1
|
Naz S, Mahmood T, Gupta R, Siddiqui MH, Ahsan F, Ansari VA, Shamim A, Rizvi AA. Clinical Manifestation of AGE-RAGE Axis in Neurodegenerative and Cognitive Impairment Disorders. Drug Res (Stuttg) 2023. [PMID: 37040870 DOI: 10.1055/a-2004-3591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The receptor of Advanced Glycation Endproducts (RAGE) and Advanced Glycation Endproducts (AGE) have multiple functions in our body and their restraint are being observed in neurodegenerative and memory impairment disorders. The review of different pathways allows an understanding of the probable mechanism of neurodegeneration and memory impairment involving RAGE and AGE. Commonly we observe AGE accumulation in neural cells and tissues but the extent of accumulation increases with the presence of memory impairment disorder. The presence of AGEs can also be seen in morbid accumulation, pathological structures in the form of amyloid clots, and nervous fibrillary tangles in Alzheimer's Disease (AD) and memory impairment disease.Many neuropathological and biochemical aspects of AD are explained by AGEs, including widespread protein crosslinking, glial activation of oxidative stress, and neuronal cell death. Oxidative stress is due to different reasons and glycation end products set in motion and form or define various actions which are normally due to AGE changes in a pathogenic cascade. By regulating the transit of ß-amyloid in and out of the brain or altering inflammatory pathways, AGE and it's ensnare receptor such as soluble RAGE may function as blockage or shield AD development. RAGE activates the transcription-controlling factor Necrosis Factor (NF-κB) and increases the protraction of cytokines, like a higher number of Tumor Necrosis Factor (TNF-α) and Interleukin (IL-I) by inducing several signal transduction cascades. Furthermore, binding to RAGE can pro-activate reactive oxygen species (ROS), which is popularly known to cause neuronal death.
Collapse
Affiliation(s)
- Sabreena Naz
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Tarique Mahmood
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Ramesh Gupta
- Department of Pharmacy, Hygia Institute of Pharmaceutical Education and Research, Lucknow, India
| | | | - Farogh Ahsan
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Vaseem Ahamad Ansari
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Arshiya Shamim
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Ali Abbas Rizvi
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
- Department of Pharmacy, Hygia Institute of Pharmaceutical Education and Research, Lucknow, India
| |
Collapse
|
2
|
In Vitro Methodologies to Study the Role of Advanced Glycation End Products (AGEs) in Neurodegeneration. Nutrients 2022; 14:nu14020363. [PMID: 35057544 PMCID: PMC8777776 DOI: 10.3390/nu14020363] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/07/2023] Open
Abstract
Advanced glycation end products (AGEs) can be present in food or be endogenously produced in biological systems. Their formation has been associated with chronic neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis. The implication of AGEs in neurodegeneration is related to their ability to bind to AGE-specific receptors and the ability of their precursors to induce the so-called “dicarbonyl stress”, resulting in cross-linking and protein damage. However, the mode of action underlying their role in neurodegeneration remains unclear. While some research has been carried out in observational clinical studies, further in vitro studies may help elucidate these underlying modes of action. This review presents and discusses in vitro methodologies used in research on the potential role of AGEs in neuroinflammation and neurodegeneration. The overview reveals the main concepts linking AGEs to neurodegeneration, the current findings, and the available and advisable in vitro models to study their role. Moreover, the major questions regarding the role of AGEs in neurodegenerative diseases and the challenges and discrepancies in the research field are discussed.
