1
|
Arseni D, Nonaka T, Jacobsen MH, Murzin AG, Cracco L, Peak-Chew SY, Garringer HJ, Kawakami I, Suzuki H, Onaya M, Saito Y, Murayama S, Geula C, Vidal R, Newell KL, Mesulam M, Ghetti B, Hasegawa M, Ryskeldi-Falcon B. Heteromeric amyloid filaments of ANXA11 and TDP-43 in FTLD-TDP type C. Nature 2024; 634:662-668. [PMID: 39260416 PMCID: PMC11485244 DOI: 10.1038/s41586-024-08024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Neurodegenerative diseases are characterized by the abnormal filamentous assembly of specific proteins in the central nervous system1. Human genetic studies have established a causal role for protein assembly in neurodegeneration2. However, the underlying molecular mechanisms remain largely unknown, which is limiting progress in developing clinical tools for these diseases. Recent advances in cryo-electron microscopy have enabled the structures of the protein filaments to be determined from the brains of patients1. All neurodegenerative diseases studied to date have been characterized by the self-assembly of proteins in homomeric amyloid filaments, including that of TAR DNA-binding protein 43 (TDP-43) in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) types A and B3,4. Here we used cryo-electron microscopy to determine filament structures from the brains of individuals with FTLD-TDP type C, one of the most common forms of sporadic FTLD-TDP. Unexpectedly, the structures revealed that a second protein, annexin A11 (ANXA11), co-assembles with TDP-43 in heteromeric amyloid filaments. The ordered filament fold is formed by TDP-43 residues G282/G284-N345 and ANXA11 residues L39-Y74 from their respective low-complexity domains. Regions of TDP-43 and ANXA11 that were previously implicated in protein-protein interactions form an extensive hydrophobic interface at the centre of the filament fold. Immunoblots of the filaments revealed that the majority of ANXA11 exists as an approximately 22 kDa N-terminal fragment lacking the annexin core domain. Immunohistochemistry of brain sections showed the colocalization of ANXA11 and TDP-43 in inclusions, redefining the histopathology of FTLD-TDP type C. This work establishes a central role for ANXA11 in FTLD-TDP type C. The unprecedented formation of heteromeric amyloid filaments in the human brain revises our understanding of amyloid assembly and may be of significance for the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Diana Arseni
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Takashi Nonaka
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Max H Jacobsen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Laura Cracco
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Holly J Garringer
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ito Kawakami
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hisaomi Suzuki
- Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Center, Chiba, Japan
| | - Misumoto Onaya
- Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Center, Chiba, Japan
| | - Yuko Saito
- Department of Neuropathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | |
Collapse
|
2
|
Arseni D, Nonaka T, Jacobsen MH, Murzin AG, Cracco L, Peak-Chew SY, Garringer HJ, Kawakami I, Suzuki H, Onaya M, Saito Y, Murayama S, Geula C, Vidal R, Newell KL, Mesulam M, Ghetti B, Hasegawa M, Ryskeldi-Falcon B. Heteromeric amyloid filaments of ANXA11 and TDP-43 in FTLD-TDP Type C. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600403. [PMID: 38979278 PMCID: PMC11230283 DOI: 10.1101/2024.06.25.600403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Neurodegenerative diseases are characterised by the abnormal filamentous assembly of specific proteins in the central nervous system 1 . Human genetic studies established a causal role for protein assembly in neurodegeneration 2 . However, the underlying molecular mechanisms remain largely unknown, which is limiting progress in developing clinical tools for these diseases. Recent advances in electron cryo-microscopy (cryo-EM) have enabled the structures of the protein filaments to be determined from patient brains 1 . All diseases studied to date have been characterised by the self-assembly of a single intracellular protein in homomeric amyloid filaments, including that of TAR DNA-binding protein 43 (TDP-43) in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) Types A and B 3,4 . Here, we used cryo-EM to determine filament structures from the brains of individuals with FTLD-TDP Type C, one of the most common forms of sporadic FTLD-TDP. Unexpectedly, the structures revealed that a second protein, annexin A11 (ANXA11), co-assembles with TDP-43 in heteromeric amyloid filaments. The ordered filament fold is formed by TDP-43 residues G282/284-N345 and ANXA11 residues L39-L74 from their respective low-complexity domains (LCDs). Regions of TDP-43 and ANXA11 previously implicated in protein-protein interactions form an extensive hydrophobic interface at the centre of the filament fold. Immunoblots of the filaments revealed that the majority of ANXA11 exists as a ∼22 kDa N-terminal fragment (NTF) lacking the annexin core domain. Immunohistochemistry of brain sections confirmed the co-localisation of ANXA11 and TDP-43 in inclusions, redefining the histopathology of FTLD-TDP Type C. This work establishes a central role for ANXA11 in FTLD-TDP Type C. The unprecedented formation of heteromeric amyloid filaments in human brain revises our understanding of amyloid assembly and may be of significance for the pathogenesis of neurodegenerative diseases.
Collapse
|
3
|
Cascella R, Banchelli M, Abolghasem Ghadami S, Ami D, Gagliani MC, Bigi A, Staderini T, Tampellini D, Cortese K, Cecchi C, Natalello A, Adibi H, Matteini P, Chiti F. An in situ and in vitro investigation of cytoplasmic TDP-43 inclusions reveals the absence of a clear amyloid signature. Ann Med 2023; 55:72-88. [PMID: 36495262 PMCID: PMC9746631 DOI: 10.1080/07853890.2022.2148734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 11/12/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction: Several neurodegenerative conditions are associated with a common histopathology within neurons of the central nervous system, consisting of the deposition of cytoplasmic inclusions of TAR DNA-binding protein 43 (TDP-43). Such inclusions have variably been described as morphologically and molecularly ordered aggregates having amyloid properties, as filaments without the cross-β-structure and dye binding specific for amyloid, or as amorphous aggregates with no defined structure and fibrillar morphology.Aims and Methods: Here we have expressed human full-length TDP-43 in neuroblastoma x spinal cord 34 (NSC-34) cells to investigate the morphological, structural, and tinctorial properties of TDP-43 inclusions in situ. We have used last-generation amyloid diagnostic probes able to cross the cell membrane and detect amyloid in the cytoplasm and have adopted Raman and Fourier transform infrared microspectroscopies to study in situ the secondary structure of the TDP-43 protein in the inclusions. We have then used transmission electron microscopy to study the morphology of the TDP-43 inclusions.Results: The results show the absence of amyloid dye binding, the lack of an enrichment of cross-β structure in the inclusions, and of a fibrillar texture in the round inclusions. The aggregates formed in vitro from the purified protein under conditions in which it is initially native also lack all these characteristics, ruling out a clear amyloid-like signature.Conclusions: These findings indicate a low propensity of TDP-43 to form amyloid fibrils and even non-amyloid filaments, under conditions in which the protein is initially native and undergoes its typical nucleus-to-cell mislocalization. It cannot be excluded that filaments emerge on the long time scale from such inclusions, but the high propensity of the protein to form initially other types of inclusions appear to be an essential characteristic of TDP-43 proteinopathies.KEY MESSAGESCytoplasmic inclusions of TDP-43 formed in NSC-34 cells do not stain with amyloid-diagnostic dyes, are not enriched with cross-β structure, and do not show a fibrillar morphology.TDP-43 assemblies formed in vitro from pure TDP-43 do not have any hallmarks of amyloid.
Collapse
Affiliation(s)
- Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Martina Banchelli
- Institute of Applied Physics “Nello Carrara”, National Research Council, Sesto Fiorentino, Italy
| | | | - Diletta Ami
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy
- Milan Center of Neuroscience (NeuroMI), Milan, Italy
| | - Maria Cristina Gagliani
- Cellular Electron Microscopy Laboratory, Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Tommaso Staderini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Davide Tampellini
- U 1195 INSERM-Université Paris-Saclay, Paris, France
- Institut Professeur Baulieu, Paris, France
| | - Katia Cortese
- Cellular Electron Microscopy Laboratory, Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Antonino Natalello
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy
- Milan Center of Neuroscience (NeuroMI), Milan, Italy
| | - Hadi Adibi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Paolo Matteini
- Institute of Applied Physics “Nello Carrara”, National Research Council, Sesto Fiorentino, Italy
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| |
Collapse
|
4
|
Arseni D, Chen R, Murzin AG, Peak-Chew SY, Garringer HJ, Newell KL, Kametani F, Robinson AC, Vidal R, Ghetti B, Hasegawa M, Ryskeldi-Falcon B. TDP-43 forms amyloid filaments with a distinct fold in type A FTLD-TDP. Nature 2023; 620:898-903. [PMID: 37532939 PMCID: PMC10447236 DOI: 10.1038/s41586-023-06405-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
The abnormal assembly of TAR DNA-binding protein 43 (TDP-43) in neuronal and glial cells characterizes nearly all cases of amyotrophic lateral sclerosis (ALS) and around half of cases of frontotemporal lobar degeneration (FTLD)1,2. A causal role for TDP-43 assembly in neurodegeneration is evidenced by dominantly inherited missense mutations in TARDBP, the gene encoding TDP-43, that promote assembly and give rise to ALS and FTLD3-7. At least four types (A-D) of FTLD with TDP-43 pathology (FTLD-TDP) are defined by distinct brain distributions of assembled TDP-43 and are associated with different clinical presentations of frontotemporal dementia8. We previously showed, using cryo-electron microscopy, that TDP-43 assembles into amyloid filaments in ALS and type B FTLD-TDP9. However, the structures of assembled TDP-43 in FTLD without ALS remained unknown. Here we report the cryo-electron microscopy structures of assembled TDP-43 from the brains of three individuals with the most common type of FTLD-TDP, type A. TDP-43 formed amyloid filaments with a new fold that was the same across individuals, indicating that this fold may characterize type A FTLD-TDP. The fold resembles a chevron badge and is unlike the double-spiral-shaped fold of ALS and type B FTLD-TDP, establishing that distinct filament folds of TDP-43 characterize different neurodegenerative conditions. The structures, in combination with mass spectrometry, led to the identification of two new post-translational modifications of assembled TDP-43, citrullination and monomethylation of R293, and indicate that they may facilitate filament formation and observed structural variation in individual filaments. The structures of TDP-43 filaments from type A FTLD-TDP will guide mechanistic studies of TDP-43 assembly, as well as the development of diagnostic and therapeutic compounds for TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Diana Arseni
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Renren Chen
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Holly J Garringer
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fuyuki Kametani
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Andrew C Robinson
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Salford Royal Hospital, Salford, UK
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | |
Collapse
|
5
|
Doke AA, Jha SK. Shapeshifter TDP-43: Molecular mechanism of structural polymorphism, aggregation, phase separation and their modulators. Biophys Chem 2023; 295:106972. [PMID: 36812677 DOI: 10.1016/j.bpc.2023.106972] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
TDP-43 is a nucleic acid-binding protein that performs physiologically essential functions and is known to undergo phase separation and aggregation during stress. Initial observations have shown that TDP-43 forms heterogeneous assemblies, including monomer, dimer, oligomers, aggregates, phase-separated assemblies, etc. However, the significance of each assembly of TDP-43 concerning its function, phase separation, and aggregation is poorly known. Furthermore, how different assemblies of TDP-43 are related to each other is unclear. In this review, we focus on the various assemblies of TDP-43 and discuss the plausible origin of the structural heterogeneity of TDP-43. TDP-43 is involved in multiple physiological processes like phase separation, aggregation, prion-like seeding, and performing physiological functions. However, the molecular mechanism behind the physiological process performed by TDP-43 is not well understood. The current review discusses the plausible molecular mechanism of phase separation, aggregation, and prion-like propagation of TDP-43.
