1
|
Homocysteine fibrillar assemblies display cross-talk with Alzheimer's disease β-amyloid polypeptide. Proc Natl Acad Sci U S A 2021; 118:2017575118. [PMID: 34099562 DOI: 10.1073/pnas.2017575118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
High levels of homocysteine are reported as a risk factor for Alzheimer's disease (AD). Correspondingly, inborn hyperhomocysteinemia is associated with an increased predisposition to the development of dementia in later stages of life. Yet, the mechanistic link between homocysteine accumulation and the pathological neurodegenerative processes is still elusive. Furthermore, despite the clear association between protein aggregation and AD, attempts to develop therapy that specifically targets this process have not been successful. It is envisioned that the failure in the development of efficacious therapeutic intervention may lie in the metabolomic state of affected individuals. We recently demonstrated the ability of metabolites to self-assemble and cross-seed the aggregation of pathological proteins, suggesting a role for metabolite structures in the initiation of neurodegenerative diseases. Here, we provide a report of homocysteine crystal structure and self-assembly into amyloid-like toxic fibrils, their inhibition by polyphenols, and their ability to seed the aggregation of the AD-associated β-amyloid polypeptide. A yeast model of hyperhomocysteinemia indicates a toxic effect, correlated with increased intracellular amyloid staining that could be rescued by polyphenol treatment. Analysis of AD mouse model brain sections indicates the presence of homocysteine assemblies and the interplay between β-amyloid and homocysteine. This work implies a molecular basis for the association between homocysteine accumulation and AD pathology, potentially leading to a paradigm shift in the understanding of AD initial pathological processes.
Collapse
|
2
|
Zhang X, Bao G, Liu D, Yang Y, Li X, Cai G, Liu Y, Wu Y. The Association Between Folate and Alzheimer's Disease: A Systematic Review and Meta-Analysis. Front Neurosci 2021; 15:661198. [PMID: 33935641 PMCID: PMC8079632 DOI: 10.3389/fnins.2021.661198] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/17/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of neurodegenerative disease leading to dementia in the elderly. Increasing evidence indicates that folate plays an important role in the pathogenesis of AD. To investigate the role of folate deficiency/possible deficiency in the risk of AD and the benefical effect of sufficient folate intake on the prevention of AD, a systematic review and meta-analysis were performed. The Web of Science, PubMed, CENTRAL, EBSCO, CNKI, CQVIP, and Wanfang databases were searched. The analysis of cross-sectional studies showed that the standardized mean difference (SMD) was −0.60 (95% confidence interval (CI): −0.65, −0.55), indicating that plasma/serum folate level is lower in AD patients than that in controls. Moreover, the combined odds ratio (OR) of case-control studies was 0.96 (95% CI: 0.93, 0.99), while the combined ORs were 0.86 (95% CI: 0.46, 1.26) and 1.94 (95% CI: 1.02, 2.86) in populations with normal levels of folate (≥13.5 nmol/L) and folate deficiency/possible deficiency (<13.5 nmol/L), respectively. In addition, the risk ratio (RR) of the cohort studies was 1.88 (95% CI: 1.20, 2.57) in populations with folate deficiency/possible deficiency. Furthermore, when the intake of folate was equal to or higher than the recommended daily allowance, the combined RR and hazard ratio (HR) were 0.44 (95% CI: 0.18, 0.71) and 0.76 (95% CI: 0.52, 0.99), respectively. These results indicate that folate deficiency/possible deficiency increases the risk for AD, while sufficient intake of folate is a protective factor against AD.
Collapse
Affiliation(s)
- Xiaohong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China.,Shandong Collaborative Innovation Center for Diagnosis, Treatment & Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
| | - Guangyi Bao
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China.,Shandong Collaborative Innovation Center for Diagnosis, Treatment & Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
| | - Debiao Liu
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China.,Shandong Collaborative Innovation Center for Diagnosis, Treatment & Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
| | - Yu Yang
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China.,Shandong Collaborative Innovation Center for Diagnosis, Treatment & Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Center of Evidence-Based Medicine, Jining Medical University, Jining, China
| | - Xuezhi Li
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China.,Shandong Collaborative Innovation Center for Diagnosis, Treatment & Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Center of Evidence-Based Medicine, Jining Medical University, Jining, China
| | - Gaomei Cai
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Yan Liu
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China.,Shandong Collaborative Innovation Center for Diagnosis, Treatment & Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Center of Evidence-Based Medicine, Jining Medical University, Jining, China
| | - Yili Wu
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China.,Shandong Collaborative Innovation Center for Diagnosis, Treatment & Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Center of Evidence-Based Medicine, Jining Medical University, Jining, China
| |
Collapse
|
3
|
Maternal choline supplementation ameliorates Alzheimer's disease pathology by reducing brain homocysteine levels across multiple generations. Mol Psychiatry 2020; 25:2620-2629. [PMID: 30622336 PMCID: PMC6697226 DOI: 10.1038/s41380-018-0322-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/21/2018] [Accepted: 11/12/2018] [Indexed: 01/09/2023]
Abstract
The lack of effective treatments for Alzheimer's disease (AD) is alarming, considering the number of people currently affected by this disorder and the projected increase over the next few decades. Elevated homocysteine (Hcy) levels double the risk of developing AD. Choline, a primary dietary source of methyl groups, converts Hcy to methionine and reduces age-dependent cognitive decline. Here, we tested the transgenerational benefits of maternal choline supplementation (ChS; 5.0 g/kg choline chloride) in two generations (Gen) of APP/PS1 mice. We first exposed 2.5-month-old mice to the ChS diet and allowed them to breed with each other to generate Gen-1 mice. Gen-1 mice were exposed to the ChS diet only during gestation and lactation; once weaned at postnatal day 21, Gen-1 mice were then kept on the control diet for the remainder of their life. We also bred a subset of Gen-1 mice to each other and obtained Gen-2 mice; these mice were never exposed to ChS. We found that ChS reduced Aβ load and microglia activation, and improved cognitive deficits in old Gen-1 and Gen-2 APP/PS1 mice. Mechanistically, these changes were linked to a reduction in brain Hcy levels in both generations. Further, RNA-Seq data from APP/PS1 hippocampal tissue revealed that ChS significantly changed the expression of 27 genes. These genes were enriched for inflammation, histone modifications, and neuronal death functional classes. Our results are the first to demonstrate a transgenerational benefit of ChS and suggest that modifying the maternal diet with additional choline reduces AD pathology across multiple generations.