Collapse
|
3
|
Haddad M, Hervé V, Ben Khedher MR, Rabanel JM, Ramassamy C. Glutathione: An Old and Small Molecule with Great Functions and New Applications in the Brain and in Alzheimer's Disease. Antioxid Redox Signal 2021; 35:270-292. [PMID: 33637005 DOI: 10.1089/ars.2020.8129] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Significance: Glutathione (GSH) represents the most abundant and the main antioxidant in the body with important functions in the brain related to Alzheimer's disease (AD). Recent Advances: Oxidative stress is one of the central mechanisms in AD. We and others have demonstrated the alteration of GSH levels in the AD brain, its important role in the detoxification of advanced glycation end-products and of acrolein, a by-product of lipid peroxidation. Recent in vivo studies found a decrease of GSH in several areas of the brain from control, mild cognitive impairment, and AD subjects, which are correlated with cognitive decline. Critical Issues: Several strategies were developed to restore its intracellular level with the l-cysteine prodrugs or the oral administration of γ-glutamylcysteine to prevent alterations observed in AD. To date, no benefit on GSH level or on oxidative biomarkers has been reported in clinical trials. Thus, it remains uncertain if GSH could be considered a potential preventive or therapeutic approach or a biomarker for AD. Future Directions: We address how GSH-coupled nanocarriers represent a promising approach for the functionalization of nanocarriers to overcome the blood/brain barrier (BBB) for the brain delivery of GSH while avoiding cellular toxicity. It is also important to address the presence of GSH in exosomes for its potential intercellular transfer or its shuttle across the BBB under certain conditions. Antioxid. Redox Signal. 35, 270-292.
Collapse
Affiliation(s)
- Mohamed Haddad
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Canada.,Institute on Nutrition and Functional Foods, Université Laval, Québec, Canada
| | - Vincent Hervé
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Canada.,Institute on Nutrition and Functional Foods, Université Laval, Québec, Canada
| | - Mohamed Raâfet Ben Khedher
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Canada.,Institute on Nutrition and Functional Foods, Université Laval, Québec, Canada
| | | | - Charles Ramassamy
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Canada.,Institute on Nutrition and Functional Foods, Université Laval, Québec, Canada
| |
Collapse
|
4
|
Dello Russo C, Cappoli N, Coletta I, Mezzogori D, Paciello F, Pozzoli G, Navarra P, Battaglia A. The human microglial HMC3 cell line: where do we stand? A systematic literature review. J Neuroinflammation 2018; 15:259. [PMID: 30200996 PMCID: PMC6131758 DOI: 10.1186/s12974-018-1288-0] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/21/2018] [Indexed: 02/08/2023] Open
Abstract
Microglia, unique myeloid cells residing in the brain parenchyma, represent the first line of immune defense within the central nervous system. In addition to their immune functions, microglial cells play an important role in other cerebral processes, including the regulation of synaptic architecture and neurogenesis. Chronic microglial activation is regarded as detrimental, and it is considered a pathogenic mechanism common to several neurological disorders. Microglial activation and function have been extensively studied in rodent experimental models, whereas the characterization of human cells has been limited due to the restricted availability of primary sources of human microglia. To overcome this problem, human immortalized microglial cell lines have been developed. The human microglial clone 3 cell line, HMC3, was established in 1995, through SV40-dependent immortalization of human embryonic microglial cells. It has been recently authenticated by the American Type Culture Collection (ATCC®) and distributed under the name of HMC3 (ATCC®CRL-3304). The HMC3 cells have been used in six research studies, two of which also indicated by ATCC® as reference articles. However, a more accurate literature revision suggests that clone 3 was initially distributed under the name of CHME3. In this regard, several studies have been published, thus contributing to a more extensive characterization of this cell line. Remarkably, the same cell line has been used in different laboratories with other denominations, i.e., CHME-5 cells and C13-NJ cells. In view of the fact that "being now authenticated by ATCC®" may imply a wider distribution of the cells, we aimed at reviewing data obtained with the human microglia cell line clone 3, making the readers aware of this complicated nomenclature. In addition, we also included original data, generated in our laboratory with the HMC3 (ATCC®CRL-3304) cells, providing information on the current state of the culture together with supplementary details on the culturing procedures to obtain and maintain viable cells.