Collapse
Affiliation(s)
- Abhilasha A Doke
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Staderini T, Bigi A, Mongiello D, Cecchi C, Chiti F. Biophysical characterization of full-length TAR DNA-binding protein (TDP-43) phase separation. Protein Sci 2022; 31:e4509. [PMID: 36371546 PMCID: PMC9703588 DOI: 10.1002/pro.4509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/17/2022] [Accepted: 11/05/2022] [Indexed: 11/15/2022]
Abstract
Amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions are associated with deposition of cytosolic inclusion bodies of TAR DNA-binding protein 43 (TDP-43) in brain and motor neurons. We induced phase separation of purified full-length TDP-43 devoid of large tags using a solution-jump method, and monitored it with an array of biophysical techniques. The tetramethylrhodamine-5-maleimide- or Alexa488-labeled protein formed rapidly (<1 min) apparently round, homogeneous and 0.5-1.0 μm wide assemblies, when imaged using confocal fluorescence, bright-field, and stimulated emission depletion microscopy. The assemblies, however, had limited internal diffusion, as assessed with fluorescence recovery after photobleaching, and did not coalesce, but rather clustered into irregular bunches, unlike those formed by the C-terminal domain. They were enriched with α-helical structure, with minor contributions of β-sheet/random structure, had a red-shifted tryptophan fluorescence and did not bind thioflavin T. By monitoring with turbidimetry both the formation of the spherical species and their further clustering under different experimental conditions, we carried out a multiparametric analysis of the two phenomena. In particular, both processes were found to be promoted by high protein concentrations, salts, crowding agents, weakly by reducing agents, as the pH approached a value of 6.0 from either side (corresponding to the TDP-43 isoionic point), and as the temperature approached a value of 31°C from either side. Important differences were found with respect to the TDP-43 C-terminal domain. Our multiparametric results also provide explanations to some of the solubility data obtained on full-length TDP-43 that were difficult to explain following the multiparametric analysis acquired on the C-terminal domain.
Collapse
Affiliation(s)
- Tommaso Staderini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
| | - Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
| | - Daniele Mongiello
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
| |
Collapse
|
7
|
Carlos AF, Josephs KA. Frontotemporal lobar degeneration with TAR DNA-binding protein 43 (TDP-43): its journey of more than 100 years. J Neurol 2022; 269:4030-4054. [PMID: 35320398 PMCID: PMC10184567 DOI: 10.1007/s00415-022-11073-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) with TDP-43-immunoreactive inclusions (FTLD-TDP) is a neurodegenerative disease associated with clinical, genetic, and neuropathological heterogeneity. An association between TDP-43, FTLD and amyotrophic lateral sclerosis (ALS) was first described in 2006. However, a century before immunohistochemistry existed, atypical dementias displaying behavioral, language and/or pyramidal symptoms and showing non-specific FTLD with superficial cortical neuronal loss, gliosis and spongiosis were often confused with Alzheimer's or Pick's disease. Initially this pathology was termed dementia lacking distinctive histopathology (DLDH), but this was later renamed when ubiquitinated inclusions originally found in ALS were also discovered in (DLDH), thus warranting a recategorization as FTLD-U (ubiquitin). Finally, the ubiquitinated protein was identified as TDP-43, which aggregates in cortical, subcortical, limbic and brainstem neurons and glial cells. The topography and morphology of TDP-43 inclusions associate with specific clinical syndromes and genetic mutations which implies different pathomechanisms that are yet to be discovered; hence, the TDP-43 journey has actually just begun. In this review, we describe how FTLD-TDP was established and defined clinically and neuropathologically throughout the past century.
Collapse
Affiliation(s)
- Arenn F Carlos
- Department of Neurology, Mayo Clinic, 200 1st St S.W, Rochester, MN, 55905, USA
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, 200 1st St S.W, Rochester, MN, 55905, USA.
| |
Collapse
|
8
|
Cascella R, Bigi A, Riffert DG, Gagliani MC, Ermini E, Moretti M, Cortese K, Cecchi C, Chiti F. A quantitative biology approach correlates neuronal toxicity with the largest inclusions of TDP-43. SCIENCE ADVANCES 2022; 8:eabm6376. [PMID: 35895809 PMCID: PMC9328675 DOI: 10.1126/sciadv.abm6376] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A number of neurodegenerative conditions are associated with the formation of cytosolic inclusions of TDP-43 within neurons. We expressed full-length TDP-43 in a motoneuron/neuroblastoma hybrid cell line (NSC-34) and exploited the high-resolution power of stimulated emission depletion microscopy to monitor the changes of nuclear and cytoplasmic TDP-43 levels and the formation of various size classes of cytoplasmic TDP-43 aggregates with time. Concomitantly, we monitored oxidative stress and mitochondrial impairment using the MitoSOX and MTT reduction assays, respectively. Using a quantitative biology approach, we attributed neuronal dysfunction associated with cytoplasmic deposition component to the formation of the largest inclusions, independently of stress granules. This is in contrast to other neurodegenerative diseases where toxicity is attributed to small oligomers. Using specific inhibitors, markers, and electron microscopy, the proteasome and autophagy were found to target mainly the largest deleterious inclusions, but their efficiency soon decreases without full recovery of neuronal viability.
Collapse
Affiliation(s)
- Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Dylan Giorgino Riffert
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Maria Cristina Gagliani
- Department of Experimental Medicine, Cellular Electron Microscopy Laboratory, University of Genova, 16132 Genova, Italy
| | - Emilio Ermini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Matteo Moretti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Katia Cortese
- Department of Experimental Medicine, Cellular Electron Microscopy Laboratory, University of Genova, 16132 Genova, Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
- Corresponding author. (C.C.); (F.C.)
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
- Corresponding author. (C.C.); (F.C.)
| |
Collapse
|
9
|
Structure-Based Analysis of Protein Cluster Size for Super-Resolution Microscopy in the Nervous System. Biomedicines 2022; 10:biomedicines10020295. [PMID: 35203503 PMCID: PMC8869149 DOI: 10.3390/biomedicines10020295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
To overcome the diffraction limit and resolve target structures in greater detail, far-field super-resolution techniques such as stochastic optical reconstruction microscopy (STORM) have been developed, and different STORM algorithms have been developed to deal with the various problems that arise. In particular, the effect of the local structure is an important issue. For objects with closely correlated distributions, simple Gaussian-based localization algorithms often used in STORM imaging misinterpret overlapping point spread functions (PSFs) as one, which limits the ability of super-resolution imaging to resolve nanoscale local structures and leads to inaccurate length measurements. The STORM super-resolution images of biological specimens from the cluster-forming proteins in the nervous system were reconstructed for localization-based analysis. Generally, the localization of each fluorophore was determined by two-dimensional Gaussian function fitting. Further, the physical shape of the cluster structure information was incorporated into the size parameter of the localization structure analysis in order to generate structure-based fitting algorithms. In the present study, we proposed a novel, structure-based, super-resolution image analysis method: structure-based analysis (SBA), which combines a structural function and a super-resolution localization algorithm. Using SBA, we estimated the size of fluorescent beads, inclusion proteins, and subtle synaptic structures in both wide-field and STORM images. The results show that SBA has a comparable and often superior performance to the commonly used full width at half maximum (FWHM) parameter. We demonstrated that SBA is able to estimate molecular cluster sizes in far-field super-resolution STORM images, and that SBA was comparable and often superior to FWHM. We also certified that SBA provides size estimations that corroborate previously published electron microscopy data.