Collapse
|
4
|
Montecinos-Oliva C, Arrázola MS, Jara C, Tapia-Rojas C, Inestrosa NC. Hormetic-Like Effects of L-Homocysteine on Synaptic Structure, Function, and Aβ Aggregation. Pharmaceuticals (Basel) 2020; 13:ph13020024. [PMID: 32024240 PMCID: PMC7168909 DOI: 10.3390/ph13020024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/13/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s Disease (AD) is the primary cause of dementia among the elderly population. Elevated plasma levels of homocysteine (HCy), an amino acid derived from methionine metabolism, are considered a risk factor and biomarker of AD and other types of dementia. An increase in HCy is mostly a consequence of high methionine and/or low vitamin B intake in the diet. Here, we studied the effects of physiological and pathophysiological HCy concentrations on oxidative stress, synaptic protein levels, and synaptic activity in mice hippocampal slices. We also studied the in vitro effects of HCy on the aggregation kinetics of Aβ40. We found that physiological cerebrospinal concentrations of HCy (0.5 µM) induce an increase in synaptic proteins, whereas higher doses of HCy (30–100 µM) decrease their levels, thereby increasing oxidative stress and causing excitatory transmission hyperactivity, which are all considered to be neurotoxic effects. We also observed that normal cerebrospinal concentrations of HCy slow the aggregation kinetic of Aβ40, whereas high concentrations accelerate its aggregation. Finally, we studied the effects of HCy and HCy + Aβ42 over long-term potentiation. Altogether, by studying an ample range of effects under different HCy concentrations, we report, for the first time, that HCy can exert beneficial or toxic effects over neurons, evidencing a hormetic-like effect. Therefore, we further encourage the use of HCy as a biomarker and modifiable risk factor with therapeutic use against AD and other types of dementia.
Collapse
Affiliation(s)
- Carla Montecinos-Oliva
- Centro de Envejecimiento y Regeneración (CARE); Departamento de Biología Celular y Molecular; Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Macarena S Arrázola
- Centro de Envejecimiento y Regeneración (CARE); Departamento de Biología Celular y Molecular; Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor de Chile, Santiago 8580745, Chile
| | - Claudia Jara
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510156, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510156, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE); Departamento de Biología Celular y Molecular; Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
| |
Collapse
|
5
|
Le Stunff H, Véret J, Kassis N, Denom J, Meneyrol K, Paul JL, Cruciani-Guglielmacci C, Magnan C, Janel N. Deciphering the Link Between Hyperhomocysteinemia and Ceramide Metabolism in Alzheimer-Type Neurodegeneration. Front Neurol 2019; 10:807. [PMID: 31417486 PMCID: PMC6684947 DOI: 10.3389/fneur.2019.00807] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022] Open
Abstract
Aging is one of the strongest risk factor for Alzheimer's disease (AD). However, several data suggest that dyslipidemia can either contribute or serve as co-factors in AD appearance. AD could be examined as a metabolic disorder mediated by peripheral insulin resistance. Insulin resistance is associated with dyslipidemia, which results in increased hepatic ceramide generation. Hepatic steatosis induces pro-inflammatory cytokine activation which is mediated by the increased ceramides production. Ceramides levels increased in cells due to perturbation in sphingolipid metabolism and upregulated expression of enzymes involved in ceramide synthesis. Cytotoxic ceramides and related molecules generated in liver promote insulin resistance, traffic through the circulation due to injury or cell death caused by local liver inflammation, and because of their hydrophobic nature, they can cross the blood-brain barrier and thereby exert neurotoxic responses as reducing insulin signaling and increasing pro-inflammatory cytokines. These abnormalities propagate a cascade of neurodegeneration associated with oxidative stress and ceramide generation, which potentiate brain insulin resistance, apoptosis, myelin degeneration, and neuro-inflammation. Therefore, excess of toxic lipids generated in liver can cause neurodegeneration. Elevated homocysteine level is also a risk factor for AD pathology and is narrowly associated with metabolic diseases and non-alcoholic fatty liver disease. The existence of a homocysteine/ceramides signaling pathway suggests that homocysteine toxicity could be partly mediated by intracellular ceramide accumulation due to stimulation of ceramide synthase. In this article, we briefly examined the role of homocysteine and ceramide metabolism linking metabolic diseases and non-alcoholic fatty liver disease to AD. We therefore analyzed the expression of mainly enzymes implicated in ceramide and sphingolipid metabolism and demonstrated deregulation of de novo ceramide biosynthesis and S1P metabolism in liver and brain of hyperhomocysteinemic mice.
Collapse
Affiliation(s)
- Hervé Le Stunff
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France.,Institut des Neurosciences Paris-Saclay (Neuro-PSI), Université Paris-Sud, CNRS UMR 9197, Orsay, France
| | - Julien Véret
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France
| | - Nadim Kassis
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France
| | - Jessica Denom
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France
| | | | - Jean-Louis Paul
- AP-HP, Hôpital Européen Georges Pompidou, Service de Biochimie, Paris, France
| | | | | | | |
Collapse
|
6
|
Sade D, Shaham-Niv S, Arnon ZA, Tavassoly O, Gazit E. Seeding of proteins into amyloid structures by metabolite assemblies may clarify certain unexplained epidemiological associations. Open Biol 2019; 8:rsob.170229. [PMID: 29367352 PMCID: PMC5795054 DOI: 10.1098/rsob.170229] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022] Open
Abstract
The accumulation of various metabolites appears to be associated with diverse human diseases. However, the aetiological link between metabolic alteration and the observed diseases is still elusive. This includes the correlation between the abnormally high levels of homocysteine and quinolinic acid in Alzheimer's disease, as well as the accumulation of oncometabolites in malignant processes. Here, we suggest and discuss a possible mechanistic insight into metabolite accumulation in conditions such as neurodegenerative diseases and cancer. Our hypothesis is based on the demonstrated ability of metabolites to form amyloid-like structures in inborn error of metabolism disorders and the potential of such metabolite amyloids to promote protein aggregation. This notion can provide a new paradigm for neurodegeneration and cancer, as both conditions were linked to loss of function due to protein aggregation. Similar to the well-established observation of amyloid formation in many degenerative disorders, the formation of amyloids by tumour-suppressor proteins, including p53, was demonstrated in malignant states. Moreover, this new paradigm could fill the gap in understanding the high occurrence of specific types of cancer among genetic error of metabolism patients. This hypothesis offers a fresh view on the aetiology of some of the most abundant human maladies and may redirect the efforts towards new therapeutic developments.
