate that the hypertonic sodium lactate solution can reverse brain oxygenation and metabolism dysfunction after traumatic brain injury through vasodilatory, mitochondrial, and anti-oedema effects.
Collapse
Affiliation(s)
- A Millet
- Institut National de la Santé et de la Recherche Médicale, Grenoble, France; Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France; Pôle Couple Enfant, Hôpital Michallon, CHU Grenoble Alpes, Grenoble, France
| | - A Cuisinier
- Institut National de la Santé et de la Recherche Médicale, Grenoble, France; Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France; Pôle Anesthésie Réanimation, Hôpital Michallon, CHU Grenoble Alpes, Grenoble, France
| | - P Bouzat
- Institut National de la Santé et de la Recherche Médicale, Grenoble, France; Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France; Pôle Anesthésie Réanimation, Hôpital Michallon, CHU Grenoble Alpes, Grenoble, France
| | - C Batandier
- Institut National de la Santé et de la Recherche Médicale, U1055, Laboratoire de Bioénergétique Fondamentale et Appliquée, Université Grenoble Alpes, Grenoble, France
| | - B Lemasson
- Institut National de la Santé et de la Recherche Médicale, Grenoble, France; Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
| | - V Stupar
- Institut National de la Santé et de la Recherche Médicale, Grenoble, France; Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
| | - K Pernet-Gallay
- Institut National de la Santé et de la Recherche Médicale, Grenoble, France; Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
| | - T Crespy
- Institut National de la Santé et de la Recherche Médicale, Grenoble, France; Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France; Pôle Anesthésie Réanimation, Hôpital Michallon, CHU Grenoble Alpes, Grenoble, France
| | - E L Barbier
- Institut National de la Santé et de la Recherche Médicale, Grenoble, France; Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
| | - J F Payen
- Institut National de la Santé et de la Recherche Médicale, Grenoble, France; Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France; Pôle Anesthésie Réanimation, Hôpital Michallon, CHU Grenoble Alpes, Grenoble, France.
| |
Collapse
|
32
|
Hashimoto T, Tsukamoto H, Takenaka S, Olesen ND, Petersen LG, Sørensen H, Nielsen HB, Secher NH, Ogoh S. Maintained exercise‐enhanced brain executive function related to cerebral lactate metabolism in men. FASEB J 2018; 32:1417-1427. [DOI: 10.1096/fj.201700381rr] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Takeshi Hashimoto
- Graduate School of Sport and Health Science Ritsumeikan University Shiga Japan
| | - Hayato Tsukamoto
- Graduate School of Sport and Health Science Ritsumeikan University Shiga Japan
- Japan Society for the Promotion of Science Tokyo Japan
| | - Saki Takenaka
- Graduate School of Sport and Health Science Ritsumeikan University Shiga Japan
| | - Niels D. Olesen
- Department of Biomedical Sciences Panum Institute, University of Copenhagen Copenhagen Denmark
- Department of Anesthesia Copenhagen Muscle Research Center, Rigshospitalet, University of Copenhagen Copenhagen Denmark
| | - Lonnie G. Petersen
- Department of Biomedical Sciences Panum Institute, University of Copenhagen Copenhagen Denmark
| | - Henrik Sørensen
- Department of Anesthesia Copenhagen Muscle Research Center, Rigshospitalet, University of Copenhagen Copenhagen Denmark
| | - Henning B. Nielsen
- Department of Anesthesia Copenhagen Muscle Research Center, Rigshospitalet, University of Copenhagen Copenhagen Denmark
| | - Niels H. Secher
- Department of Anesthesia Copenhagen Muscle Research Center, Rigshospitalet, University of Copenhagen Copenhagen Denmark
| | - Shigehiko Ogoh
- Graduate School of EngineeringToyo University Saitama Japan
| |
Collapse
|
33
|
Arifianto MR, Ma'ruf AZ, Ibrahim A, Bajamal AH. Role of Hypertonic Sodium Lactate in Traumatic Brain Injury Management. Asian J Neurosurg 2018; 13:971-975. [PMID: 30459851 PMCID: PMC6208238 DOI: 10.4103/ajns.ajns_10_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) following increased intracranial pressure (ICP) is a neuroemergency case which should be managed promptly to prevent secondary brain injury. This will lead to a condition called cerebral energy dysfunction which is an important determinant factor toward worse outcome. Lactate, which was historically known as an end waste product, now is considered as an alternative cerebral energetic fuel. Hypertonic sodium lactate (HSL) is a promising hyperosmolar fluid which serves not only to decrease ICP but also to readily supply exogenous lactate to fulfill increased cerebral energy demand. Pioneer studies have shown the harmlessness and usefulness of HSL in treating pathological condition including TBI.