Collapse
Affiliation(s)
- Cinzia Dello Russo
- Institute of Pharmacology, Università Cattolica del S. Cuore, L.go F Vito 1, 00168, Rome, Italy. .,Pharmacology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Natalia Cappoli
- Institute of Pharmacology, Università Cattolica del S. Cuore, L.go F Vito 1, 00168, Rome, Italy
| | - Isabella Coletta
- Angelini RR&D (Research, Regulatory & Development) - Angelini S.p.A., Rome, Italy
| | - Daniele Mezzogori
- Institute of Human Physiology, Università Cattolica del S. Cuore, Rome, Italy
| | - Fabiola Paciello
- Institute of Otolaryngology, Università Cattolica del S. Cuore, Rome, Italy
| | - Giacomo Pozzoli
- Institute of Pharmacology, Università Cattolica del S. Cuore, L.go F Vito 1, 00168, Rome, Italy.,Pharmacology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Pierluigi Navarra
- Institute of Pharmacology, Università Cattolica del S. Cuore, L.go F Vito 1, 00168, Rome, Italy.,Pharmacology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alessandra Battaglia
- Immunology Laboratory, Department of Oncological Gynecology, Università Cattolica del S. Cuore, Rome, Italy
| |
Collapse
|
5
|
Hansen F, Battú CE, Dutra MF, Galland F, Lirio F, Broetto N, Nardin P, Gonçalves CA. Methylglyoxal and carboxyethyllysine reduce glutamate uptake and S100B secretion in the hippocampus independently of RAGE activation. Amino Acids 2015; 48:375-85. [PMID: 26347375 DOI: 10.1007/s00726-015-2091-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 08/28/2015] [Indexed: 01/29/2023]
Abstract
Diabetes is a metabolic disease characterized by high fasting-glucose levels. Diabetic complications have been associated with hyperglycemia and high levels of reactive compounds, such as methylglyoxal (MG) and advanced glycation endproducts (AGEs) formation derived from glucose. Diabetic patients have a higher risk of developing neurodegenerative diseases, such as Alzheimer's disease or Parkinson's disease. Herein, we examined the effect of high glucose, MG and carboxyethyllysine (CEL), a MG-derived AGE of lysine, on oxidative, metabolic and astrocyte-specific parameters in acute hippocampal slices, and investigated some of the mechanisms that could mediate these effects. Glucose, MG and CEL did not alter reactive oxygen species (ROS) formation, glucose uptake or glutamine synthetase activity. However, glutamate uptake and S100B secretion were decreased after MG and CEL exposure. RAGE activation and glycation reactions, examined by aminoguanidine and L-lysine co-incubation, did not mediate these changes. Acute MG and CEL exposure, but not glucose, were able to induce similar effects on hippocampal slices, suggesting that conditions of high glucose concentrations are primarily toxic by elevating the rates of these glycation compounds, such as MG, and by generation of protein cross-links. Alterations in the secretion of S100B and the glutamatergic activity mediated by MG and AGEs can contribute to the brain dysfunction observed in diabetic patients.
Collapse
Affiliation(s)
- Fernanda Hansen
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Cíntia Eickhoff Battú
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Márcio Ferreira Dutra
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-970, Brazil
| | - Fabiana Galland
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Franciane Lirio
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Núbia Broetto
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90046-900, Brazil
| | - Patrícia Nardin
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Carlos-Alberto Gonçalves
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
6
|
Ferreira MES, de Vasconcelos AS, da Costa Vilhena T, da Silva TL, da Silva Barbosa A, Gomes ARQ, Dolabela MF, Percário S. Oxidative Stress in Alzheimer's Disease: Should We Keep Trying Antioxidant Therapies? Cell Mol Neurobiol 2015; 35:595-614. [PMID: 25616523 PMCID: PMC11486210 DOI: 10.1007/s10571-015-0157-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/13/2015] [Indexed: 11/28/2022]
Abstract
The risk of chronic diseases such as Alzheimer's disease is growing as a result of the continuous increasing average life span of the world population, a syndrome characterized by the presence of intraneural neurofibrillary tangles and senile plaques composed mainly by beta-amyloid protein, changes that may cause a number of progressive disorders in the elderly, causing, in its most advanced stage, difficulty in performing normal daily activities, among other manifestations. Therefore, it is important to understand the underlying pathogenic mechanisms of this syndrome. Nevertheless, despite intensive effort to access the physiopathological pathways of the disease, it remains poorly understood. In that context, some hypotheses have arisen, including the recent oxidative stress hypothesis, theory supported by the involvement of oxidative stress in aging, and the vulnerability of neurons to oxidative attack. In the present revision, oxidative changes and redox mechanisms in Alzheimer's disease will be further stressed, as well as the grounds for antioxidant supplementation as adjuvant therapy for the disease will be addressed.