Collapse
Affiliation(s)
- Dorin Sade
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shira Shaham-Niv
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Zohar A Arnon
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Omid Tavassoly
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel .,Sagol Interdisciplinary School of Neurosciences, Tel Aviv University, Tel Aviv 6997801, Israel.,Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
7
|
Prendecki M, Florczak-Wyspianska J, Kowalska M, Ilkowski J, Grzelak T, Bialas K, Wiszniewska M, Kozubski W, Dorszewska J. Biothiols and oxidative stress markers and polymorphisms of TOMM40 and APOC1 genes in Alzheimer's disease patients. Oncotarget 2018; 9:35207-35225. [PMID: 30443289 PMCID: PMC6219666 DOI: 10.18632/oncotarget.26184] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/01/2018] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive disease, with frequently observed improper biothiols turnover, homocysteine (Hcy) and glutathione (GSH). GSH protects cells from oxidative stress and may be determined by 8-oxo-2’-deoxyguanosine (8-oxo2dG) level and its repair enzyme 8-oxoguanine DNA glycosylase (OGG1). The presence of unfavorable alleles, e.g., in APOE cluster, TOMM40 or APOC1 is known to facilitate the dementia onset under oxidative stress. The aim of the study was to analyze rs1052452, rs2075650 TOMM40 polymorphisms, rs4420638 APOC1, and their correlation with Hcy, GSH, 8-oxo2dG, OGG1 levels in plasma of AD patients and controls. We recruited 230 individuals: 88 AD, 80 controls without (UC), 62 controls with (RC) positive family history of AD. The TOMM40 genotype was determined by HRM and capillary electrophoresis, while APOC1 by HRM. The concentrations of OGG1, 8-oxo2dG were determined by ELISA, whereas Hcy, GSH by HPLC/EC. We showed that over 60% of AD patients had increased Hcy levels (p<0.01 vs. UC, p<0.001 vs. RC), while GSH (p<0.01 vs. UC), 8-oxo2dG (p<0.01 vs. UC, p<0.001 vs. RC) were reduced. Minor variants: rs10524523-L, rs4420638-G, rs2075650-G were significantly overrepresented in AD. For rs4420638-G, rs2075650-G variants, the association remained significant in APOE E4 non-carriers. The misbalance of analyzed biothiols, and 8-oxo2dG, OGG1 were more pronounced in carriers of major variants: rs10524523-S/VL, rs4420638-A, rs2075650-A. We showed, for the first time, that APOC1 and TOMM40 rs2075650 polymorphisms may be independent risk factors of developing AD, whose major variants are accompanied by disruption of biothiols metabolism and inefficient removal of DNA oxidation.
Collapse
Affiliation(s)
- Michal Prendecki
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Marta Kowalska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jan Ilkowski
- Department of Emergency Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Teresa Grzelak
- Division of Biology of Civilization-Linked Diseases, Department of Chemistry and Clinical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Bialas
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Malgorzata Wiszniewska
- Faculty of Health Care, Stanislaw Staszic University of Applied Sciences in Pila, Pila, Poland.,Department of Neurology, Specialistic Hospital in Pila, Pila, Poland
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
8
|
Troesch B, Weber P, Mohajeri MH. Potential Links between Impaired One-Carbon Metabolism Due to Polymorphisms, Inadequate B-Vitamin Status, and the Development of Alzheimer's Disease. Nutrients 2016; 8:E803. [PMID: 27973419 PMCID: PMC5188458 DOI: 10.3390/nu8120803] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD) is the major cause of dementia and no preventive or effective treatment has been established to date. The etiology of AD is poorly understood, but genetic and environmental factors seem to play a role in its onset and progression. In particular, factors affecting the one-carbon metabolism (OCM) are thought to be important and elevated homocysteine (Hcy) levels, indicating impaired OCM, have been associated with AD. We aimed at evaluating the role of polymorphisms of key OCM enzymes in the etiology of AD, particularly when intakes of relevant B-vitamins are inadequate. Our review indicates that a range of compensatory mechanisms exist to maintain a metabolic balance. However, these become overwhelmed if the activity of more than one enzyme is reduced due to genetic factors or insufficient folate, riboflavin, vitamin B6 and/or vitamin B12 levels. Consequences include increased Hcy levels and reduced capacity to synthetize, methylate and repair DNA, and/or modulated neurotransmission. This seems to favor the development of hallmarks of AD particularly when combined with increased oxidative stress e.g., in apolipoprotein E (ApoE) ε4 carriers. However, as these effects can be compensated at least partially by adequate intakes of B-vitamins, achieving optimal B-vitamin status for the general population should be a public health priority.