Collapse
Affiliation(s)
| | - Achmad Zuhro Ma'ruf
- Department of Neurosurgery, Kanudjoso Djatiwibowo Hospital, Balikpapan, Indonesia
| | - Arie Ibrahim
- Department of Neurosurgery, AW Syahranie Hospital / Faculty of Medicine - Mulawarman University, Samarinda, Indonesia
| | - Abdul Hafid Bajamal
- Department of Neurosurgery, Dr. Soetomo General Hospital / Faculty of Medicine - Airlangga University, Surabaya, Indonesia
| |
Collapse
|
34
|
Betancur-Calderón JM, Veronesi-Zuluaga LA, Castaño-Tobón HF. Terapia con lactato sódico hipertónico en trauma cráneo-encefálico: ¿se convertirá en la mejor alternativa de manejo? COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2017. [DOI: 10.1016/j.rca.2017.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
35
|
Betancur-Calderón JM, Veronesi-Zuluaga LA, Castaño-Tobón HF. Traumatic brain injury and treatment with hypertonic sodium lactate. Will it become the best management alternative? COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2017. [DOI: 10.1016/j.rcae.2017.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
36
|
Traumatic brain injury and treatment with hypertonic sodium lactate. Will it become the best management alternative?☆. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2017. [DOI: 10.1097/01819236-201712002-00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
37
|
Tefera TW, Borges K. Metabolic Dysfunctions in Amyotrophic Lateral Sclerosis Pathogenesis and Potential Metabolic Treatments. Front Neurosci 2017; 10:611. [PMID: 28119559 PMCID: PMC5222822 DOI: 10.3389/fnins.2016.00611] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/26/2016] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease primarily characterized by loss of motor neurons in brain and spinal cord. The death of motor neurons leads to denervation of muscle which in turn causes muscle weakness and paralysis, decreased respiratory function and eventually death. Growing evidence indicates disturbances in energy metabolism in patients with ALS and animal models of ALS, which are likely to contribute to disease progression. Particularly, defects in glucose metabolism and mitochondrial dysfunction limit the availability of ATP to CNS tissues and muscle. Several metabolic approaches improving mitochondrial function have been investigated in vitro and in vivo and showed varying effects in ALS. The effects of metabolic approaches in ALS models encompass delays in onset of motor symptoms, protection of motor neurons and extension of survival, which signifies an important role of metabolism in the pathogenesis of the disease. There is now an urgent need to test metabolic approaches in controlled clinical trials. In addition, more detailed studies to better characterize the abnormalities in energy metabolism in patients with ALS and ALS models are necessary to develop metabolically targeted effective therapies that can slow the progression of the disease and prolong life for patients with ALS.
Collapse
Affiliation(s)
| | - Karin Borges
- Laboratory for Neurological Disorders and Metabolism, School of Biomedical Sciences, Department of Pharmacology, The University of QueenslandBrisbane, QLD, Australia
| |
Collapse
|
38
|
Dekker SE, de Vries HM, Lubbers WD, van de Ven PM, Toor EJ, Bloemers FW, Geeraedts LMG, Schober P, Boer C. Lactate clearance metrics are not superior to initial lactate in predicting mortality in trauma. Eur J Trauma Emerg Surg 2016; 43:841-851. [PMID: 27738727 DOI: 10.1007/s00068-016-0733-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/04/2016] [Indexed: 12/20/2022]
Abstract
PURPOSE Despite the availability of different lactate clearance (LC) metrics for clinical use, it remains unknown which metric is superior as a clinical predictor for outcome, particularly in trauma patients. This retrospective study compared four previously described metrics of LC and examined the association between LC and outcome in trauma patients. METHODS Lactate values of trauma patients admitted to a level I trauma center between 2010 and 2013 were retrieved from patient records. LC was calculated according to Huckabee, Regnier et al., Billeter et al. and Zhang et al. Patients were categorized as isolated traumatic brain injury (TBI), trauma with TBI, and trauma without TBI. The primary study outcome was in-hospital mortality. RESULTS 367 trauma patients were eligible for LC calculation. Only LC by Zhang et al. [area under the curve (AUC) > 0.622, p < 0.01], and Billeter et al. (AUC > 0.616, p < 0.05) were predictive for mortality in trauma patients with and without TBI. However, both were equally prognostic as the initial lactate value for in-hospital mortality. The prognostic value of initial lactate and lactate clearance for in-hospital mortality were not found to differ between isolated TBI, polytrauma with TBI, and trauma without TBI. CONCLUSIONS LC metrics based on the methods of Zhang et al. and Billeter et al. predicted mortality in trauma patients, and their prognostic value did not differ between patients with and without TBI. However, initial lactate value was equally prognostic as these LC metrics. Our findings suggest that a single initial lactate measurement may be a more clinically useful tool to predict mortality than the calculation of lactate clearance.