Collapse
|
10
|
Ma S, Liu H, Wang J, Wang L, Xi Y, Liu Y, Xu Q, Hu J, Han C, Bai L, Li L, Wang J. Transcriptome Analysis Reveals Genes Associated With Sexual Dichromatism of Head Feather Color in Mallard. Front Genet 2021; 12:627974. [PMID: 34956302 PMCID: PMC8692775 DOI: 10.3389/fgene.2021.627974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Sexual dimorphism of feather color is typical in mallards, in which drakes exhibit green head feathers, while females show dull head feather color. We showed that more melanosomes deposited in the males' head's feather barbules than females and further form a two-dimensional hexagonal lattice, which conferred the green feather coloration of drakes. Additionally, transcriptome analysis revealed that some essential melanin biosynthesis genes were highly expressed in feather follicles during the development of green feathers, contributing to melanin deposition. We further identified 18 candidate differentially expressed genes, which may affect the sharp color differences between the males' head feathers, back feathers, and the females' head feathers. TYR and TYRP1 genes are associated with melanin biosynthesis directly. Their expressions in the males' head feather follicles were significantly higher than those in the back feather follicles and females' head feather follicles. Most clearly, the expression of TYRP1 was 256 and 32 times higher in the head follicles of males than in those of the female head and the male back, respectively. Hence, TYR and TYRP1 are probably the most critical candidate genes in DEGs. They may affect the sexual dimorphism of head feather color by cis-regulation of some transcription factors and the Z-chromosome dosage effect.
Collapse
Affiliation(s)
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Capitini C, Fani G, Vivoli Vega M, Penco A, Canale C, Cabrita LD, Calamai M, Christodoulou J, Relini A, Chiti F. Full-length TDP-43 and its C-terminal domain form filaments in vitro having non-amyloid properties. Amyloid 2021; 28:56-65. [PMID: 33026249 PMCID: PMC7613275 DOI: 10.1080/13506129.2020.1826425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Accumulation of ubiquitin-positive, tau- and α-synuclein-negative intracellular inclusions of TDP-43 in the central nervous system represents the major hallmark correlated to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). Such inclusions have variably been described as amorphous aggregates or more structured deposits having amyloid properties. Here we have purified full-length TDP-43 (FL TDP-43) and its C-terminal domain (Ct TDP-43) to investigate the morphological, structural and tinctorial features of aggregates formed in vitro by them at pH 7.4 and 37 °C. AFM images indicate that both protein variants show a tendency to form filaments. Moreover, we show that both FL TDP-43 and Ct TDP-43 filaments possess a largely disordered secondary structure, as ascertained by far-UV circular dichroism and Fourier transform infra-red spectroscopy, do not bind Congo red and induce a very weak increase of thioflavin T fluorescence, indicating the absence of a clear amyloid-like signature.
Collapse
Affiliation(s)
- Claudia Capitini
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.,European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy
| | - Giulia Fani
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Mirella Vivoli Vega
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Amanda Penco
- Department of Physics, University of Genoa, Genoa, Italy
| | - Claudio Canale
- Department of Physics, University of Genoa, Genoa, Italy
| | - Lisa D Cabrita
- Institute of Structural and Molecular Biology, UCL and Birkbeck College London, London, UK
| | - Martino Calamai
- European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy.,National Institute of Optics, National Research Council, Sesto Fiorentino, Italy
| | - John Christodoulou
- Institute of Structural and Molecular Biology, UCL and Birkbeck College London, London, UK
| | | | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
12
|
Ferrer I, Andrés-Benito P, Carmona M, Assialioui A, Povedano M. TDP-43 Vasculopathy in the Spinal Cord in Sporadic Amyotrophic Lateral Sclerosis (sALS) and Frontal Cortex in sALS/FTLD-TDP. J Neuropathol Exp Neurol 2021; 80:229-239. [PMID: 33421065 PMCID: PMC7899266 DOI: 10.1093/jnen/nlaa162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sporadic amyotrophic lateral sclerosis (sALS) and FTLD-TDP are neurodegenerative diseases within the spectrum of TDP-43 proteinopathies. Since abnormal blood vessels and altered blood-brain barrier have been described in sALS, we wanted to know whether TDP-43 pathology also occurs in blood vessels in sALS/FTLD-TDP. TDP-43 deposits were identified in association with small blood vessels of the spinal cord in 7 of 14 cases of sALS and in small blood vessels of frontal cortex area 8 in 6 of 11 FTLD-TDP and sALS cases, one of them carrying a GRN mutation. This was achieved using single and double-labeling immunohistochemistry, and double-labeling immunofluorescence and confocal microscopy. In the sALS spinal cord, P-TDP43 Ser403-404 deposits were elongated and parallel to the lumen, whereas others were granular, seldom forming clusters. In the frontal cortex, the inclusions were granular, or elongated and parallel to the lumen, or forming small globules within or in the external surface of the blood vessel wall. Other deposits were localized in the perivascular space. The present findings are in line with previous observations of TDP-43 vasculopathy in a subset of FTLD-TDP cases and identify this pathology in the spinal cord and frontal cortex in a subset of cases within the sALS/FTLD-TDP spectrum.
Collapse
Affiliation(s)
- Isidro Ferrer
- From the Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Neuropathology, Pathologic Anatomy Service, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Pol Andrés-Benito
- From the Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Margarita Carmona
- From the Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Abdelilah Assialioui
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mónica Povedano
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain.,International Initiative for Treatment and Research Initiative to Cure ALS (TRICALS), Utrecht, The Netherlands
| |
Collapse
|
13
|
McAlary L, Chew YL, Lum JS, Geraghty NJ, Yerbury JJ, Cashman NR. Amyotrophic Lateral Sclerosis: Proteins, Proteostasis, Prions, and Promises. Front Cell Neurosci 2020; 14:581907. [PMID: 33328890 PMCID: PMC7671971 DOI: 10.3389/fncel.2020.581907] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of the motor neurons that innervate muscle, resulting in gradual paralysis and culminating in the inability to breathe or swallow. This neuronal degeneration occurs in a spatiotemporal manner from a point of onset in the central nervous system (CNS), suggesting that there is a molecule that spreads from cell-to-cell. There is strong evidence that the onset and progression of ALS pathology is a consequence of protein misfolding and aggregation. In line with this, a hallmark pathology of ALS is protein deposition and inclusion formation within motor neurons and surrounding glia of the proteins TAR DNA-binding protein 43, superoxide dismutase-1, or fused in sarcoma. Collectively, the observed protein aggregation, in conjunction with the spatiotemporal spread of symptoms, strongly suggests a prion-like propagation of protein aggregation occurs in ALS. In this review, we discuss the role of protein aggregation in ALS concerning protein homeostasis (proteostasis) mechanisms and prion-like propagation. Furthermore, we examine the experimental models used to investigate these processes, including in vitro assays, cultured cells, invertebrate models, and murine models. Finally, we evaluate the therapeutics that may best prevent the onset or spread of pathology in ALS and discuss what lies on the horizon for treating this currently incurable disease.
Collapse
Affiliation(s)
- Luke McAlary
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Yee Lian Chew
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Jeremy Stephen Lum
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Nicholas John Geraghty
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Justin John Yerbury
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Neil R. Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Imaging of post-mortem human brain tissue using electron and X-ray microscopy. Curr Opin Struct Biol 2019; 58:138-148. [PMID: 31349127 DOI: 10.1016/j.sbi.2019.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/26/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
Abstract
Electron microscopy imaging of post-mortem human brain (PMHB) comes with a unique set of challenges due to numerous parameters beyond the researcher's control. Nevertheless, the wealth of information provided by the ultrastructural analysis of PMHB is proving crucial in our understanding of neurodegenerative diseases. This review highlights the importance of such studies and covers challenges, limitations and recent developments in the application of current EM imaging, including cryo-ET and correlative hybrid techniques, on PMHB.
Collapse
|
15
|
Terry C, Wadsworth JDF. Recent Advances in Understanding Mammalian Prion Structure: A Mini Review. Front Mol Neurosci 2019; 12:169. [PMID: 31338021 PMCID: PMC6629788 DOI: 10.3389/fnmol.2019.00169] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022] Open
Abstract
Prions are lethal pathogens, which cause fatal neurodegenerative diseases in mammals. They are unique infectious agents and are composed of self-propagating multi-chain assemblies of misfolded host-encoded prion protein (PrP). Understanding prion structure is fundamental to understanding prion disease pathogenesis however to date, the high-resolution structure of authentic ex vivo infectious prions remains unknown. Advances in determining prion structure have been severely impeded by the difficulty in recovering relatively homogeneous prion particles from infected brain and definitively associating infectivity with the PrP assembly state. Recently, however, images of highly infectious ex vivo PrP rods that produce prion-strain specific disease phenotypes in mice have been obtained using cryo-electron microscopy and atomic force microscopy. These images have provided the most detailed description of ex vivo mammalian prions reported to date and have established that prions isolated from multiple strains have a common hierarchical structure. Misfolded PrP is assembled into 20 nm wide rods containing two fibers, each with double helical repeating substructure, separated by a characteristic central gap 8–10 nm in width. Irregularly structured material with adhesive properties distinct to that of the fibers is present within the central gap of the rod. Prions are clearly distinguishable from non-infectious recombinant PrP fibrils generated in vitro and from all other propagating protein structures so far described in other neurodegenerative diseases. The basic architecture of mammalian prions appears to be exceptional and fundamental to their lethal pathogenicity.
Collapse
Affiliation(s)
- Cassandra Terry
- Molecular Systems for Health Research Group, School of Human Sciences, London Metropolitan University, London, United Kingdom
| | - Jonathan D F Wadsworth
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, University College London, London, United Kingdom
| |
Collapse
|
16
|
RNA recognition motifs of disease-linked RNA-binding proteins contribute to amyloid formation. Sci Rep 2019; 9:6171. [PMID: 30992467 PMCID: PMC6467989 DOI: 10.1038/s41598-019-42367-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
Aberrant expression, dysfunction and particularly aggregation of a group of RNA-binding proteins, including TDP-43, FUS and RBM45, are associated with neurological disorders. These three disease-linked RNA-binding proteins all contain at least one RNA recognition motif (RRM). However, it is not clear if these RRMs contribute to their aggregation-prone character. Here, we compare the biophysical and fibril formation properties of five RRMs from disease-linked RNA-binding proteins and five RRMs from non-disease-associated proteins to determine if disease-linked RRMs share specific features making them prone to self-assembly. We found that most of the disease-linked RRMs exhibit reversible thermal unfolding and refolding, and have a slightly lower average thermal melting point compared to that of normal RRMs. The full domain of TDP-43 RRM1 and FUS RRM, as well as the β-peptides from these two RRMs, could self-assemble into fibril-like aggregates which are amyloids of parallel β-sheets as verified by X-ray diffraction and FT-IR spectroscopy. Our results suggest that some disease-linked RRMs indeed play important roles in amyloid formation and shed light on why RNA-binding proteins with RRMs are frequently identified in the cellular inclusions of neurodegenerative diseases.