Collapse
Affiliation(s)
- Michelli Erica Souza Ferreira
- Oxidative Stress Research Lab, Institute of Biological Sciences (LAPEO – ICB), Federal University of Pará, Av. Augusto Correa, 01, Belém, PA 66075-110 Brazil
| | - Amanda Soares de Vasconcelos
- Oxidative Stress Research Lab, Institute of Biological Sciences (LAPEO – ICB), Federal University of Pará, Av. Augusto Correa, 01, Belém, PA 66075-110 Brazil
| | - Thyago da Costa Vilhena
- Pharmacy Department, Institute of Health Sciences, Federal University of Pará, Av. Augusto Correa, 01, Belém, PA 66075-110 Brazil
| | - Thiago Leite da Silva
- Pharmacy Department, Institute of Health Sciences, Federal University of Pará, Av. Augusto Correa, 01, Belém, PA 66075-110 Brazil
| | - Aline da Silva Barbosa
- Oxidative Stress Research Lab, Institute of Biological Sciences (LAPEO – ICB), Federal University of Pará, Av. Augusto Correa, 01, Belém, PA 66075-110 Brazil
| | - Antonio Rafael Quadros Gomes
- Oxidative Stress Research Lab, Institute of Biological Sciences (LAPEO – ICB), Federal University of Pará, Av. Augusto Correa, 01, Belém, PA 66075-110 Brazil
| | - Maria Fani Dolabela
- Pharmacy Department, Institute of Health Sciences, Federal University of Pará, Av. Augusto Correa, 01, Belém, PA 66075-110 Brazil
| | - Sandro Percário
- Oxidative Stress Research Lab, Institute of Biological Sciences (LAPEO – ICB), Federal University of Pará, Av. Augusto Correa, 01, Belém, PA 66075-110 Brazil
| |
Collapse
|
7
|
Currais A, Maher P. Functional consequences of age-dependent changes in glutathione status in the brain. Antioxid Redox Signal 2013; 19:813-22. [PMID: 23249101 DOI: 10.1089/ars.2012.4996] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SIGNIFICANCE A decline in both cognitive and motor functions is one of the characteristics of aging. This results in changes in learning and memory, as well as deficits in balance and coordination that significantly impact the quality of life. Importantly, age is the greatest risk factor for a number of neurodegenerative diseases. Alterations in redox homeostasis, protein modification and processing, mitochondrial function, and the immune response have all been implicated in the decline of the aging brain. RECENT ADVANCES Brain glutathione (GSH) decreases with age in humans, and a loss of GSH can impact cognitive function. Decreases in GSH are also associated with microglial activation and endothelial dysfunction, both of which can contribute to impairments in brain function. Changes in redox homeostasis can also potentiate the accumulation of advanced glycation endproducts, resulting in defects in protein processing and function as well as a further increase in inflammation. CRITICAL ISSUES We argue here that many of the changes in brain function associated with age are linked through GSH metabolism. FUTURE DIRECTIONS Further research focused on better understanding how age affects GSH homeostasis with a particular emphasis on the key transcription factors involved in GSH metabolism is needed.