Collapse
Affiliation(s)
- Barbara Troesch
- DSM Nutritional Products Ltd., Wurmisweg 576, Kaiseraugst 4303, Switzerland.
| | - Peter Weber
- DSM Nutritional Products Ltd., Wurmisweg 576, Kaiseraugst 4303, Switzerland.
| | - M Hasan Mohajeri
- DSM Nutritional Products Ltd., Wurmisweg 576, Kaiseraugst 4303, Switzerland.
| |
Collapse
|
9
|
Shen L, Ji HF. Associations between Homocysteine, Folic Acid, Vitamin B12 and Alzheimer's Disease: Insights from Meta-Analyses. J Alzheimers Dis 2016; 46:777-90. [PMID: 25854931 DOI: 10.3233/jad-150140] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The associations between homocysteine (Hcy), folic acid, and vitamin B12 and Alzheimer's disease (AD) have gained much interest, while remaining controversial. We aim to perform meta-analyses to evaluate comprehensively: i) Hcy, folic acid, and vitamin B12 levels in AD patients in comparison with controls; and ii) the association between Hcy, folic acid, and vitamin B12 levels and risk of AD. A literature search was performed using Medline and Scopus databases. A total of 68 studies were identified and included in the meta-analyses. Stata 12.0 statistical software was used to perform the meta-analyses. First, AD patients may have higher level of Hcy, and lower levels of folate and vitamin B12 in plasma than controls. Further age-subgroup analysis showed no age effect for Hcy levels in plasma between AD patients and matched controls, while the differences in folate and vitamin B12 levels further enlarged with increased age. Second, data suggests that high Hcy and low folate levels may correlate with increased risk of AD occurrence. The comprehensive meta-analyses not only confirmed higher Hcy, lower folic acid, and vitamin B12 levels in AD patients than controls, but also implicated that high Hcy and low folic acid levels may be risk factors of AD. Further studies are encouraged to elucidate mechanisms linking these conditions.
Collapse
|
10
|
Paul R, Borah A. The potential physiological crosstalk and interrelationship between two sovereign endogenous amines, melatonin and homocysteine. Life Sci 2015; 139:97-107. [PMID: 26281918 DOI: 10.1016/j.lfs.2015.07.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/07/2015] [Accepted: 07/31/2015] [Indexed: 12/13/2022]
Abstract
The antioxidant melatonin and the non-proteinogenic excitotoxic amino acid homocysteine (Hcy) are very distinct but related reciprocally to each other in their mode of action. The elevated Hcy level has been implicated in several disease pathologies ranging from cardio- and cerebro-vascular diseases to neurodegeneration owing largely to its free radical generating potency. Interestingly, melatonin administration potentially normalizes the elevated Hcy level, thereby protecting the cells from the undesired Hcy-induced excitotoxicity and cell death. However, the exact mechanism and between them remain obscure. Through literature survey we have found an indistinct but a vital link between melatonin and Hcy i.e., the existence of reciprocal regulation between them, and this aspect has been thoroughly described herein. In this review, we focus on all the possibilities of co-regulation of melatonin and Hcy at the level of their production and metabolism both in basal and in pathological conditions, and appraised the potential of melatonin in ameliorating homocysteinemia-induced cellular stresses. Also, we have summarized the differential mode of action of melatonin and Hcy on health and disease states.
Collapse
Affiliation(s)
- Rajib Paul
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India.
| |
Collapse
|
11
|
Milioli HH, Vimieiro R, Riveros C, Tishchenko I, Berretta R, Moscato P. The Discovery of Novel Biomarkers Improves Breast Cancer Intrinsic Subtype Prediction and Reconciles the Labels in the METABRIC Data Set. PLoS One 2015; 10:e0129711. [PMID: 26132585 PMCID: PMC4488510 DOI: 10.1371/journal.pone.0129711] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/12/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The prediction of breast cancer intrinsic subtypes has been introduced as a valuable strategy to determine patient diagnosis and prognosis, and therapy response. The PAM50 method, based on the expression levels of 50 genes, uses a single sample predictor model to assign subtype labels to samples. Intrinsic errors reported within this assay demonstrate the challenge of identifying and understanding the breast cancer groups. In this study, we aim to: a) identify novel biomarkers for subtype individuation by exploring the competence of a newly proposed method named CM1 score, and b) apply an ensemble learning, as opposed to the use of a single classifier, for sample subtype assignment. The overarching objective is to improve class prediction. METHODS AND FINDINGS The microarray transcriptome data sets used in this study are: the METABRIC breast cancer data recorded for over 2000 patients, and the public integrated source from ROCK database with 1570 samples. We first computed the CM1 score to identify the probes with highly discriminative patterns of expression across samples of each intrinsic subtype. We further assessed the ability of 42 selected probes on assigning correct subtype labels using 24 different classifiers from the Weka software suite. For comparison, the same method was applied on the list of 50 genes from the PAM50 method. CONCLUSIONS The CM1 score portrayed 30 novel biomarkers for predicting breast cancer subtypes, with the confirmation of the role of 12 well-established genes. Intrinsic subtypes assigned using the CM1 list and the ensemble of classifiers are more consistent and homogeneous than the original PAM50 labels. The new subtypes show accurate distributions of current clinical markers ER, PR and HER2, and survival curves in the METABRIC and ROCK data sets. Remarkably, the paradoxical attribution of the original labels reinforces the limitations of employing a single sample classifiers to predict breast cancer intrinsic subtypes.