Collapse
|
17
|
McGurk L, Gomes E, Guo L, Shorter J, Bonini NM. Poly(ADP-ribose) Engages the TDP-43 Nuclear-Localization Sequence to Regulate Granulo-Filamentous Aggregation. Biochemistry 2018; 57:6923-6926. [PMID: 30540446 PMCID: PMC6752045 DOI: 10.1021/acs.biochem.8b00910] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
TAR DNA-binding protein of 43 kDa (TDP-43) forms granulo-filamentous aggregates in affected brain regions of >95% of patients with ALS and ∼50% of patients with frontotemporal degeneration (FTD). Furthermore, in disease, TDP-43 becomes N-terminally truncated resulting in protein deposits that are mainly composed of the C-terminal prion-like domain (PrLD). The PrLD is inherently aggregation-prone and is hypothesized to drive protein aggregation of TDP-43 in disease. Here, we establish that the N-terminal region of the protein is critical for rapid TDP-43 granulo-filamentous aggregation. We show that the biopolymer poly(ADP-ribose), or PAR, inhibits granulo-filamentous aggregation of TDP-43 by engaging PAR-binding motifs (PBMs) embedded in the TDP-43 nuclear-localization sequence. We demonstrate that progressive N-terminal truncation of TDP-43 can decelerate aggregation kinetics and promote formation of thread-like filaments. Thus, the N-terminal region and the PBMs of TDP-43 promote rapid granulo-filamentous aggregation and antagonize formation of thread-like fibrils. These findings illustrate the complexity of TDP-43 aggregation trajectories.
Collapse
Affiliation(s)
- Leeanne McGurk
- Department of Biology , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Edward Gomes
- Department of Biochemistry and Biophysics , Perelman School of Medicine at the University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Lin Guo
- Department of Biochemistry and Biophysics , Perelman School of Medicine at the University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - James Shorter
- Department of Biochemistry and Biophysics , Perelman School of Medicine at the University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Nancy M Bonini
- Department of Biology , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
18
|
Zacco E, Martin SR, Thorogate R, Pastore A. The RNA-Recognition Motifs of TAR DNA-Binding Protein 43 May Play a Role in the Aberrant Self-Assembly of the Protein. Front Mol Neurosci 2018; 11:372. [PMID: 30356856 PMCID: PMC6190850 DOI: 10.3389/fnmol.2018.00372] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/20/2018] [Indexed: 12/12/2022] Open
Abstract
The TAR DNA-binding protein 43 (TDP-43) is a nucleic acid-binding protein implicated in gene regulation and RNA processing and shuffling. It is a ribonuclear protein that carries out most of its functions by binding specific nucleic acid sequences with its two RNA-recognition motifs, RRM1 and RRM2. TDP-43 has been identified in toxic cytosolic inclusions in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). The unstructured C-terminus has prion-like behavior and has been considered the driver of the aberrant self-assembly of TDP-43. In this work, we set out to test the hypothesis that the RNA-binding domains could also play a role in protein aggregation. This knowledge could be of important value for understanding TDP-43 aberrant, disease-leading behavior and, in the future, inform the design of small molecules that could prevent or slow down protein aggregation by exploiting the RNA-binding properties of the protein. We investigated the behavior of the two tandem RRM domains separately and linked together and studied their self-assembly properties and RNA-binding ability with a number of biophysical techniques. The picture that emerges from our study suggests that this region of the protein plays an important and so far unexplored role in the aggregation of this protein.
Collapse
Affiliation(s)
- Elsa Zacco
- UK Dementia Research Institute, King's College London, London, United Kingdom.,The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | - Richard Thorogate
- London Centre for Nanotechnology, Faculty of Mathematical and Physical Sciences, University College London, London, United Kingdom
| | - Annalisa Pastore
- UK Dementia Research Institute, King's College London, London, United Kingdom.,The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
19
|
Stavenga DG, van der Kooi CJ, Wilts BD. Structural coloured feathers of mallards act by simple multilayer photonics. J R Soc Interface 2018; 14:rsif.2017.0407. [PMID: 28768883 DOI: 10.1098/rsif.2017.0407] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/07/2017] [Indexed: 11/12/2022] Open
Abstract
The blue colours of the speculum of the mallard (Anas platyrhynchos), both male and female, and the green head feathers of the male arise from light interacting with stacks of melanosomes residing in the feather barbules. Here, we show that the iridescent colours can be quantitatively explained with an optical multilayer model by using a position-dependent effective refractive index, which results from the varying ratio of melanin and keratin. Reflectance spectra obtained by multilayer modelling and three-dimensional finite-difference time-domain calculations were virtually identical. The spectral properties of the barbules' photonic structures are sensitive to variations in the multilayer period and the cortex thickness, but they are surprisingly robust to variations in the spatial parameters of the barbules' melanosome stacks. The blue and green reflectance spectra of the structural-coloured feathers correspond with the sensitivity spectra of the short- and middle-wavelength-sensitive photoreceptors, indicating their biological significance for intraspecific signalling.
Collapse
Affiliation(s)
- Doekele G Stavenga
- Computational Physics, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Casper J van der Kooi
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| |
Collapse
|
20
|
de Oliveira GA, Silva JL. The push-and-pull hypothesis in protein unfolding, misfolding and aggregation. Biophys Chem 2017; 231:20-26. [DOI: 10.1016/j.bpc.2017.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/17/2023]
|
21
|
Mann DMA, Snowden JS. Frontotemporal lobar degeneration: Pathogenesis, pathology and pathways to phenotype. Brain Pathol 2017; 27:723-736. [PMID: 28100023 DOI: 10.1111/bpa.12486] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal Lobar Degeneration (FTLD) is a clinically, pathologically and genetically heterogeneous group of disorders that affect principally the frontal and temporal lobes of the brain. There are three major associated clinical syndromes, behavioral variant frontotemporal dementia (bvFTD), semantic dementia (SD) and progressive non-fluent aphasia (PNFA); three principal histologies, involving tau, TDP-43 and FUS proteins; and mutations in three major genes, MAPT, GRN and C9orf72, along with several other less common gene mutations. All three clinical syndromes can exist separately or in combination with Amyotrophic Lateral Sclerosis (ALS). SD is exclusively a TDP-43 proteinopathy, and PNFA may be so, with both showing tight clinical, histological and genetic inter-relationships. bvFTD is more of a challenge with overlapping histological and genetic features, involvement of any of the three aggregating proteins, and changes in any of the three major genes. However, when ALS is present, all cases show a clear histological phenotype with TDP-43 aggregated proteins, and familial forms are associated with expansions in C9orf72. TDP-43 and FUS are nuclear carrier proteins involved in the regulation of RNA metabolism, whereas tau protein - the product of MAPT - is responsible for the assembly/disassembly of microtubules, which are vital for intracellular transport. Mutations in TDP-43 and FUS genes are linked to clinical ALS rather than FTLD (with or without ALS), suggesting that clinical ALS may be a disorder of RNA metabolism. Conversely, the protein products of GRN and C9orf72, along with those of the other minor genes, appear to form part of the cellular protein degradation machinery. It is possible therefore that FTLD is a reflection of dysfunction within lysosomal/proteasomal systems resulting in failure to remove potentially neurotoxic (TDP-43 and tau) aggregates, which ultimately overwhelm capacity to function. Spread of aggregates along distinct pathways may account for the different clinical phenotypes, and patterns of progression of disease.