Collapse
Affiliation(s)
- Antonio Currais
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | |
Collapse
|
8
|
Wang Y, Xu Y, Pan Y, Li W, Zhang W, Liu Y, Jia J, Li P. Radix Achyranthis Bidentatae improves learning and memory capabilities in ovariectomized rats. Neural Regen Res 2013; 8:1644-54. [PMID: 25206461 PMCID: PMC4145912 DOI: 10.3969/j.issn.1673-5374.2013.18.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/12/2013] [Indexed: 11/18/2022] Open
Abstract
Kidney-tonifying recipe can reduce the accumulation of advanced glycation end products, prevent neuronal degeneration and improve cognitive functions in ovariectomized rats. Radix Achyranthis Bidentatae alcohol extracts may dose-dependently inhibit non-enzymatic saccharification in vitro. This study aimed to examine the effect of Radix Achyranthis Bidentatae on advanced glycation end products and on learning and memory capabilities in ovariectomized rats. Ovariectomized rats were treated with Radix Achyranthis Bidentatae alcohol extracts (containing 1.5 g/kg crude drug) or 0.1% aminoguanidine for 12 weeks and behavioral testing was performed with the Y-electrical maze. This test revealed that Radix Achyranthis Bidentatae and aminoguanidine could improve the learning and memory capabilities of ovariectomized rats. Results of competitive enzyme-linked immunosorbent assay showed that treatment with Radix Achyranthis Bidentatae or aminoguanidine reduced the accumulation of advanced glycation end products in the frontal cortex of ovariectomized rats, while increasing content in the blood and urine. Biochemical tests showed that treatment with Radix Achyranthis Bidentatae or aminoguanidine decreased superoxide dismutase activity in the serum and frontal cortex, and increased serum levels of glutathione peroxidase in ovariectomized rats. In addition, there was no apparent effect on malondialdehyde levels. These experimental findings indicate that Radix Achyranthis Bidentatae inhibits production of advanced glycation end products and its accumulation in brain tissue, and improves learning and memory capabilities in ovariectomized rats. These effects may be associated with an anti-oxidative action of the extract.
Collapse
Affiliation(s)
- Yuefen Wang
- Department of Encephalopathy, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100017, China
| | - Ya Xu
- Department of Basic Chinese Medicine, School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yanshu Pan
- Pathology Room, Department of Human Morphology, School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Weihong Li
- Medical Comprehensive Course Teaching Center, School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Zhang
- Anatomy Room, Department of Human Morphology, School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Liu
- Pathology Room, Department of Human Morphology, School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jing Jia
- Pathology Room, Department of Human Morphology, School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Pengtao Li
- Department of Encephalopathy, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100017, China
| |
Collapse
|
9
|
Shaikh SB, Uy B, Perera A, Nicholson LF. AGEs–RAGE mediated up-regulation of connexin43 in activated human microglial CHME-5 cells. Neurochem Int 2012; 60:640-51. [DOI: 10.1016/j.neuint.2012.02.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/14/2011] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
|
10
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2007-2008. MASS SPECTROMETRY REVIEWS 2012; 31:183-311. [PMID: 21850673 DOI: 10.1002/mas.20333] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 05/31/2023]
Abstract
This review is the fifth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2008. The first section of the review covers fundamental studies, fragmentation of carbohydrate ions, use of derivatives and new software developments for analysis of carbohydrate spectra. Among newer areas of method development are glycan arrays, MALDI imaging and the use of ion mobility spectrometry. The second section of the review discusses applications of MALDI MS to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, biopharmaceuticals, glycated proteins, glycolipids, glycosides and various other natural products. There is a short section on the use of MALDI mass spectrometry for the study of enzymes involved in glycan processing and a section on the use of MALDI MS to monitor products of the chemical synthesis of carbohydrates with emphasis on carbohydrate-protein complexes and glycodendrimers. Corresponding analyses by electrospray ionization now appear to outnumber those performed by MALDI and the amount of literature makes a comprehensive review on this technique impractical. However, most of the work relating to sample preparation and glycan synthesis is equally relevant to electrospray and, consequently, those proposing analyses by electrospray should also find material in this review of interest.