Collapse
Affiliation(s)
- S E Dekker
- Department of Anesthesiology, Institute for Cardiovascular Research, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - H-M de Vries
- Department of Anesthesiology, Institute for Cardiovascular Research, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - W D Lubbers
- Department of Anesthesiology, Institute for Cardiovascular Research, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - P M van de Ven
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - E J Toor
- Center For Acute Care, VU Medical Center Region, Amsterdam, The Netherlands
| | - F W Bloemers
- Department of Trauma Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - L M G Geeraedts
- Department of Trauma Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - P Schober
- Department of Anesthesiology, Institute for Cardiovascular Research, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - C Boer
- Department of Anesthesiology, Institute for Cardiovascular Research, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Patet C, Suys T, Carteron L, Oddo M. Cerebral Lactate Metabolism After Traumatic Brain Injury. Curr Neurol Neurosci Rep 2016; 16:31. [PMID: 26898683 DOI: 10.1007/s11910-016-0638-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cerebral energy dysfunction has emerged as an important determinant of prognosis following traumatic brain injury (TBI). A number of studies using cerebral microdialysis, positron emission tomography, and jugular bulb oximetry to explore cerebral metabolism in patients with TBI have demonstrated a critical decrease in the availability of the main energy substrate of brain cells (i.e., glucose). Energy dysfunction induces adaptations of cerebral metabolism that include the utilization of alternative energy resources that the brain constitutively has, such as lactate. Two decades of experimental and human investigations have convincingly shown that lactate stands as a major actor of cerebral metabolism. Glutamate-induced activation of glycolysis stimulates lactate production from glucose in astrocytes, with subsequent lactate transfer to neurons (astrocyte-neuron lactate shuttle). Lactate is not only used as an extra energy substrate but also acts as a signaling molecule and regulator of systemic and brain glucose use in the cerebral circulation. In animal models of brain injury (e.g., TBI, stroke), supplementation with exogenous lactate exerts significant neuroprotection. Here, we summarize the main clinical studies showing the pivotal role of lactate and cerebral lactate metabolism after TBI. We also review pilot interventional studies that examined exogenous lactate supplementation in patients with TBI and found hypertonic lactate infusions had several beneficial properties on the injured brain, including decrease of brain edema, improvement of neuroenergetics via a "cerebral glucose-sparing effect," and increase of cerebral blood flow. Hypertonic lactate represents a promising area of therapeutic investigation; however, larger studies are needed to further examine mechanisms of action and impact on outcome.
Collapse
Affiliation(s)
- Camille Patet
- Neuroscience Critical Care Research Group, Department of Intensive Care Medicine, CHUV - Lausanne University Hospital, Rue du Bugnon 46, BH 08.623, 1011, Lausanne, Switzerland
| | - Tamarah Suys
- Neuroscience Critical Care Research Group, Department of Intensive Care Medicine, CHUV - Lausanne University Hospital, Rue du Bugnon 46, BH 08.623, 1011, Lausanne, Switzerland
| | - Laurent Carteron
- Neuroscience Critical Care Research Group, Department of Intensive Care Medicine, CHUV - Lausanne University Hospital, Rue du Bugnon 46, BH 08.623, 1011, Lausanne, Switzerland
| | - Mauro Oddo
- Neuroscience Critical Care Research Group, Department of Intensive Care Medicine, CHUV - Lausanne University Hospital, Rue du Bugnon 46, BH 08.623, 1011, Lausanne, Switzerland.
| |
Collapse
|
40
|
Comparative effect of immature neuronal or glial cell transplantation on motor functional recovery following experimental traumatic brain injury in rats. Exp Ther Med 2016; 12:1671-1680. [PMID: 27602084 PMCID: PMC4998226 DOI: 10.3892/etm.2016.3527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/11/2016] [Indexed: 01/19/2023] Open
Abstract
The present study evaluated the comparative effect of stereotaxically transplanted immature neuronal or glial cells in brain on motor functional recovery and cytokine expression after cold-induced traumatic brain injury (TBI) in adult rats. A total of 60 rats were divided into four groups (n=15/group): Sham group; TBI only group; TBI plus neuronal cells-transplanted group (NC-G); and TBI plus glial cells-transplanted group (GC-G). Cortical lesions were induced by a touching metal stamp, frozen with liquid nitrogen, to the dura mater over the motor cortex of adult rats. Neuronal and glial cells were isolated from rat embryonic and newborn cortices, respectively, and cultured in culture flasks. Rats received neurons or glia grafts (~1×106 cells) 5 days after TBI was induced. Motor functional evaluation was performed with the rotarod test prior to and following glial and neural cell grafts. Five rats from each group were sacrificed at 2, 4 and 6 weeks post-cell transplantation. Immunofluorescence staining was performed on brain section to identify the transplanted neuronal or glial cells using neural and astrocytic markers. The expression levels of cytokines, including transforming growth factor-β, glial cell-derived neurotrophic factor and vascular endothelial growth factor, which have key roles in the proliferation, differentiation and survival of neural cells, were analyzed by immunohistochemistry and western blotting. A localized cortical lesion was evoked in all injured rats, resulting in significant motor deficits. Transplanted cells successfully migrated and survived in the injured brain lesion, and the expression of neuronal and astrocyte markers were detected in the NC-G and GC-G groups, respectively. Rats in the NC-G and GC-G cell-transplanted groups exhibited significant motor functional recovery and reduced histopathologic lesions, as compared with the TBI-G rats that did not receive neural cells (P<0.05, respectively). Furthermore, GC-G treatment induced significantly improved motor functional recovery, as compared with the NC-G group (P<0.05). Increased cytokine expression levels were detected in the NC-G and GC-G groups, as compared with the TBI-G; however, no differences were found between the two groups. These data suggested that transplanted immature neural cells may promote the survival of neural cells in cortical lesion and motor functional recovery. Furthermore, transplanted glial cells may be used as an effective therapeutic tool for TBI patients with abnormalities in motor functional recovery and cytokine expression.