Collapse
Affiliation(s)
- Heloisa Helena Milioli
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Environmental and Life Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Renato Vimieiro
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Centro de Informática, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Carlos Riveros
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Inna Tishchenko
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Regina Berretta
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Pablo Moscato
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
12
|
Keskitalo S, Farkas M, Hanenberg M, Szodorai A, Kulic L, Semmler A, Weller M, Nitsch RM, Linnebank M. Reciprocal modulation of Aβ42 aggregation by copper and homocysteine. Front Aging Neurosci 2014; 6:237. [PMID: 25249976 PMCID: PMC4157544 DOI: 10.3389/fnagi.2014.00237] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/20/2014] [Indexed: 12/05/2022] Open
Abstract
Hyperhomocysteinemia is a risk factor for Alzheimer’s disease (AD). Both homocysteine (Hcy) and amyloid β (Aβ), which accumulates in the brain of AD patients, bind copper. Aim of this study was to test the hypothesis that the association of Hcy and AD results from a molecular interaction between Hcy and Aβ that is mediated by copper. We established a microtiter plate format thioflavin T aggregation assay to monitor Aβ42 fibrillization. Copper (5 μM) completely prevented Aβ42 (5 μM) fibrillization. Homocysteine in the absence of copper did not impact Aβ42 fibrillization, but physiological concentrations of Hcy (10–100 μM) attenuated the inhibitory effect of copper on Aβ42 fibril formation. These results were qualitatively confirmed by electron microscopy, which did not reveal morphological differences. To compare the toxicity of fibrillar and non-fibrillar Aβ42 exposed to copper or Hcy, rat primary cortical neurons were treated in vitro with 5 μM Aβ42 for 72 h. After incubation with 5 μM Aβ42 that had been aggregating in the absence of Hcy or copper, cell viability was reduced to 40%. Incubation with 5 μM Aβ42, in which fibril formation had been prevented or reverted by the addition of 5 μM copper, resulted in cell viability of approximately 25%. Accordingly, viability was reduced to 25% after incubation with 5 μM monomeric, i.e., non-fibrillized, Aβ42. The addition of Hcy plus copper to 5 μM Aβ42 yielded 50% viability. In conclusion, copper prevents and reverts Aβ fibril formation leading rather to formation of lower order oligomers or amorphous aggregates, and Hcy reduces these effects. Such mechanisms may explain the association of hyperhomocysteinemia and AD, leading to novel therapeutic strategies in the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Salla Keskitalo
- Department of Neurology, University Hospital Zurich Zurich, Switzerland
| | - Melinda Farkas
- Department of Neurology, University Hospital Zurich Zurich, Switzerland
| | - Michael Hanenberg
- Division of Psychiatry Research, University of Zurich Schlieren, Switzerland
| | - Anita Szodorai
- Division of Psychiatry Research, University of Zurich Schlieren, Switzerland
| | - Luka Kulic
- Division of Psychiatry Research, University of Zurich Schlieren, Switzerland
| | - Alexander Semmler
- Department of Neurology, University Hospital Zurich Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, University Hospital Zurich Zurich, Switzerland
| | - Roger M Nitsch
- Division of Psychiatry Research, University of Zurich Schlieren, Switzerland
| | - Michael Linnebank
- Department of Neurology, University Hospital Zurich Zurich, Switzerland
| |
Collapse
|
13
|
Schluesener JK, Schluesener H. Plant polyphenols in the treatment of age-associated diseases: revealing the pleiotropic effects of icariin by network analysis. Mol Nutr Food Res 2013; 58:49-60. [PMID: 24311544 DOI: 10.1002/mnfr.201300409] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 10/18/2013] [Accepted: 10/30/2013] [Indexed: 12/15/2022]
Abstract
Polyphenols are a broad class of compounds. Some are ingested in substantial quantities from nutritional sources, more are produced by medicinal plants, and some of them are taken as drugs. It is becoming clear, that a single polyphenol is impacting several cellular pathways. Thus, a network approach is becoming feasible, describing the interaction of a single polyphenol with cellular networks. Here we have selected icariin to draw a prototypic network of icariin activities. Icariin appears to be a promising drug to treat major age-related diseases, like neurodegeneration, memory and depressive disorders, chronic inflammation, diabetes, and osteoporosis. It interacts with several relevant pathways, like PDE, TGF-ß, MAPK, PPAR, NOS, IGF, Sirtuin, and others. Such networks will be useful to future comparative studies of complex effects of polyphenols.
Collapse
Affiliation(s)
- Jan Kevin Schluesener
- Division of Immunopathology of the Nervous System, Department of Neuropathology, Institute of Pathology and Neuropathology, University of Tuebingen, Tuebingen, Germany
| | | |
Collapse
|
14
|
Affiliation(s)
- Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, DK 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
15
|
Trueta C, Kuffler DP, De-Miguel FF. Cycling of dense core vesicles involved in somatic exocytosis of serotonin by leech neurons. Front Physiol 2012; 3:175. [PMID: 22685436 PMCID: PMC3368391 DOI: 10.3389/fphys.2012.00175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 05/14/2012] [Indexed: 12/15/2022] Open
Abstract
We studied the cycling of dense core vesicles producing somatic exocytosis of serotonin. Our experiments were made using electron microscopy and vesicle staining with fluorescent dye FM1-43 in Retzius neurons of the leech, which secrete serotonin from clusters of dense core vesicles in a frequency-dependent manner. Electron micrographs of neurons at rest or after 1 Hz stimulation showed two pools of dense core vesicles. A perinuclear pool near Golgi apparatuses, from which vesicles apparently form, and a peripheral pool with vesicle clusters at a distance from the plasma membrane. By contrast, after 20 Hz electrical stimulation 47% of the vesicle clusters were apposed to the plasma membrane, with some omega exocytosis structures. Dense core and small clear vesicles apparently originating from endocytosis were incorporated in multivesicular bodies. In another series of experiments, neurons were stimulated at 20 Hz while bathed in a solution containing peroxidase. Electron micrographs of these neurons contained gold particles coupled to anti-peroxidase antibodies in dense core vesicles and multivesicular bodies located near the plasma membrane. Cultured neurons depolarized with high potassium in the presence of FM1-43 displayed superficial fluorescent spots, each reflecting a vesicle cluster. A partial bleaching of the spots followed by another depolarization in the presence of FM1-43 produced restaining of some spots, other spots disappeared, some remained without restaining and new spots were formed. Several hours after electrical stimulation the FM1-43 spots accumulated at the center of the somata. This correlated with electron micrographs of multivesicular bodies releasing their contents near Golgi apparatuses. Our results suggest that dense core vesicle cycling related to somatic serotonin release involves two steps: the production of clear vesicles and multivesicular bodies after exocytosis, and the formation of new dense core vesicles in the perinuclear region.