Collapse
Affiliation(s)
- David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
11
|
Münch G, Westcott B, Menini T, Gugliucci A. Advanced glycation endproducts and their pathogenic roles in neurological disorders. Amino Acids 2010; 42:1221-36. [DOI: 10.1007/s00726-010-0777-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Accepted: 09/03/2010] [Indexed: 01/11/2023]
|
12
|
Cruz-Sánchez FF, Gironès X, Ortega A, Alameda F, Lafuente JV. Oxidative stress in Alzheimer's disease hippocampus: a topographical study. J Neurol Sci 2010; 299:163-7. [PMID: 20863531 DOI: 10.1016/j.jns.2010.08.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 08/23/2010] [Accepted: 08/23/2010] [Indexed: 11/30/2022]
Abstract
Advanced glycation end-products (AGEs) and their receptor (RAGE) are molecules related to oxidative stress demonstrated in aging and in several pathological disorders including Alzheimer's disease (AD). Aging has been considered the main risk factor for AD. Amyloid deposits (Aβ-D) and neurofibrillary tangles (NFT) are pathological changes related to AD involving hippocampal regions. Different degrees of AD pathology have been described according to distribution of NFTs in different topographical regions of hippocampus and cerebral cortex. The hippocampus shows a selective vulnerability under several noxes especially those including hypoxia. Hypoxia in the nervous tissue induces oxidative stress. In an attempt to find out more about anatomical distribution of the oxidative stress through hippocampal regions in AD, a collection of brains were studied. Samples from deceased patients who had suffered from AD and from age-matched controls were immunohistochemically studied with AGE and RAGE antibodies according to a topographical division of the hippocampus and brain cortical regions. Results suggest that an oxidative stress pathway starts in the CA3 sector progresses to CA1 and then continues to other hippocampal and cortical areas building a pathoclitic pathway for Alzheimer's disease progression.
Collapse
Affiliation(s)
- F F Cruz-Sánchez
- Institute of Neurological and Gerontological Sciences, Faculty of Medicine, International University of Catalonia, Josep Trueta, s/n. 08195 Sant Cugat del Vallès, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
13
|
Liang YJ, Jian JH, Liu YC, Juang SJ, Shyu KG, Lai LP, Wang BW, Leu JG. Advanced glycation end products-induced apoptosis attenuated by PPARdelta activation and epigallocatechin gallate through NF-kappaB pathway in human embryonic kidney cells and human mesangial cells. Diabetes Metab Res Rev 2010; 26:406-16. [PMID: 20583309 DOI: 10.1002/dmrr.1100] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Diabetic nephropathy has attracted many researchers' attention. Because of the emerging evidence about the effects of advanced glycation end products (AGEs) and receptor of AGE (RAGE) on the progression of diabetic nephropathy, a number of different therapies to inhibit AGE or RAGE are under investigation. The purpose of the present study was to examine whether peroxisome proliferator-activated receptor delta (PPARdelta) agonist (L-165041) or epigallocatechin gallate (EGCG) alters AGE-induced pro-inflammatory gene expression and apoptosis in human embryonic kidney cells (HEK293) and human mesangial cells (HMCs). METHODS The HEK cells and HMC were separated into the following groups: 100 microg/mL AGE alone for 18 h; AGE treated with 1 microM L-165041 or 10 microM EGCG, and untreated cells. Inflammatory cytokines, nuclear factor-kappaB pathway, RAGE expression, superoxide dismutase and cell apoptosis were determined. RESULTS AGE significantly increased tumour necrosis factor-alpha (TNF-alpha), a major pro-inflammatory cytokine. The mRNA and protein expression of RAGE were up-regulated. These effects were significantly attenuated by pre-treatment with L-165041 or EGCG. AGE-induced nuclear factor-kappaB pathway activation and both cells apoptosis were also inhibited by L-165041 or EGCG. Furthermore, both L-165041 and EGCG increased superoxide dismutase levels in AGE-treated HEK cells and HMC. CONCLUSIONS This study demonstrated that PPARdelta agonist and EGCG decreased the AGE-induced kidney cell inflammation and apoptosis. This study provides important insights into the molecular mechanisms of EGCG and PPARdelta agonist in attenuation of kidney cell inflammation and may serve as a therapeutic modality to treat patients with diabetic nephropathy.