Collapse
|
41
|
Jullienne A, Obenaus A, Ichkova A, Savona-Baron C, Pearce WJ, Badaut J. Chronic cerebrovascular dysfunction after traumatic brain injury. J Neurosci Res 2016; 94:609-22. [PMID: 27117494 PMCID: PMC5415378 DOI: 10.1002/jnr.23732] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/11/2016] [Accepted: 02/28/2016] [Indexed: 12/12/2022]
Abstract
Traumatic brain injuries (TBI) often involve vascular dysfunction that leads to long-term alterations in physiological and cognitive functions of the brain. Indeed, all the cells that form blood vessels and that are involved in maintaining their proper function can be altered by TBI. This Review focuses on the different types of cerebrovascular dysfunction that occur after TBI, including cerebral blood flow alterations, autoregulation impairments, subarachnoid hemorrhage, vasospasms, blood-brain barrier disruption, and edema formation. We also discuss the mechanisms that mediate these dysfunctions, focusing on the cellular components of cerebral blood vessels (endothelial cells, smooth muscle cells, astrocytes, pericytes, perivascular nerves) and their known and potential roles in the secondary injury cascade. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amandine Jullienne
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California
| | - Andre Obenaus
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, California
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, University of California Riverside, Riverside, California
| | | | | | - William J Pearce
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Jerome Badaut
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, California
- CNRS UMR5287, University of Bordeaux, Bordeaux, France
| |
Collapse
|
42
|
Tsukamoto H, Suga T, Takenaka S, Tanaka D, Takeuchi T, Hamaoka T, Isaka T, Ogoh S, Hashimoto T. Repeated high-intensity interval exercise shortens the positive effect on executive function during post-exercise recovery in healthy young males. Physiol Behav 2016; 160:26-34. [PMID: 27060507 DOI: 10.1016/j.physbeh.2016.03.029] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/25/2016] [Accepted: 03/25/2016] [Indexed: 12/25/2022]
Abstract
A single bout of aerobic exercise improves executive function (EF), but only for a short period. Compared with a single bout of aerobic exercise, we recently found that high-intensity interval exercise (HIIE) could maintain a longer improvement in EF. However, the mechanism underlying the effect of different exercise modes on the modifications of EF remains unclear. The purpose of the current investigation was to test our hypothesis that the amount of exercise-induced lactate production and its accumulation affects human brain function during and after exercise, thereby affecting post-exercise EF. Ten healthy male subjects performed cycle ergometer exercise. The HIIE protocol consisted of four 4-min bouts at 90% peak VO2 with a 3-min active recovery period at 60% peak VO2. The amount of lactate produced during exercise was manipulated by repeating the HIIE twice with a resting period of 60min between the 1st HIIE and 2nd HIIE. To evaluate EF, a color-word Stroop task was performed, and reverse-Stroop interference scores were obtained. EF immediately after the 1st HIIE was significantly improved compared to that before exercise, and the improved EF was sustained during 40min of the post-exercise recovery. However, for the 2nd HIIE, the improved EF was sustained for only 10min of the post-exercise recovery period, despite the performance of the same exercise. In addition, during and following HIIE, the glucose and lactate accumulation induced by the 2nd HIIE was significantly lower than that induced by the 1st HIIE. Furthermore, there was an inverse relationship between lactate and EF by plotting the changes in lactate levels against changes in EF from pre-exercise during the late phase of post-exercise recovery. These findings suggested the possibility that repeated bouts of HIIE, which decreases lactate accumulation, may dampen the positive effect of exercise on EF during the post-exercise recovery.
Collapse
Affiliation(s)
- Hayato Tsukamoto
- Graduate School of Sport and Health Science, Ritsumeikan University, Shiga, Japan; Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Tadashi Suga
- Graduate School of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Saki Takenaka
- Graduate School of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Daichi Tanaka
- Graduate School of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Tatsuya Takeuchi
- Graduate School of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Takafumi Hamaoka
- Graduate School of Sport and Health Science, Ritsumeikan University, Shiga, Japan; School of Medicine, Tokyo Medical University, Tokyo, Japan
| | - Tadao Isaka
- Graduate School of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Shigehiko Ogoh
- Graduate School of Engineering, Toyo University, Saitama, Japan
| | - Takeshi Hashimoto
- Graduate School of Sport and Health Science, Ritsumeikan University, Shiga, Japan.