Collapse
Affiliation(s)
- Citlali Trueta
- Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz," México D. F., México
| | | | | |
Collapse
|
16
|
Yu H, Li M, Liu G, Geng J, Wang J, Ren J, Zhao C, Qu X. Metallosupramolecular complex targeting an α/β discordant stretch of amyloid β peptide. Chem Sci 2012. [DOI: 10.1039/c2sc20372c] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
17
|
A window into the heterogeneity of human cerebrospinal fluid Aβ peptides. J Biomed Biotechnol 2011; 2011:697036. [PMID: 21876644 PMCID: PMC3163146 DOI: 10.1155/2011/697036] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 06/27/2011] [Accepted: 06/30/2011] [Indexed: 12/20/2022] Open
Abstract
The initiating event in Alzheimer's disease (AD) is an imbalance in the production and clearance of amyloid beta (Aβ) peptides leading to the formation of neurotoxic brain Aβ assemblies. Cerebrospinal Fluid (CSF), which is a continuum of the brain, is an obvious source of markers reflecting central neuropathologic features of brain diseases. In this review, we provide an overview and update on our current understanding of the pathobiology of human CSF Aβ peptides. Specifically, we focused our attention on the heterogeneity of the CSF Aβ world discussing (1) basic research studies and what has been translated to clinical practice, (2) monomers and other soluble circulating Aβ assemblies, and (3) communication modes for Aβ peptides and their microenvironment targets. Finally, we suggest that Aβ peptides as well as other key signals in the central nervous system (CNS), mainly involved in learning and hence plasticity, may have a double-edged sword action on neuron survival and function.
Collapse
|
18
|
Zhuo JM, Wang H, Praticò D. Is hyperhomocysteinemia an Alzheimer's disease (AD) risk factor, an AD marker, or neither? Trends Pharmacol Sci 2011; 32:562-71. [PMID: 21684021 DOI: 10.1016/j.tips.2011.05.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 11/27/2022]
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative disease. The vast majority cases of AD are sporadic, without clear cause, and a combination of environmental and genetic factors has been implicated. The hypothesis that homocysteine (Hcy) is a risk factor for AD was initially prompted by the observation that patients with histologically confirmed AD had higher plasma levels of Hcy, termed hyperhomocysteinemia (HHcy), than age-matched controls. Most evidence accumulated so far implicates HHcy as a risk factor for AD onset, but there are also conflicting results. In this review we summarize reports on the relationship between HHcy and AD from epidemiological investigations, including observational studies and randomized controlled clinical trials. We also examine recent in vivo and in vitro studies of potential mechanisms whereby HHcy could influence AD development. Finally, we discuss possible reasons for the existing conflicting data and provide suggestions for future studies.
Collapse
Affiliation(s)
- Jia-Min Zhuo
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
19
|
Kulkarni KS, Kasture S, Mengi S. Efficacy study of Prunus amygdalus (almond) nuts in scopolamine-induced amnesia in rats. Indian J Pharmacol 2010; 42:168-73. [PMID: 20871769 PMCID: PMC2937319 DOI: 10.4103/0253-7613.66841] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 02/25/2010] [Accepted: 06/09/2010] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Cognitive disorders such as amnesia, attention deficit and Alzheimer's disease are emerging nightmares in the field of medicine because no exact cure exists for them, as existing nootropic agents (piractam, tacrine, metrifonate) have several limitations. The present study was undertaken to investigate the effect of Prunus amygdalus (PA) nuts on cognitive functions, total cholesterol levels and cholinesterase (ChE) activity in scopolamine-induced amnesia in rats. MATERIALS AND METHODS The paste of PA nuts was administered orally at three doses (150, 300 and 600 mg/kg) for 7 and 14 consecutive days to the respective groups of rats. Piracetam (200 mg/kg) was used as a standard nootropic agent. Learning and memory parameters were evaluated using elevated plus maze (EPM), passive avoidance and motor activity paradigms. Brain ChE activity and serum biochemical parameters like total cholesterol, total triglycerides and glucose were evaluated. RESULTS It was observed that PA at the above-mentioned doses after 7 and 14 days of administration in the respective groups significantly reversed scopolamine (1 mg/kg i.p.)-induced amnesia, as evidenced by a decrease in the transfer latency in the EPM task and step-down latency in the passive avoidance task. PA reduced the brain ChE activity in rats. PA also exhibited a remarkable cholesterol and triglyceride lowering property and slight increase in glucose levels in the present study. CONCLUSION Because diminished cholinergic transmission and increase in cholesterol levels appear to be responsible for the development of amyloid plaques and dementia in Alzheimer patients, PA may prove to be a useful memory-restorative agent. It would be worthwhile to explore the potential of this plant in the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Kirti S. Kulkarni
- Department of Pharmacology, C. U. College of Pharmacy, SNDT Women’s University, Santacruz (W), Mumbai, India
| | - S.B. Kasture
- Department of Pharmacology, Sanjeevani College of Pharmaceutical Education and Research, Kopargaon, Dist. Ahmednagar, Maharashtra, India
| | - S.A. Mengi
- Department of Pharmacology, C. U. College of Pharmacy, SNDT Women’s University, Santacruz (W), Mumbai, India
| |
Collapse
|
20
|
Understanding wiring and volume transmission. ACTA ACUST UNITED AC 2010; 64:137-59. [PMID: 20347870 DOI: 10.1016/j.brainresrev.2010.03.003] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/17/2010] [Accepted: 03/17/2010] [Indexed: 11/23/2022]
Abstract
The proposal on the existence of two main modes of intercellular communication in the central nervous system (CNS) was introduced in 1986 and called wiring transmission (WT) and volume transmission (VT). The major criterion for this classification was the different characteristics of the communication channel with physical boundaries well delimited in the case of WT (axons and their synapses; gap junctions) but not in the case of VT (the extracellular fluid filled tortuous channels of the extracellular space and the cerebrospinal fluid filled ventricular space and sub-arachnoidal space). The basic dichotomic classification of intercellular communication in the brain is still considered valid, but recent evidence on the existence of unsuspected specialized structures for intercellular communication, such as microvesicles (exosomes and shedding vesicles) and tunnelling nanotubes, calls for a refinement of the original classification model. The proposed updating is based on criteria which are deduced not only from these new findings but also from concepts offered by informatics to classify the communication networks in the CNS. These criteria allowed the identification also of new sub-classes of WT and VT, namely the "tunnelling nanotube type of WT" and the "Roamer type of VT." In this novel type of VT microvesicles are safe vesicular carriers for targeted intercellular communication of proteins, mtDNA and RNA in the CNS flowing in the extracellular fluid along energy gradients to reach target cells. In the tunnelling nanotubes proteins, mtDNA and RNA can migrate as well as entire organelles such as mitochondria. Although the existence and the role of these new types of intercellular communication in the CNS are still a matter of investigation and remain to be fully demonstrated, the potential importance of these novel types of WT and VT for brain function in health and disease is discussed.