Collapse
Affiliation(s)
- David M A Mann
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Medical and Human Sciences, University of Manchester, Salford Royal Hospital, Salford, M6 8HD, UK
| | - Julie S Snowden
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Medical and Human Sciences, University of Manchester, Salford Royal Hospital, Salford, M6 8HD, UK.,Cerebral Function Unit, Greater Manchester Neurosciences Centre, Salford Royal Hospital, Stott Lane, Salford, M6 8HD, UK
| |
Collapse
|
22
|
Mompeán M, Baralle M, Buratti E, Laurents DV. An Amyloid-Like Pathological Conformation of TDP-43 Is Stabilized by Hypercooperative Hydrogen Bonds. Front Mol Neurosci 2016; 9:125. [PMID: 27909398 PMCID: PMC5112254 DOI: 10.3389/fnmol.2016.00125] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/04/2016] [Indexed: 12/14/2022] Open
Abstract
TDP-43 is an essential RNA-binding protein forming aggregates in almost all cases of sporadic amyotrophic lateral sclerosis (ALS) and many cases of frontotemporal lobar dementia (FTLD) and other neurodegenerative diseases. TDP-43 consists of a folded N-terminal domain with a singular structure, two RRM RNA-binding domains, and a long disordered C-terminal region which plays roles in functional RNA regulatory assemblies as well as pernicious aggregation. Evidence from pathological mutations and seeding experiments strongly suggest that TDP-43 aggregates are pathologically relevant through toxic gain-of-harmful-function and/or harmful loss-of-native-function mechanisms. Recent, but not early, microscopy studies and the ability of TDP-43 aggregates to resist harsh treatment and to seed new pathological aggregates in vitro and in cells strongly suggest that TDP-43 aggregates have a self-templating, amyloid-like structure. Based on the importance of the Gln/Asn-rich 341–367 residue segment for efficient aggregation of endogenous TDP-43 when presented as a 12X-repeat and extensive spectroscopic and computational experiments, we recently proposed that this segment adopts a beta-hairpin structure that assembles in a parallel with a beta-turn configuration to form an amyloid-like structure. Here, we propose that this conformer is stabilized by an especially strong class of hypercooperative hydrogen bonding unique to Gln and Asn sidechains. The clinical existence of this conformer is supported by very recent LC-MS/MS characterization of TDP-43 from ex vivo aggregates, which show that residues 341–367 were protected in vivo from Ser phosphorylation, Gln/Asn deamidation and Met oxidation. Its distinct pattern of SDS-PAGE bands allows us to link this conformer to the exceptionally stable seed of the Type A TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Miguel Mompeán
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain
| | - Marco Baralle
- International Centre for Genetic Engineering and Biotechnology (ICGEB) Trieste, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB) Trieste, Italy
| | - Douglas V Laurents
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain
| |
Collapse
|
23
|
Guerrero EN, Wang H, Mitra J, Hegde PM, Stowell SE, Liachko NF, Kraemer BC, Garruto RM, Rao KS, Hegde ML. TDP-43/FUS in motor neuron disease: Complexity and challenges. Prog Neurobiol 2016; 145-146:78-97. [PMID: 27693252 PMCID: PMC5101148 DOI: 10.1016/j.pneurobio.2016.09.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/19/2016] [Accepted: 09/20/2016] [Indexed: 01/05/2023]
Abstract
Amyotrophic lateral sclerosis (ALS), a common motor neuron disease affecting two per 100,000 people worldwide, encompasses at least five distinct pathological subtypes, including, ALS-SOD1, ALS-C9orf72, ALS-TDP-43, ALS-FUS and Guam-ALS. The etiology of a major subset of ALS involves toxicity of the TAR DNA-binding protein-43 (TDP-43). A second RNA/DNA binding protein, fused in sarcoma/translocated in liposarcoma (FUS/TLS) has been subsequently associated with about 1% of ALS patients. While mutations in TDP-43 and FUS have been linked to ALS, the key contributing molecular mechanism(s) leading to cell death are still unclear. One unique feature of TDP-43 and FUS pathogenesis in ALS is their nuclear clearance and simultaneous cytoplasmic aggregation in affected motor neurons. Since the discoveries in the last decade implicating TDP-43 and FUS toxicity in ALS, a majority of studies have focused on their cytoplasmic aggregation and disruption of their RNA-binding functions. However, TDP-43 and FUS also bind to DNA, although the significance of their DNA binding in disease-affected neurons has been less investigated. A recent observation of accumulated genomic damage in TDP-43 and FUS-linked ALS and association of FUS with neuronal DNA damage repair pathways indicate a possible role of deregulated DNA binding function of TDP-43 and FUS in ALS. In this review, we discuss the different ALS disease subtypes, crosstalk of etiopathologies in disease progression, available animal models and their limitations, and recent advances in understanding the specific involvement of RNA/DNA binding proteins, TDP-43 and FUS, in motor neuron diseases.
Collapse
Affiliation(s)
- Erika N. Guerrero
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
- Centre for Neuroscience, Institute for Scientific Research and Technology Services (INDICASAT-AIP), City of Knowledge, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Haibo Wang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Joy Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Pavana M. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Sara E. Stowell
- Department of Anthropology, Binghamton University, State University of New York, Binghamton, New York
| | - Nicole F Liachko
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Brian C. Kraemer
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Ralph M. Garruto
- Department of Anthropology, Binghamton University, State University of New York, Binghamton, New York
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, New York
| | - K. S. Rao
- Centre for Neuroscience, Institute for Scientific Research and Technology Services (INDICASAT-AIP), City of Knowledge, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Muralidhar L. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
- Houston Methodist Neurological Institute, Houston, Texas 77030 USA
- Weill Medical College of Cornell University, New York
| |
Collapse
|
24
|
Saberi S, Stauffer JE, Schulte DJ, Ravits J. Neuropathology of Amyotrophic Lateral Sclerosis and Its Variants. Neurol Clin 2016; 33:855-76. [PMID: 26515626 DOI: 10.1016/j.ncl.2015.07.012] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The neuropathologic molecular signature common to almost all sporadic amyotrophic lateral sclerosis (ALS) and most familial ALS is TDP-43 immunoreactive neuronal cytoplasmic inclusions. The neuropathologic and molecular neuropathologic features of ALS variants, primarily lateral sclerosis and progressive muscular atrophy, are less certain but also seem to share the primary features of ALS. Genetic causes, including mutations in SOD1, TDP-43, FUS, and C9orf72, all have distinctive molecular neuropathologic signatures. Neuropathology will continue to play an increasingly key role in solving the puzzle of ALS pathogenesis.
Collapse
Affiliation(s)
- Shahram Saberi
- Department of Neurosciences, ALS Translational Research, University of California (San Diego), 9500 Gilman Drive, MC0624, La Jolla, CA 92093, USA
| | - Jennifer E Stauffer
- Department of Neurosciences, ALS Translational Research, University of California (San Diego), 9500 Gilman Drive, MC0624, La Jolla, CA 92093, USA
| | - Derek J Schulte
- Department of Neurosciences, ALS Translational Research, University of California (San Diego), 9500 Gilman Drive, MC0624, La Jolla, CA 92093, USA
| | - John Ravits
- Department of Neurosciences, ALS Translational Research, University of California (San Diego), 9500 Gilman Drive, MC0624, La Jolla, CA 92093, USA.
| |
Collapse
|
25
|
Vadakkan KI. Neurodegenerative disorders share common features of "loss of function" states of a proposed mechanism of nervous system functions. Biomed Pharmacother 2016; 83:412-430. [PMID: 27424323 DOI: 10.1016/j.biopha.2016.06.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/07/2016] [Accepted: 06/25/2016] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders are highly heterogeneous for the locations affected and the nature of the aggregated proteins. Nearly 80% of the neurodegenerative disorders occur sporadically, indicating that certain factors must combine to initiate the degenerative changes. The contiguous extension of degenerative changes from cell to cell, the association with viral fusion proteins, loss of dendritic spines (postsynaptic terminals), and the eventual degeneration of cells indicate the presence of a unique mechanism for inter-cellular spread of pathology. It is not known whether the "loss of function" states of the still unknown normal nervous system operations can lead to neurodegenerative disorders. Here, the possible loss of function states of a proposed normal nervous system function are examined. A reversible inter-postsynaptic functional LINK (IPL) mechanism, consisting of transient inter-postsynaptic membrane (IPM) hydration exclusion and partial to complete IPM hemifusions, was proposed as a critical step necessary for the binding process and the induction of internal sensations of higher brain functions. When various findings from different neurodegenerative disorders are systematically organized and examined, disease features match the effects of loss of function states of different IPLs. Changes in membrane composition, enlargement of dendritic spines by dopamine and viral fusion proteins are capable of altering the IPLs to form IPM fusion. The latter can lead to the observed lateral spread of pathology, inter-neuronal cytoplasmic content mixing and abnormal protein aggregation. Since both the normal mechanism of reversible IPM hydration exclusion and the pathological process of transient IPM fusion can evade detection, testing their occurrence may provide preventive and therapeutic opportunities for these disorders.
Collapse
|
26
|
Onozato T, Nakahara A, Suzuki-Kouyama E, Hineno A, Yasude T, Nakamura T, Yahikozawa H, Watanabe M, Kayanuma K, Makishita H, Ohara S, Hashimoto T, Higuchi K, Sakai T, Asano K, Hashimoto T, Kanno H, Nakayama J, Oyanagi K. Axonal TDP-43 aggregates in sporadic amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol 2016; 42:561-72. [PMID: 26819002 DOI: 10.1111/nan.12310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/20/2016] [Accepted: 01/28/2016] [Indexed: 12/12/2022]
Abstract
AIMS Axonal aggregates of phosphorylated (p-) transactive response DNA-binding protein 43 kDa (TDP-43) in sporadic amyotrophic lateral sclerosis (sALS) were examined in relation to propagation of the protein in the nervous system. METHODS Brains and spinal cords of Japanese patients with sALS and control subjects were examined immunohistochemically using formalin-fixed paraffin-embedded specimens with special reference to the topographical distribution, microscopic features, presynaptic aggregates, and correlation between the aggregates in axons and the clinical course. RESULTS (i) Aggregates of p-TDP-43 were frequently present in axons of the hypoglossal and facial nerve fibres and the spinal anterior horn cells. (ii) Aggregates of p-TDP-43 in the axons showed two characteristic microscopic features - dash-like granuloreticular aggregates (GRAs) and massive aggregates (MAs). (iii) MAs were surrounded by p-neurofilaments, but p-neurofilament immunnoreactivity decreased at the inside of axons with GRAs. (iv) Patients showing MAs and GRAs had a relatively shorter clinical course than patients without the aggregates. (v) Some neurones in the red nucleus in patients were surrounded by synapses containing p- and p-independent (i)-TDP-43, and almost all neurones had lost their nuclear TDP-43 immunoreactivity; 17% of those neurones in the red nucleus also had TDP-43-immunopositive neuronal cytoplasmic inclusions, but no postsynaptic p-TDP-43 deposition was evident. CONCLUSIONS There are two types of axonal p-TDP-43 aggregates, MAs and GRAs, located predominantly in the facial and hypoglossal nuclei and anterior horn cells. These aggregates may influence the function of neurones, and presynaptic aggregates of the protein induce loss of p-i-TDP-43 in the nuclei of postsynaptic neurones.