| |
Collapse
|
43
|
Moro N, Ghavim SS, Harris NG, Hovda DA, Sutton RL. Pyruvate treatment attenuates cerebral metabolic depression and neuronal loss after experimental traumatic brain injury. Brain Res 2016; 1642:270-277. [PMID: 27059390 DOI: 10.1016/j.brainres.2016.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 12/20/2022]
Abstract
Experimental traumatic brain injury (TBI) is known to produce an acute increase in cerebral glucose utilization, followed rapidly by a generalized cerebral metabolic depression. The current studies determined effects of single or multiple treatments with sodium pyruvate (SP; 1000mg/kg, i.p.) or ethyl pyruvate (EP; 40mg/kg, i.p.) on cerebral glucose metabolism and neuronal injury in rats with unilateral controlled cortical impact (CCI) injury. In Experiment 1 a single treatment was given immediately after CCI. SP significantly improved glucose metabolism in 3 of 13 brain regions while EP improved metabolism in 7 regions compared to saline-treated controls at 24h post-injury. Both SP and EP produced equivalent and significant reductions in dead/dying neurons in cortex and hippocampus at 24h post-CCI. In Experiment 2 SP or EP were administered immediately (time 0) and at 1, 3 and 6h post-CCI. Multiple SP treatments also significantly attenuated TBI-induced reductions in cerebral glucose metabolism (in 4 brain regions) 24h post-CCI, as did multiple injections of EP (in 4 regions). The four pyruvate treatments produced significant neuroprotection in cortex and hippocampus 1day after CCI, similar to that found with a single SP or EP treatment. Thus, early administration of pyruvate compounds enhanced cerebral glucose metabolism and neuronal survival, with 40mg/kg of EP being as effective as 1000mg/kg of SP, and multiple treatments within 6h of injury did not improve upon outcomes seen following a single treatment.
Collapse
Affiliation(s)
- Nobuhiro Moro
- UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6901, USA; Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6901, USA.
| | - Sima S Ghavim
- UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6901, USA; Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6901, USA.
| | - Neil G Harris
- UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6901, USA; Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6901, USA.
| | - David A Hovda
- UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6901, USA; Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6901, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6901, USA.
| | - Richard L Sutton
- UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6901, USA; Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6901, USA.
| |
Collapse
|
44
|
Bisri T, Utomo BA, Fuadi I. Exogenous lactate infusion improved neurocognitive function of patients with mild traumatic brain injury. Asian J Neurosurg 2016; 11:151-9. [PMID: 27057222 PMCID: PMC4802937 DOI: 10.4103/1793-5482.145375] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Many studies showed a better recovery of cognitive function after administration of exogenous lactate during moderate-severe traumatic brain injury. However, the study evaluating lactate effect on mild traumatic brain injury is still limited. AIMS To evaluate the effect of exogenous lactate on cognitive function in mild traumatic brain injury patients. SETTINGS AND DESIGN Prospective, single blind, randomized controlled study on 60 mild traumatic brain injury patients who were undergoing neurosurgery. MATERIALS AND METHODS Subjects were randomly assigned into hyperosmolar sodium lactate (HSL) group or hyperosmolar sodium chloride (HSS) group. Patients in each group received either intravenous infusion of HSL or NaCl 3% at 1.5 ml/KgBW within 15 min before neurosurgery. During the surgery, patients in both groups received maintenance infusion of NaCl 0.9% at 1.5 ml/KgBW/hour. STATISTICAL ANALYSIS Cognitive function, as assessed by Mini-Mental State Examination (MMSE) score at 24 h, 30 and 90 days post-surgery, was analyzed by Anova repeated measures test. RESULTS The MMSE score improvement was significantly better in HSL group than HSS group (P < 0.001). In HSL group the MMSE score improved from 16.00 (13.75-18.00) at baseline to 21.00 (18.75-22.00); 25.00 (23.75-26.00); 28.00 (27.00-29.00) at 24 h, 30, 90 days post-surgery, respectively. In contrast, in HSS group the MMSE score almost unchanged at 24 h and only slightly increased at 30 and 90 days post-surgery. CONCLUSIONS Hyperosmolar sodium lactate infusion during mild traumatic brain injury improved cognitive function better than sodium chloride 3%.