Collapse
|
21
|
Baldelli E, Leo G, Andreoli N, Fuxe K, Biagini G, Agnati LF. Homocysteine Potentiates Seizures and Cell Loss Induced by Pilocarpine Treatment. Neuromolecular Med 2009; 12:248-59. [DOI: 10.1007/s12017-009-8110-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 12/02/2009] [Indexed: 10/20/2022]
|
22
|
Lane R, He Y, Morris C, Leverenz JB, Emre M, Ballard C. BuChE-K and APOE epsilon4 allele frequencies in Lewy body dementias, and influence of genotype and hyperhomocysteinemia on cognitive decline. Mov Disord 2009; 24:392-400. [PMID: 19006190 DOI: 10.1002/mds.22357] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Apolipoprotein E (APOE) epsilon4 and butyrylcholinesterase-K (BuChE-K) are associated with an increased risk for Alzheimer's disease. The primary objective was to evaluate frequencies of these alleles in dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD). A secondary objective was to evaluate influences on rate of cognitive decline. This analysis used data from participants consenting to pharmacogenetic testing in placebo-controlled rivastigmine studies. Allele frequencies in DLB and PDD were compared using logistic regression. Within the PDD placebo sample, associations with cognitive decline were evaluated (the DLB sample was too small for these evaluations). Fifty-seven DLB and 323 PDD subjects provided APOE and BuChE data. Allelic frequencies were higher in DLB, relative to PDD subjects, for BuChE-K (P = 0.06), APOE epsilon4 (P < 0.001), or both alleles together (P < 0.001). More rapid cognitive decline was seen in PDD patients carrying both alleles, compared with other genotypes. Subjects with hyperhomocysteinemia were associated with more rapid decline in the presence of BuChE-K, with or without APOE epsilon4. These results suggest that genetic and biochemical risk factors for AD and PDD pathology may be important in dementia onset and progression in these Lewy body disorders.
Collapse
Affiliation(s)
- Roger Lane
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey 07936-1080, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Emerging hypotheses regarding the influences of butyrylcholinesterase-K variant, APOE epsilon 4, and hyperhomocysteinemia in neurodegenerative dementias. Med Hypotheses 2009; 73:230-50. [PMID: 19359103 DOI: 10.1016/j.mehy.2009.01.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 12/04/2008] [Accepted: 01/24/2009] [Indexed: 01/20/2023]
Abstract
Non-enzymatic functions of butyrylcholinesterase (BuChE) include prevention of the aggregation of amyloid-beta peptide (A beta) in a concentration-dependent manner. This is mediated by the C-terminus of the protein, distal from the enzymatic site. The BuChE-K variant polymorphism lowers expression of BuChE protein and/or alters C-terminal activity. In combination with factors that increase production or reduce elimination of A beta, and/or increase susceptibility to A beta toxicity - such as the apolipoprotein E (APOE) epsilon 4 allele and/or hyperhomocysteinemia - BuChE-K may accelerate cholinergic synaptic and neuronal damage and cognitive decline. A beta-mediated damage to ascending cholinergic pathways may be further accentuated by Lewy body and/or cerebrovascular disease. As the disease advances and functioning cholinergic synapses disappear, both the rapid cognitive decline and response to cholinesterase inhibitor therapy in individuals with these factors may diminish. Non-enzymatic functions of the BuChE protein, APOE epsilon 4 status and hyperhomocysteinemia influence the progression of pathology, symptom expression, and response to cholinesterase inhibition in a stage-specific manner in neurodegenerative disorders associated with Alzheimer, Lewy body and vascular pathology.
Collapse
|
24
|
Agnati LF, Leo G, Genedani S, Piron L, Rivera A, Guidolin D, Fuxe K. Common key-signals in learning and neurodegeneration: focus on excito-amino acids, beta-amyloid peptides and alpha-synuclein. J Neural Transm (Vienna) 2008; 116:953-74. [PMID: 19018448 DOI: 10.1007/s00702-008-0150-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 10/20/2008] [Indexed: 01/11/2023]
Abstract
In this paper a hypothesis that some special signals ("key-signals" excito-amino acids, beta-amyloid peptides and alpha-synuclein) are not only involved in information handling by the neuronal circuits, but also trigger out substantial structural and/or functional changes in the Central Nervous System (CNS) is introduced. This forces the neuronal circuits to move from one stable state towards a new state, but in doing so these signals became potentially dangerous. Several mechanisms are put in action to protect neurons and glial cells from these potentially harmful signals. However, in agreement with the Red Queen Theory of Ageing (Agnati et al. in Acta Physiol Scand 145:301-309, 1992), it is proposed that during ageing these neuroprotective processes become less effective while, in the meantime, a shortage of brain plasticity occurs together with an increased need of plasticity for repairing the wear and tear of the CNS. The paper presents findings supporting the concept that such key-signals in instances such as ageing may favour neurodegenerative processes in an attempt of maximizing neuronal plasticity.
Collapse
Affiliation(s)
- L F Agnati
- Department of BioMedical Sciences, University of Modena, Via Campi 287, 41100 Modena, Italy.