Collapse
Affiliation(s)
- T Onozato
- Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Nagano, Japan.,Safety Research Laboratory of Research and Development, Kissei Pharmaceutical Co., Ltd., Nagano, Japan
| | - A Nakahara
- Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Nagano, Japan
| | - E Suzuki-Kouyama
- Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Nagano, Japan
| | - A Hineno
- Department of Neurology, Suwa Red Cross Hospital, Nagano, Japan
| | - T Yasude
- Department of Neurology, Suwa Red Cross Hospital, Nagano, Japan
| | - T Nakamura
- Department of Pathology, Suwa Red Cross Hospital, Nagano, Japan
| | - H Yahikozawa
- Department of Neurology, Nagano Red Cross Hospital, Nagano, Japan
| | - M Watanabe
- Department of Pathology, Nagano Red Cross Hospital, Nagano, Japan
| | - K Kayanuma
- Department of Neurology, Ina Central Hospital, Nagano, Japan
| | - H Makishita
- Department of Neurology, Hokushin General Hospital, Nagano, Japan
| | - S Ohara
- Department of Neurology, Matsumoto Medical Center, Nagano, Japan
| | - T Hashimoto
- Department of Neurology, Aizawa Hospital, Nagano, Japan
| | - K Higuchi
- Section of Anatomic Pathology, Aizawa Hospital, Nagano, Japan
| | - T Sakai
- Department of Neurology, Nagano Matsushiro General Hospital, Nagano, Japan
| | - K Asano
- Department of Pathology, Suwa Chuo Hospital, Nagano, Japan
| | - T Hashimoto
- Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Nagano, Japan.,Department of Neurology, University of Occupational and Environmental Health, Fukuoka, Japan
| | - H Kanno
- Department of Pathology, Shinshu University School of Medicine, Nagano, Japan
| | - J Nakayama
- Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Nagano, Japan
| | - K Oyanagi
- Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Nagano, Japan.
| |
Collapse
|
27
|
Chiang CH, Grauffel C, Wu LS, Kuo PH, Doudeva LG, Lim C, Shen CKJ, Yuan HS. Structural analysis of disease-related TDP-43 D169G mutation: linking enhanced stability and caspase cleavage efficiency to protein accumulation. Sci Rep 2016; 6:21581. [PMID: 26883171 PMCID: PMC4756693 DOI: 10.1038/srep21581] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/25/2016] [Indexed: 12/12/2022] Open
Abstract
The RNA-binding protein TDP-43 forms intracellular inclusions in amyotrophic lateral sclerosis (ALS). While TDP-43 mutations have been identified in ALS patients, how these mutations are linked to ALS remains unclear. Here we examined the biophysical properties of six ALS-linked TDP-43 mutants and found that one of the mutants, D169G, had higher thermal stability than wild-type TDP-43 and that it was cleaved by caspase 3 more efficiently, producing increased levels of the C-terminal 35 kD fragments (TDP-35) in vitro and in neuroblastoma cells. The crystal structure of the TDP-43 RRM1 domain containing the D169G mutation in complex with DNA along with molecular dynamics simulations reveal that the D169G mutation induces a local conformational change in a β turn and increases the hydrophobic interactions in the RRM1 core, thus enhancing the thermal stability of the RRM1 domain. Our results provide the first crystal structure of TDP-43 containing a disease-linked D169G mutation and a disease-related mechanism showing that D169G mutant is more susceptible to proteolytic cleavage by caspase 3 into the pathogenic C-terminal 35-kD fragments due to its increased stability in the RRM1 domain. Modulation of TDP-43 stability and caspase cleavage efficiency could present an avenue for prevention and treatment of TDP-43-linked neurodegeneration.
Collapse
Affiliation(s)
- Chien-Hao Chiang
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan.,Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsin Chu, 30013, Taiwan
| | - Cédric Grauffel
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Lien-Szu Wu
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Pan-Hsien Kuo
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | | | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | | | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
28
|
Lim L, Wei Y, Lu Y, Song J. ALS-Causing Mutations Significantly Perturb the Self-Assembly and Interaction with Nucleic Acid of the Intrinsically Disordered Prion-Like Domain of TDP-43. PLoS Biol 2016; 14:e1002338. [PMID: 26735904 PMCID: PMC4703307 DOI: 10.1371/journal.pbio.1002338] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 11/25/2015] [Indexed: 12/13/2022] Open
Abstract
TAR-DNA-binding protein-43 (TDP-43) C-terminus encodes a prion-like domain widely presented in RNA-binding proteins, which functions to form dynamic oligomers and also, amazingly, hosts most amyotrophic lateral sclerosis (ALS)-causing mutations. Here, as facilitated by our previous discovery, by circular dichroism (CD), fluorescence and nuclear magnetic resonance (NMR) spectroscopy, we have successfully determined conformations, dynamics, and self-associations of the full-length prion-like domains of the wild type and three ALS-causing mutants (A315E, Q331K, and M337V) in both aqueous solutions and membrane environments. The study decodes the following: (1) The TDP-43 prion-like domain is intrinsically disordered only with some nascent secondary structures in aqueous solutions, but owns the capacity to assemble into dynamic oligomers rich in β-sheet structures. By contrast, despite having highly similar conformations, three mutants gained the ability to form amyloid oligomers. The wild type and three mutants all formed amyloid fibrils after incubation as imaged by electron microscopy. (2) The interaction with nucleic acid enhances the self-assembly for the wild type but triggers quick aggregation for three mutants. (3) A membrane-interacting subdomain has been identified over residues Met311-Gln343 indispensable for TDP-43 neurotoxicity, which transforms into a well-folded Ω-loop-helix structure in membrane environments. Furthermore, despite having very similar membrane-embedded conformations, three mutants will undergo further self-association in the membrane environment. Our study implies that the TDP-43 prion-like domain appears to have an energy landscape, which allows the assembly of the wild-type sequence into dynamic oligomers only under very limited condition sets, and ALS-causing point mutations are sufficient to remodel it to more favor the amyloid formation or irreversible aggregation, thus supporting the emerging view that the pathologic aggregation may occur via the exaggeration of functionally important assemblies. Furthermore, the coupled capacity of TDP-43 in aggregation and membrane interaction may critically account for its high neurotoxicity, and therefore its decoupling may represent a promising therapeutic strategy to treat TDP-43 causing neurodegenerative diseases. The prion-like domain of TDP-43 appears to have an energy landscape that allows oligomerisation only under very limited conditions; however, TDP-43 mutations that cause amyotrophic lateral sclerosis are sufficient to remodel the protein in favor of amyloid formation. Amyotrophic lateral sclerosis (ALS) is the most prevalent fatal motor neuron disease. It was identified ~140 years ago, but the exact mechanism underlying the disease has still not been well defined. TAR-DNA-binding protein-43 (TDP-43) was identified as the major component of the proteinaceous inclusions present in ~97% ALS and ~45% frontotemporal dementia (FTD) patients, and has also been observed in an increasing spectrum of other neurodegenerative disorders, including Alzheimer disease. The TDP-43 C-terminus is a key domain—it encodes a prion-like domain and, crucially, hosts almost all ALS-causing mutations. Here we have successfully determined the conformations, dynamics, and self-associations of the prion-like domains of both wild type and three ALS-causing mutants in both aqueous solutions and membrane environments. The study suggests that the TDP-43 prion-like domain appears to have a unique energy landscape, which allows the assembly of the wild-type sequence into specific oligomers only under very limited conditions. Intriguingly, ALS-causing point mutations remodel the energy landscape to favor amyloid formation or irreversible aggregation, thus supporting the emerging view that pathologic aggregation may occur via the exaggeration of functionally important assemblies. Furthermore, the coupled capacity of TDP-43 in aggregation and membrane interaction may partly account for its high neurotoxicity; decoupling these may therefore represent a promising therapeutic strategy to treat TDP-43-mediated neurodegenerative diseases.
Collapse
Affiliation(s)
- Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Yuanyuan Wei
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Yimei Lu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
- * E-mail:
| |
Collapse
|
29
|
Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat Med 2014; 20:130-8. [PMID: 24504409 DOI: 10.1038/nm.3457] [Citation(s) in RCA: 494] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 12/19/2013] [Indexed: 12/12/2022]
Abstract
A common feature of many neurodegenerative diseases is the deposition of β-sheet-rich amyloid aggregates formed by proteins specific to these diseases. These protein aggregates are thought to cause neuronal dysfunction, directly or indirectly. Recent studies have strongly implicated cell-to-cell transmission of misfolded proteins as a common mechanism for the onset and progression of various neurodegenerative disorders. Emerging evidence also suggests the presence of conformationally diverse 'strains' of each type of disease protein, which may be another shared feature of amyloid aggregates, accounting for the tremendous heterogeneity within each type of neurodegenerative disease. Although there are many more questions to be answered, these studies have opened up new avenues for therapeutic interventions in neurodegenerative disorders.