Collapse
Affiliation(s)
- Tatang Bisri
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin Hospital, Bandung, Indonesia
| | - Billy A. Utomo
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin Hospital, Bandung, Indonesia
| | - Iwan Fuadi
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin Hospital, Bandung, Indonesia
| |
Collapse
|
45
|
Ghatak S, Sikdar SK. Lactate modulates the intracellular pH sensitivity of human TREK1 channels. Pflugers Arch 2016; 468:825-36. [PMID: 26843094 DOI: 10.1007/s00424-016-1795-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 12/20/2022]
Abstract
Tissue acidosis and high lactate concentrations are associated with cerebral ischaemia. The degree of acidosis is dependent on circulating glucose concentration, hyperglycaemia being associated with increased acidosis. Among other agents, lactate and protons have been shown to activate the leak potassium channel; TREK1 (TWIK related potassium channel 1) from the intracellular side and its increased activity is implicated in tolerance towards ischaemic cell damage. In the present study, we show that ischaemic concentrations of lactate (30 mM) at pH 7.0 and 6.5, commonly observed during ischemia, cause robust potentiation of human TREK1 (hTREK1) activity at single-channel level in cell-free inside-out membrane patches, while 30 mM lactate at pH 6.0 to 5.5, commonly observed during hyperglycaemic ischemia, reduces hTREK1 channel activity significantly. The biphasic effect of 30 mM lactate (ischaemic concentrations) on modulation of hTREK1 by varying pH conditions is specific since basal concentrations of lactate (3 mM) and 30 mM pyruvate at pH 7.0 and 5.5 failed to show similar effect as lactate. Experiments with deletion and point mutants of hTREK1 channel suggest that lactate changes the pH modulation of hTREK1 by interacting differently with the histidine residue at 328th position (H328) above and below its pKa (∼6.0) in the intracellular carboxyl-terminal domain of TREK1. This lactate-induced pH modulation of hTREK1 is absent in C-terminal deletion mutant, CTDΔ100, and is similar in E321A-hTREK1 mutant as in wild-type hTREK1 suggesting that it is independent of pH-sensitive glutamate residue at 321st position. Such a differential pH-dependent effect of lactate on an ion channel function has not been reported earlier and has important implications in different stages of ischaemia.
Collapse
Affiliation(s)
- Swagata Ghatak
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Sujit Kumar Sikdar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India.
| |
Collapse
|
46
|
Ghatak S, Banerjee A, Sikdar SK. Ischaemic concentrations of lactate increase TREK1 channel activity by interacting with a single histidine residue in the carboxy terminal domain. J Physiol 2015; 594:59-81. [PMID: 26445100 DOI: 10.1113/jp270706] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 09/21/2015] [Indexed: 02/01/2023] Open
Abstract
KEY POINTS The physiological metabolite, lactate and the two-pore domain leak potassium channel, TREK1 are known neuroprotectants against cerebral ischaemia. However, it is not known whether lactate interacts with TREK1 channel to provide neuroprotection. In this study we show that lactate increases TREK1 channel activity and hyperpolarizes CA1 stratum radiatum astrocytes in hippocampal slices. Lactate increases open probability and decreases longer close time of the human (h)TREK1 channel in a concentration dependent manner. Lactate interacts with histidine 328 (H328) in the carboxy terminal domain of hTREK1 channel to decrease its dwell time in the longer closed state. This interaction was dependent on the charge on H328. Lactate-insensitive mutant H328A hTREK1 showed pH sensitivity similar to wild-type hTREK1, indicating that the effect of lactate on hTREK1 is independent of pH change. A rise in lactate concentration and the leak potassium channel TREK1 have been independently associated with cerebral ischaemia. Recent literature suggests lactate to be neuroprotective and TREK1 knockout mice show an increased sensitivity to brain and spinal cord ischaemia; however, the connecting link between the two is missing. Therefore we hypothesized that lactate might interact with TREK1 channels. In the present study, we show that lactate at ischaemic concentrations (15-30 mm) at pH 7.4 increases TREK1 current in CA1 stratum radiatum astrocytes and causes membrane hyperpolarization. We confirm the intracellular action of lactate on TREK1 in hippocampal slices using monocarboxylate transporter blockers and at single channel level in cell-free inside-out membrane patches. The intracellular effect of lactate on TREK1 is specific since other monocarboxylates such as pyruvate and acetate at pH 7.4 failed to increase TREK1 current. Deletion and point mutation experiments suggest that lactate decreases the longer close dwell time incrementally with increase in lactate concentration by interacting with the histidine residue at position 328 (H328) in the carboxy terminal domain of the TREK1 channel. The interaction of lactate with H328 is dependent on the charge on the histidine residue since isosteric mutation of H328 to glutamine did not show an increase in TREK1 channel activity with lactate. This is the first demonstration of a direct effect of lactate on ion channel activity. The action of lactate on the TREK1 channel signifies a separate neuroprotective mechanism in ischaemia since it was found to be independent of the effect of acidic pH on channel activity.