Collapse
Affiliation(s)
- Yao-Jen Liang
- Department and Institute of Life Science, Fu-Jen Catholic University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ahmed EK, Rogowska-Wrzesinska A, Roepstorff P, Bulteau AL, Friguet B. Protein modification and replicative senescence of WI-38 human embryonic fibroblasts. Aging Cell 2010; 9:252-72. [PMID: 20102351 DOI: 10.1111/j.1474-9726.2010.00555.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Oxidized proteins as well as proteins modified by the lipid peroxidation product 4-hydroxy-2-nonenal (HNE) and by glycation (AGE) have been shown to accumulate with aging in vivo and during replicative senescence in vitro. To better understand the mechanisms by which these damaged proteins build up and potentially affect cellular function during replicative senescence of WI-38 fibroblasts, proteins targeted by these modifications have been identified using a bidimensional gel electrophoresis-based proteomic approach coupled with immunodetection of HNE-, AGE-modified and carbonylated proteins. Thirty-seven proteins targeted for either one of these modifications were identified by mass spectrometry and are involved in different cellular functions such as protein quality control, energy metabolism and cytoskeleton. Almost half of the identified proteins were found to be mitochondrial, which reflects a preferential accumulation of damaged proteins within the mitochondria during cellular senescence. Accumulation of AGE-modified proteins could be explained by the senescence-associated decreased activity of glyoxalase-I, the major enzyme involved in the detoxification of the glycating agents methylglyoxal and glyoxal, in both cytosol and mitochondria. This finding suggests a role of detoxification systems in the age-related build-up of damaged proteins. Moreover, the oxidized protein repair system methionine sulfoxide reductase was more affected in the mitochondria than in the cytosol during cellular senescence. Finally, in contrast to the proteasome, the activity of which is decreased in senescent fibroblasts, the mitochondrial matrix ATP-stimulated Lon-like proteolytic activity is increased in senescent cells but does not seem to be sufficient to cope with the increased load of modified mitochondrial proteins.
Collapse
|
15
|
Muscat S, Pischetsrieder M, Maczurek A, Rothemund S, Münch G. Cytotoxicity of Maillard reaction products determined with a peptide spot library. Mol Nutr Food Res 2009; 53:1019-29. [DOI: 10.1002/mnfr.200800366] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Srikanth V, Maczurek A, Phan T, Steele M, Westcott B, Juskiw D, Münch G. Advanced glycation endproducts and their receptor RAGE in Alzheimer's disease. Neurobiol Aging 2009; 32:763-77. [PMID: 19464758 DOI: 10.1016/j.neurobiolaging.2009.04.016] [Citation(s) in RCA: 379] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 04/14/2009] [Accepted: 04/19/2009] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is the most common dementing disorder of late life. Although there might be various different triggering events in the early stages of the disease, they seem to converge on a few characteristic final pathways in the late stages, characterized by inflammation and neurodegeneration. In this review, we revisit the hypothesis that advanced glycation endproducts (AGEs) and their receptor RAGE may play an important role in disease pathogenesis. Accumulation of AGEs in cells and tissues is a normal feature of aging, but is accelerated in AD. In AD, AGEs can be detected in pathological deposits such as amyloid plaques and neurofibrillary tangles. AGEs explain many of the neuropathological and biochemical features of AD such as extensive protein crosslinking, glial induction of oxidative stress and neuronal cell death. Oxidative stress and AGEs initiate a positive feedback loop, where normal age-related changes develop into a pathophysiological cascade. RAGE and its decoy receptor soluble RAGE, may contribute to or protect against AD pathogenesis by influencing transport of β-amyloid into the brain or by manipulating inflammatory mechanisms. Targeted pharmacological interventions using AGE-inhibitors, RAGE-antagonists, RAGE-antibodies, soluble RAGE or RAGE signalling inhibitors such as membrane-permeable antioxidants may be promising therapeutic strategies to slow down the progression of AD.
Collapse
Affiliation(s)
- Velandai Srikanth
- Department of Medicine, Southern Clinical School, Monash University, Melbourne, VIC, 3800, Australia
| | | | | | | | | | | | | |
Collapse
|