Collapse
|
30
|
Carlomagno Y, Zhang Y, Davis M, Lin WL, Cook C, Dunmore J, Tay W, Menkosky K, Cao X, Petrucelli L, DeTure M. Casein kinase II induced polymerization of soluble TDP-43 into filaments is inhibited by heat shock proteins. PLoS One 2014; 9:e90452. [PMID: 24595055 PMCID: PMC3942448 DOI: 10.1371/journal.pone.0090452] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 02/04/2014] [Indexed: 12/12/2022] Open
Abstract
Background Trans-activation Response DNA-binding Protein-43 (TDP-43) lesions are observed in Amyotrophic Lateral Sclerosis (ALS), Frontotemporal Lobar Degeneration with ubiquitin inclusions (FTLD-TDP) and 25–50% of Alzheimer's Disease (AD) cases. These abnormal protein inclusions are composed of either amorphous TDP-43 aggregates or highly ordered filaments. The filamentous TDP-43 accumulations typically contain clean 10–12 nm filaments though wider 18–20 nm coated filaments may be observed. The TDP-43 present within these lesions is phosphorylated, truncated and ubiquitinated, and these modifications appear to be abnormal as they are linked to both a cellular heat shock response and microglial activation. The mechanisms associated with this abnormal TDP-43 accumulation are believed to result in a loss of TDP-43 function, perhaps due to the post-translational modifications or resulting from physical sequestration of the TDP-43. The formation of TDP-43 inclusions involves cellular translocation and conversion of TDP-43 into fibrillogenic forms, but the ability of these accumulations to sequester normal TDP-43 and propagate this behavior between neurons pathologically is mostly inferred. The lack of methodology to produce soluble full length TDP-43 and recapitulate this polymerization into filaments as observed in disease has limited our understanding of these pathogenic cascades. Results The protocols described here generate soluble, full-length and untagged TDP-43 allowing for a direct assessment of the impact of various posttranslational modifications on TDP-43 function. We demonstrate that Casein Kinase II (CKII) promotes the polymerization of this soluble TDP-43 into 10 nm diameter filaments that resemble the most common TDP-43 structures observed in disease. Furthermore, these filaments are recognized as abnormal by Heat Shock Proteins (HSPs) which can inhibit TDP-43 polymerization or directly promote TDP-43 filament depolymerization. Conclusion These findings demonstrate CKII induces polymerization of soluble TDP-43 into filaments and Hsp90 promotes TDP-43 filament depolymerization. These findings provide rational for potential therapeutic intervention at these points in TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Yari Carlomagno
- Department of Neuroscience, Maya Clinic, Jacksonville, Florida, United States of America
| | - Yongjie Zhang
- Department of Neuroscience, Maya Clinic, Jacksonville, Florida, United States of America
| | - Mary Davis
- Department of Neuroscience, Maya Clinic, Jacksonville, Florida, United States of America
| | - Wen-Lang Lin
- Department of Neuroscience, Maya Clinic, Jacksonville, Florida, United States of America
| | - Casey Cook
- Department of Neuroscience, Maya Clinic, Jacksonville, Florida, United States of America
| | - Judy Dunmore
- Department of Neuroscience, Maya Clinic, Jacksonville, Florida, United States of America
| | - William Tay
- Department of Neuroscience, Maya Clinic, Jacksonville, Florida, United States of America
| | - Kyle Menkosky
- Department of Neuroscience, Maya Clinic, Jacksonville, Florida, United States of America
| | - Xiangkun Cao
- Department of Neuroscience, Maya Clinic, Jacksonville, Florida, United States of America
| | - Leonard Petrucelli
- Department of Neuroscience, Maya Clinic, Jacksonville, Florida, United States of America
| | - Michael DeTure
- Department of Neuroscience, Maya Clinic, Jacksonville, Florida, United States of America
- * E-mail:
| |
Collapse
|
31
|
Capitini C, Conti S, Perni M, Guidi F, Cascella R, De Poli A, Penco A, Relini A, Cecchi C, Chiti F. TDP-43 inclusion bodies formed in bacteria are structurally amorphous, non-amyloid and inherently toxic to neuroblastoma cells. PLoS One 2014; 9:e86720. [PMID: 24497973 PMCID: PMC3907574 DOI: 10.1371/journal.pone.0086720] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/13/2013] [Indexed: 12/13/2022] Open
Abstract
Accumulation of ubiquitin-positive, tau- and α-synuclein-negative intracellular inclusions of TDP-43 in the central nervous system represents the major hallmark correlated to amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions. Such inclusions have variably been described as amorphous aggregates or more structured deposits having an amyloid structure. Following the observations that bacterial inclusion bodies generally consist of amyloid aggregates, we have overexpressed full-length TDP-43 and C-terminal TDP-43 in E. coli, purified the resulting full-length and C-terminal TDP-43 containing inclusion bodies (FL and Ct TDP-43 IBs) and subjected them to biophysical analyses to assess their structure/morphology. We show that both FL and Ct TDP-43 aggregates contained in the bacterial IBs do not bind amyloid dyes such as thioflavin T and Congo red, possess a disordered secondary structure, as inferred using circular dichroism and infrared spectroscopies, and are susceptible to proteinase K digestion, thus possessing none of the hallmarks for amyloid. Moreover, atomic force microscopy revealed an irregular structure for both types of TDP-43 IBs and confirmed the absence of amyloid-like species after proteinase K treatment. Cell biology experiments showed that FL TDP-43 IBs were able to impair the viability of cultured neuroblastoma cells when added to their extracellular medium and, more markedly, when transfected into their cytosol, where they are at least in part ubiquitinated and phosphorylated. These data reveal an inherently high propensity of TDP-43 to form amorphous aggregates, which possess, however, an inherently high ability to cause cell dysfunction. This indicates that a gain of toxic function caused by TDP-43 deposits is effective in TDP-43 pathologies, in addition to possible loss of function mechanisms originating from the cellular mistrafficking of the protein.
Collapse
Affiliation(s)
- Claudia Capitini
- Section of Biochemistry, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Simona Conti
- Section of Biochemistry, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Michele Perni
- Section of Biochemistry, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Francesca Guidi
- Section of Biochemistry, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Roberta Cascella
- Section of Biochemistry, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Angela De Poli
- Section of Biochemistry, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Amanda Penco
- Department of Physics, University of Genoa, Genoa, Italy
| | | | - Cristina Cecchi
- Section of Biochemistry, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
- * E-mail:
| |
Collapse
|
32
|
Zhang HY, Wang ZG, Wu FZ, Kong XX, Yang J, Lin BB, Zhu SP, Lin L, Gan CS, Fu XB, Li XK, Xu HZ, Xiao J. Regulation of autophagy and ubiquitinated protein accumulation by bFGF promotes functional recovery and neural protection in a rat model of spinal cord injury. Mol Neurobiol 2013; 48:452-64. [PMID: 23516099 DOI: 10.1007/s12035-013-8432-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 02/26/2013] [Indexed: 12/27/2022]
Abstract
The role of autophagy in the recovery of spinal cord injury remains controversial; in particular, the mechanism of autophagy regulated degradation of ubiquitinated proteins has not been discussed to date. In this study, we investigated the protective role of basic fibroblast growth factor (bFGF) both in vivo and in vitro and demonstrated that excessive autophagy and ubiquitinated protein accumulation is involved in the rat model of trauma. bFGF administration improved recovery and increased the survival of neurons in spinal cord lesions in the rat model. The protective effect of bFGF is related to the inhibition of autophagic protein LC3II levels; bFGF treatment also enhances clearance of ubiquitinated proteins by p62, which also increases the survival of neuronal PC-12 cells. The activation of the downstream signals of the PI3K/Akt/mTOR pathway by bFGF treatment was detected both in vivo and in vitro. Combination therapy including the autophagy activator rapamycin partially abolished the protective effect of bFGF. The present study illustrates that the role of bFGF in SCI recovery is related to the inhibition of excessive autophagy and enhancement of ubiquitinated protein clearance via the activation of PI3K/Akt/mTOR signaling. Overall, our study suggests a new trend for bFGF drug development for central nervous system injuries and sheds light on protein signaling involved in bFGF action.
Collapse
Affiliation(s)
- Hong-Yu Zhang
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical College, Wenzhou, 325035, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Verma A, Tandan R. RNA quality control and protein aggregates in amyotrophic lateral sclerosis: a review. Muscle Nerve 2013; 47:330-8. [PMID: 23381726 DOI: 10.1002/mus.23673] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2012] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease in adults. The biologic basis of ALS remains unknown. However, ALS research has taken a dramatic turn over the past 4 years. Ground breaking discoveries of mutations of genes that encode RNA processing proteins, and demonstration that abnormal aggregates of these and other proteins precede motor neuron loss in familial and sporadic ALS, have initiated a paradigm shift in understanding the pathogenic mechanisms of ALS. Curiously, some of these RNA binding proteins have prion-like domains, with a propensity to self-aggregation. The emerging hypothesis that a focal cascade of toxic protein aggregates, and their consequent non-cell-autonomous spread to neighborhood groups of neurons, fits the classical temporo-spatial progression of ALS. This article reviews the current research efforts toward understanding the role of RNA-processing regulation and protein aggregates in ALS.
Collapse
Affiliation(s)
- Ashok Verma
- Department of Neurology, University of Miami Miller School of Medicine, Clinical Research Building, 1120 NW 14 Street, Suite 1317, Miami, Florida 33136, USA.
| | | |
Collapse
|
34
|
Wang YT, Kuo PH, Chiang CH, Liang JR, Chen YR, Wang S, Shen JCK, Yuan HS. The truncated C-terminal RNA recognition motif of TDP-43 protein plays a key role in forming proteinaceous aggregates. J Biol Chem 2013; 288:9049-57. [PMID: 23372158 PMCID: PMC3610977 DOI: 10.1074/jbc.m112.438564] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
TDP-43 is the major pathological protein identified in the cellular inclusions in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. The pathogenic forms of TDP-43 are processed C-terminal fragments containing a truncated RNA-recognition motif (RRM2) and a glycine-rich region. Although extensive studies have focused on this protein, it remains unclear how the dimeric full-length TDP-43 is folded and assembled and how the processed C-terminal fragments are misfolded and aggregated. Here, using size-exclusion chromatography, pulldown assays, and small angle x-ray scattering, we show that the C-terminal-deleted TDP-43 without the glycine-rich tail is sufficient to form a head-to-head homodimer primarily via its N-terminal domain. The truncated RRM2, as well as two β-strands within the RRM2, form fibrils in vitro with a similar amyloid-negative staining property to those of TDP-43 pathogenic fibrils in diseases. In addition to the glycine-rich region, the truncated RRM2, but not the intact RRM2, plays a key role in forming cytoplasmic inclusions in neuronal cells. Our data thus suggest that the process that disrupts the dimeric structure, such as the proteolytic cleavage of TDP-43 within the RRM2 that removes the N-terminal dimerization domain, may produce unassembled truncated RRM2 fragments with abnormally exposed β-strands, which can oligomerize into high-order inclusions.