Collapse
Affiliation(s)
- Swagata Ghatak
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Aditi Banerjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Sujit Kumar Sikdar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| |
Collapse
|
47
|
Glenn TC, Martin NA, Horning MA, McArthur DL, Hovda DA, Vespa P, Brooks GA. Lactate: brain fuel in human traumatic brain injury: a comparison with normal healthy control subjects. J Neurotrauma 2015; 32:820-32. [PMID: 25594628 PMCID: PMC4530406 DOI: 10.1089/neu.2014.3483] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We evaluated the hypothesis that lactate shuttling helps support the nutritive needs of injured brains. To that end, we utilized dual isotope tracer [6,6-(2)H2]glucose, that is, D2-glucose, and [3-(13)C]lactate techniques involving arm vein tracer infusion along with simultaneous cerebral (arterial [art] and jugular bulb [JB]) blood sampling. Traumatic brain injury (TBI) patients with nonpenetrating brain injuries (n=12) were entered into the study following consent of patients' legal representatives. Written and informed consent was obtained from control volunteers (n=6). Patients were studied 5.7±2.2 (mean±SD) days post-injury; during periods when arterial glucose concentration tended to be higher in TBI patients. As in previous investigations, the cerebral metabolic rate for glucose (CMRgluc, i.e., net glucose uptake) was significantly suppressed following TBI (p<0.001). However, lactate fractional extraction, an index of cerebral lactate uptake related to systemic lactate supply, approximated 11% in both healthy control subjects and TBI patients. Further, neither the CMR for lactate (CMRlac, i.e., net lactate release), nor the tracer-measured cerebral lactate uptake differed between healthy controls and TBI patients. The percentages of lactate tracer taken up and released as (13)CO2 into the JB accounted for 92% and 91% for control and TBI conditions, respectively, suggesting that most cerebral lactate uptake was oxidized following TBI. Comparisons of isotopic enrichments of lactate oxidation from infused [3-(13)C]lactate tracer and (13)C-glucose produced during hepatic and renal gluconeogenesis (GNG) showed that 75-80% of (13)CO2 released into the JB was from lactate and that the remainder was from the oxidation of glucose secondarily labeled from lactate. Hence, either directly as lactate uptake, or indirectly via GNG, peripheral lactate production accounted for ∼70% of carbohydrate (direct lactate uptake+uptake of glucose from lactate) consumed by the injured brain. Undiminished cerebral lactate fractional extraction and uptake suggest that arterial lactate supplementation may be used to compensate for decreased CMRgluc following TBI.
Collapse
Affiliation(s)
- Thomas C. Glenn
- UCLA Cerebral Blood Flow Laboratory, Los Angeles, California
- Department of Neurosurgery, UCLA Center for Health Sciences, Los Angeles, California
| | - Neil A. Martin
- UCLA Cerebral Blood Flow Laboratory, Los Angeles, California
- Department of Neurosurgery, UCLA Center for Health Sciences, Los Angeles, California
| | - Michael A. Horning
- Department of Integrative Biology, University of California, Berkeley, California
| | | | - David A. Hovda
- UCLA Cerebral Blood Flow Laboratory, Los Angeles, California
| | - Paul Vespa
- UCLA Cerebral Blood Flow Laboratory, Los Angeles, California
| | - George A. Brooks
- Department of Integrative Biology, University of California, Berkeley, California
| |
Collapse
|
48
|
Glenn TC, Martin NA, McArthur DL, Hovda DA, Vespa P, Johnson ML, Horning MA, Brooks GA. Endogenous Nutritive Support after Traumatic Brain Injury: Peripheral Lactate Production for Glucose Supply via Gluconeogenesis. J Neurotrauma 2015; 32:811-9. [PMID: 25279664 PMCID: PMC4530391 DOI: 10.1089/neu.2014.3482] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We evaluated the hypothesis that nutritive needs of injured brains are supported by large and coordinated increases in lactate shuttling throughout the body. To that end, we used dual isotope tracer ([6,6-(2)H2]glucose, i.e., D2-glucose, and [3-(13)C]lactate) techniques involving central venous tracer infusion along with cerebral (arterial [art] and jugular bulb [JB]) blood sampling. Patients with traumatic brain injury (TBI) who had nonpenetrating head injuries (n=12, all male) were entered into the study after consent of patients' legal representatives. Written and informed consent was obtained from healthy controls (n=6, including one female). As in previous investigations, the cerebral metabolic rate (CMR) for glucose was suppressed after TBI. Near normal arterial glucose and lactate levels in patients studied 5.7±2.2 days (range of days 2-10) post-injury, however, belied a 71% increase in systemic lactate production, compared with control, that was largely cleared by greater (hepatic+renal) glucose production. After TBI, gluconeogenesis from lactate clearance accounted for 67.1% of glucose rate of appearance (Ra), which was compared with 15.2% in healthy controls. We conclude that elevations in blood glucose concentration after TBI result from a massive mobilization of lactate from corporeal glycogen reserves. This previously unrecognized mobilization of lactate subserves hepatic and renal gluconeogenesis. As such, a lactate shuttle mechanism indirectly makes substrate available for the body and its essential organs, including the brain, after trauma. In addition, when elevations in arterial lactate concentration occur after TBI, lactate shuttling may provide substrate directly to vital organs of the body, including the injured brain.