| | | | | | | | | | | | | |
Collapse
|
25
|
Troise F, Cafaro V, Giancola C, D'Alessio G, De Lorenzo C. Differential binding of human immunoagents and Herceptin to the ErbB2 receptor. FEBS J 2008; 275:4967-79. [PMID: 18795950 DOI: 10.1111/j.1742-4658.2008.06625.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Overexpression of the ErbB2 receptor is associated with the progression of breast cancer, and is a sign of a poor prognosis. Herceptin, a humanized antibody directed to the ErbB2 receptor, has been proven to be effective in the immunotherapy of breast cancer. However, it can result in cardiotoxicity, and a large fraction of breast cancer patients are resistant to Herceptin treatment. We have engineered three novel, fully human, anti-ErbB2 immunoagents: Erbicin, a human single-chain antibody fragment; ERB-hRNase, a human immunoRNase composed of Erbicin fused to a human RNase; ERB-hcAb, a human 'compact' antibody in which two Erbicin molecules are fused to the Fc fragment of a human IgG1. Both ERB-hRNase and ERB-hcAb strongly inhibit the growth of ErbB2-positive cells in vivo. The interactions of the Erbicin-derived immunoagents and Herceptin with the extracellular domain of ErbB2 (ErbB2-ECD) were investigated for the first time by three different methods. Erbicin-derived immunoagents bind soluble extracellular domain with a lower affinity than that measured for the native antigen on tumour cells. Herceptin, by contrast, shows a higher affinity for soluble ErbB2-ECD. Accordingly, ErbB2-ECD abolished the in vitro antitumour activity of Herceptin, with no effect on that of Erbicin-derived immunoagents. These results suggest that the fraction of immunoagent neutralized by free extracellular domain shed into the bloodstream is much higher for Herceptin than for Erbicin-derived immunoagents, which therefore may be used at lower therapeutic doses than those employed for Herceptin.
Collapse
Affiliation(s)
- Fulvia Troise
- Dipartimento di Biologia Strutturale e Funzionale, Università di Napoli Federico II, Italy
| | | | | | | | | |
Collapse
|
26
|
Kim HJ, Cho HK, Kwon YH. Synergistic induction of ER stress by homocysteine and beta-amyloid in SH-SY5Y cells. J Nutr Biochem 2008; 19:754-61. [PMID: 18430556 DOI: 10.1016/j.jnutbio.2007.09.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 09/06/2007] [Accepted: 09/25/2007] [Indexed: 11/18/2022]
Abstract
Clinical studies have raised the possibility that elevated plasma levels of homocysteine increase the risk of atherosclerosis, stroke and possibly neurodegenerative diseases such as Alzheimer's disease (AD); however, the direct impact of homocysteine on neuron cells and the mechanism by which it could induce neurodegeneration have yet to be clearly demonstrated. Here, we investigated the effect of homocysteine on endoplasmic reticulum (ER) stress, the suggested mechanism of neurotoxicity, in human neuroblastoma SH-SY5Y cells. The effect of homocysteine on amyloid-beta (Abeta)-induced neurotoxicity and the protective activity of folate were also investigated. Homocysteine led to increased expressions of the binding protein (BiP) and the spliced form of X-box-protein (XBP)-1 mRNAs, suggesting activation of the unfolded-protein response and an increase in apoptosis. When cells were cotreated with homocysteine and Abeta, caspase-3 activity was significantly increased, and expressions of BiP and the spliced form of XBP-1 mRNAs were significantly induced. The neurotoxicity of homocysteine was attenuated by the treatment of cells with folate, as determined by caspase-3 activity and apoptotic body staining. These findings indicate that homocysteine induces ER stress and, ultimately, apoptosis and sensitizes neurons to amyloid toxicity via the synergistic induction of ER stress. Furthermore, a neuroprotective effect of folate against homocysteine-induced toxicity was also observed. Therefore, the findings of our study suggest that ER stress-induced homocysteine toxicity may play an important physiological role in enhancing the pathogenesis of Abeta-induced neuronal degeneration.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Department of Food and Nutrition, Seoul National University, Seoul 151-742, South Korea
| | | | | |
Collapse
|
27
|
Agnati LF, Genedani S, Leo G, Rivera A, Guidolin D, Fuxe K. One century of progress in neuroscience founded on Golgi and Cajal's outstanding experimental and theoretical contributions. ACTA ACUST UNITED AC 2007; 55:167-89. [PMID: 17467058 DOI: 10.1016/j.brainresrev.2007.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 03/09/2007] [Indexed: 11/16/2022]
Abstract
Since the discovery and mapping of the neuronal circuits of the brain by Golgi and Cajal neuroscientists have clearly spelled the fundamental questions which should be answered to delineate the arena for a scientific understanding of brain function: How neurons communicate with each other in a network? Is there some basic principle according to which brain networks are organised? Is it possible to map out brain regions specialised in carrying out some specific task? As far as the first point is concerned it is well known that Golgi and Cajal had opposite views on the interneuronal communication. Golgi suggested protoplasmic continuity and/or electrotonic spreading of currents between neurons. Cajal proposed the so-called "neuron doctrine", which maintained that neurons could communicate only via a specialised region of contiguity, namely the synapse. The present paper has the first and second points as main topics and last century progresses in these fields are viewed as developments of Golgi and Cajal's findings and above all, hypotheses. Thus, we will briefly discuss these topics moving from the transmitter based mapping, which brought neurochemistry into the Golgi-Cajal mapping of the brain with silver impregnation techniques. The mapping of transmitter-identified neurons in the brain represents one of the major foundations for neuropsychopharmacology and a reference frame for the biochemical and behavioural investigations of brain function. Biochemical techniques allowed giving evidence for multiple transmission lines in synapses interacting via receptor-receptor interactions postulated to be based on supramolecular aggregates, called receptor mosaics. Immunocytochemical and autoradiographic mapping techniques allowed the discovery of extra-synaptic receptors and of transmitter-receptor mismatches leading to the introduction of the volume transmission concept by Agnati-Fuxe teams. The Volume Transmission theory proposed the existence of a three-dimensional diffusion of e.g. transmitter and ion signals, released by any type of cell, in the extra-cellular space and the cerebrospinal fluid of the brain. Thus, a synthesis between Golgi and Cajal's views became possible, by considering two main modes of intercellular communication: volume transmission (VT) and wiring transmission (WT) (a prototype of the latter one is synaptic transmission) and two types of networks (cellular and molecular networks) in the central nervous system. This was the basis for the suggestion of two fundamental principles in brain morphological and functional organisation, the miniaturisation and hierarchic organisation. Finally, moving from Apathy's work, a new model of brain networks has recently been proposed. In fact, it has been proposed that a network of fibrils enmeshes the entire CNS forming a global molecular network (GMN) superimposed on the cellular networks.
Collapse
Affiliation(s)
- Luigi F Agnati
- Department of BioMedical Sciences, University of Modena and Reggio Emilia, via Campi 287, 41100 Modena, Italy.
| | | | | | | | | | | |
Collapse
|