Collapse
Affiliation(s)
- Thomas C. Glenn
- University of California, Los Angeles, Cerebral Blood Flow Laboratory, Los Angeles, California
- Division of Neurosurgery, University of California, Los Angeles (UCLA), UCLA Center for Health Sciences, Los Angeles, California
| | - Neil A. Martin
- University of California, Los Angeles, Cerebral Blood Flow Laboratory, Los Angeles, California
- Division of Neurosurgery, University of California, Los Angeles (UCLA), UCLA Center for Health Sciences, Los Angeles, California
| | - David L. McArthur
- University of California, Los Angeles, Cerebral Blood Flow Laboratory, Los Angeles, California
| | - David A. Hovda
- University of California, Los Angeles, Cerebral Blood Flow Laboratory, Los Angeles, California
| | - Paul Vespa
- University of California, Los Angeles, Cerebral Blood Flow Laboratory, Los Angeles, California
| | - Matthew L. Johnson
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California
| | - Michael A. Horning
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California
| | - George A. Brooks
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California
| |
Collapse
|
49
|
Glucose administration after traumatic brain injury exerts some benefits and no adverse effects on behavioral and histological outcomes. Brain Res 2015; 1614:94-104. [PMID: 25911580 DOI: 10.1016/j.brainres.2015.04.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/10/2015] [Accepted: 04/11/2015] [Indexed: 11/22/2022]
Abstract
The impact of hyperglycemia after traumatic brain injury (TBI), and even the administration of glucose-containing solutions to head injured patients, remains controversial. In the current study adult male Sprague-Dawley rats were tested on behavioral tasks and then underwent surgery to induce sham injury or unilateral controlled cortical impact (CCI) injury followed by injections (i.p.) with either a 50% glucose solution (Glc; 2g/kg) or an equivalent volume of either 0.9% or 8% saline (Sal) at 0, 1, 3 and 6h post-injury. The type of saline treatment did not significantly affect any outcome measures, so these data were combined. Rats with CCI had significant deficits in beam-walking traversal time and rating scores (p's < 0.001 versus sham) that recovered over test sessions from 1 to 13 days post-injury (p's < 0.001), but these beam-walking deficits were not affected by Glc versus Sal treatments. Persistent post-CCI deficits in forelimb contraflexion scores and forelimb tactile placing ability were also not differentially affected by Glc or Sal treatments. However, deficits in latency to retract the right hind limb after limb extension were significantly attenuated in the CCI-Glc group (p < 0.05 versus CCI-Sal). Both CCI groups were significantly impaired in a plus maze test of spatial working memory on days 4, 9 and 14 post-surgery (p < 0.001 versus sham), and there was no effect of Glc versus Sal on this cognitive outcome measure. At 15 days post-surgery the loss of cortical tissue volume (p < 0.001 versus sham) was significantly less in the CCI-Glc group (30.0%; p < 0.05) compared to the CCI-Sal group (35.7%). Counts of surviving hippocampal hilar neurons revealed a significant (~40%) loss ipsilateral to CCI (p < 0.001 versus sham), but neuronal loss in the hippocampus was not different in the CCI-Sal and CCI-Glc groups. Taken together, these results indicate that an early elevation of blood glucose may improve some neurological outcomes and, importantly, the induction of hyperglycemia after isolated TBI did not adversely affect any sensorimotor, cognitive or histological outcomes.
Collapse
|
50
|
Carpenter KLH, Jalloh I, Hutchinson PJ. Glycolysis and the significance of lactate in traumatic brain injury. Front Neurosci 2015; 9:112. [PMID: 25904838 PMCID: PMC4389375 DOI: 10.3389/fnins.2015.00112] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/16/2015] [Indexed: 01/19/2023] Open
Abstract
In traumatic brain injury (TBI) patients, elevation of the brain extracellular lactate concentration and the lactate/pyruvate ratio are well-recognized, and are associated statistically with unfavorable clinical outcome. Brain extracellular lactate was conventionally regarded as a waste product of glucose, when glucose is metabolized via glycolysis (Embden-Meyerhof-Parnas pathway) to pyruvate, followed by conversion to lactate by the action of lactate dehydrogenase, and export of lactate into the extracellular fluid. In TBI, glycolytic lactate is ascribed to hypoxia or mitochondrial dysfunction, although the precise nature of the latter is incompletely understood. Seemingly in contrast to lactate's association with unfavorable outcome is a growing body of evidence that lactate can be beneficial. The idea that the brain can utilize lactate by feeding into the tricarboxylic acid (TCA) cycle of neurons, first published two decades ago, has become known as the astrocyte-neuron lactate shuttle hypothesis. Direct evidence of brain utilization of lactate was first obtained 5 years ago in a cerebral microdialysis study in TBI patients, where administration of (13)C-labeled lactate via the microdialysis catheter and simultaneous collection of the emerging microdialysates, with (13)C NMR analysis, revealed (13)C labeling in glutamine consistent with lactate utilization via the TCA cycle. This suggests that where neurons are too damaged to utilize the lactate produced from glucose by astrocytes, i.e., uncoupling of neuronal and glial metabolism, high extracellular levels of lactate would accumulate, explaining the association between high lactate and poor outcome. Recently, an intravenous exogenous lactate supplementation study in TBI patients revealed evidence for a beneficial effect judged by surrogate endpoints. Here we review the current state of knowledge about glycolysis and lactate in TBI, how it can be measured in patients, and whether it can be modulated to achieve better clinical outcome.
Collapse
Affiliation(s)
- Keri L H Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge Cambridge, UK ; Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge Cambridge, UK
| | - Ibrahim Jalloh
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge Cambridge, UK
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge Cambridge, UK ; Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge Cambridge, UK
| |
Collapse
|