Collapse
Affiliation(s)
- Yi-Ting Wang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Robinson JL, Geser F, Stieber A, Umoh M, Kwong LK, Van Deerlin VM, Lee VMY, Trojanowski JQ. TDP-43 skeins show properties of amyloid in a subset of ALS cases. Acta Neuropathol 2013; 125:121-31. [PMID: 23124365 DOI: 10.1007/s00401-012-1055-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/24/2012] [Accepted: 10/15/2012] [Indexed: 12/21/2022]
Abstract
Aggregation of TDP-43 proteins to form intracellular inclusions is the primary pathology in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with TDP-43 inclusions (FTLD-TDP). Histologically, in the cerebral cortex and limbic regions of affected ALS and FTLD-TDP patients, these pathologies occur as a variety of cytoplasmic, neuritic and intranuclear TDP-43 inclusions. In the spinal cord and lower brainstem of ALS patients, the lesions form cytoplasmic dashes or complex filamentous and spherical profiles in addition to skein-like inclusions (SLI). Ultrastructurally, the morphology of TDP-43 inclusions is heterogeneous but mainly composed of loose bundles of 10- to 20-nm-diameter straight filaments associated with electron-dense granular material. All of these TDP-43 inclusions are generally described as disordered amorphous aggregations unlike the amyloid fibrils that characterize protein accumulations in neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. We here report that Thioflavin-S positive SLI are present in a subset of ALS cases, while TDP-43 inclusions outside the spinal cord lack the chemical properties of amyloid. Further, we examine the differential enrichment of fibrillar profiles in SLI of ALS cases by TDP-43 immuno-electron microscopy (immuno-EM). The demonstration that pathological TDP-43 can be amyloidogenic in situ suggests the following conclusions: (1) the conformational changes associated with TDP-43 aggregation are more complex than previously thought; (2) Thioflavin-S positive SLI may be composed primarily of filamentous ultrastructures.
Collapse
|
36
|
Verma A. Altered RNA metabolism and amyotrophic lateral sclerosis. Ann Indian Acad Neurol 2012; 14:239-44. [PMID: 22346009 PMCID: PMC3271459 DOI: 10.4103/0972-2327.91933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 10/14/2011] [Accepted: 11/15/2011] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease in adults. Typically, patients with ALS develop progressive weakness resulting, eventually, in respiratory muscle paralysis and death in 3-5 years after the onset of the disease. No definite therapy currently exists for ALS. The biologic basis of the disease is unknown. However, ALS research has taken a dramatic turn over the last 3 years. Landmark discoveries of mutations in the transactive response DNA-binding protein (TDP-43) and fused in sarcoma/translocated in liposarcoma (FUS/TLS) as causative of ALS and demonstration that abnormal aggregation of these proteins is the proximate cause of motor neuron loss in familial and sporadic ALS have initiated a paradigm shift in understanding the pathogenic mechanism of this disease. TDP-43 and FUS/TLS are DNA/RNA-binding proteins with striking structural and functional similarities. This article reviews the current direction of research efforts toward understanding the role of RNA (ribonucleic acid) processing regulation in ALS and possible therapeutic pathways in this fatal disease.
Collapse
Affiliation(s)
- Ashok Verma
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
37
|
Hart MP, Brettschneider J, Lee VMY, Trojanowski JQ, Gitler AD. Distinct TDP-43 pathology in ALS patients with ataxin 2 intermediate-length polyQ expansions. Acta Neuropathol 2012; 124:221-30. [PMID: 22526021 DOI: 10.1007/s00401-012-0985-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/11/2012] [Accepted: 04/11/2012] [Indexed: 01/27/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, adult-onset neurodegenerative disease characterized by degeneration of motor neurons, resulting in paralysis and death. A pathological hallmark of the degenerating motor neurons in most ALS patients is the presence of cytoplasmic inclusions containing the protein TDP-43. The morphology and type of TDP-43 pathological inclusions is variable and can range from large round Lewy body-like inclusions to filamentous skein-like inclusions. The clinical significance of this variable pathology is unclear. Intermediate-length polyglutamine (polyQ) expansions in ataxin 2 were recently identified as a genetic risk factor for ALS. Here we have analyzed TDP-43 pathology in a series of ALS cases with or without ataxin 2 intermediate-length polyQ expansions. The motor neurons of ALS cases harboring ataxin 2 polyQ expansions (n = 6) contained primarily skein-like or filamentous TDP-43 pathology and only rarely, if ever, contained large round inclusions, whereas the ALS cases without ataxin 2 polyQ expansions (n = 13) contained abundant large round and skein-like TDP-43 pathology. The paucity of large round TDP-43 inclusions in ALS cases with ataxin 2 polyQ expansions suggests a distinct pathological subtype of ALS and highlights the possibility for distinct pathogenic mechanisms.
Collapse
|
38
|
Baptista MS, Duarte CB, Maciel P. Role of the ubiquitin-proteasome system in nervous system function and disease: using C. elegans as a dissecting tool. Cell Mol Life Sci 2012; 69:2691-715. [PMID: 22382927 PMCID: PMC11115168 DOI: 10.1007/s00018-012-0946-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 02/13/2012] [Accepted: 02/15/2012] [Indexed: 01/12/2023]
Abstract
In addition to its central roles in protein quality control, regulation of cell cycle, intracellular signaling, DNA damage response and transcription regulation, the ubiquitin-proteasome system (UPS) plays specific roles in the nervous system, where it contributes to precise connectivity through development, and later assures functionality by regulating a wide spectrum of neuron-specific cellular processes. Aberrations in this system have been implicated in the etiology of neurodevelopmental and neurodegenerative diseases. In this review, we provide an updated view on the UPS and highlight recent findings concerning its role in normal and diseased nervous systems. We discuss the advantages of the model organism Caenorhabditis elegans as a tool to unravel the major unsolved questions concerning this biochemical pathway and its involvement in nervous system function and dysfunction, and expose the new possibilities, using state-of-the-art techniques, to assess UPS function using this model system.
Collapse
Affiliation(s)
- Márcio S Baptista
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | |
Collapse
|
39
|
Lee EB, Lee VMY, Trojanowski JQ. Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci 2011; 13:38-50. [PMID: 22127299 DOI: 10.1038/nrn3121] [Citation(s) in RCA: 519] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA-binding proteins, and in particular TAR DNA-binding protein 43 (TDP43), are central to the pathogenesis of motor neuron diseases and related neurodegenerative disorders. Studies on human tissue have implicated several possible mechanisms of disease and experimental studies are now attempting to determine whether TDP43-mediated neurodegeneration results from a gain or a loss of function of the protein. In addition, the distinct possibility of pleotropic or combined effects - in which gains of toxic properties and losses of normal TDP43 functions act together - needs to be considered.
Collapse
Affiliation(s)
- Edward B Lee
- Translational Neuropathology Research Laboratory, Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Pennsylvania, 605B Stellar Chance Laboratories, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
40
|
Page T, Gitcho MA, Mosaheb S, Carter D, Chakraverty S, Perry RH, Bigio EH, Gearing M, Ferrer I, Goate AM, Cairns NJ, Thorpe JR. FUS immunogold labeling TEM analysis of the neuronal cytoplasmic inclusions of neuronal intermediate filament inclusion disease: a frontotemporal lobar degeneration with FUS proteinopathy. J Mol Neurosci 2011; 45:409-21. [PMID: 21603978 PMCID: PMC3374931 DOI: 10.1007/s12031-011-9549-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 04/20/2011] [Indexed: 10/18/2022]
Abstract
Fused in sarcoma (FUS)-immunoreactive neuronal and glial inclusions define a novel molecular pathology called FUS proteinopathy. FUS has been shown to be a component of inclusions of familial amyotrophic lateral sclerosis with FUS mutation and three frontotemporal lobar degeneration entities, including neuronal intermediate filament inclusion disease (NIFID). The pathogenic role of FUS is unknown. In addition to FUS, many neuronal cytoplasmic inclusions (NCI) of NIFID contain aggregates of α-internexin and neurofilament proteins. Herein, we have shown that: (1) FUS becomes relatively insoluble in NIFID and there are no apparent posttranslational modifications, (2) there are no pathogenic abnormalities in the FUS gene in NIFID, and (3) immunoelectron microscopy demonstrates the fine structural localization of FUS in NIFID which has not previously been described. FUS localized to euchromatin, and strongly with paraspeckles, in nuclei, consistent with its RNA/DNA-binding functions. NCI of varying morphologies were observed. Most frequent were the "loosely aggregated cytoplasmic inclusions," 81% of which had moderate or high levels of FUS immunoreactivity. Much rarer "compact cytoplasmic inclusions" and "tangled twine ball inclusions" were FUS-immunoreactive at their granular peripheries, or heavily FUS-positive throughout, respectively. Thus, FUS may aggregate in the cytoplasm and then admix with neuronal intermediate filament accumulations.
Collapse
Affiliation(s)
- Tristan Page
- Electron Microscope Division, Sussex Centre for Advanced Microscopy, School of Life Sciences, University of Sussex, Brighton, Sussex, UK
| | - Michael A. Gitcho
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Sabrina Mosaheb
- Department of Clinical Biochemistry, Royal Berkshire NHS Foundation Trust, Reading, Berkshire, UK
| | - Deborah Carter
- Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sumi Chakraverty
- Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robert H. Perry
- Department of Neuropathology, Newcastle General Hospital, Newcastle-upon-Tyne, UK
| | - Eileen H. Bigio
- Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Isidre Ferrer
- Institut de Neuropatologia, Idibell-Hospital Universityari de Bellvitge, Universitat de Barcelona, Hospitalet de LLobregat, Spain
| | - Alison M. Goate
- Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nigel J. Cairns
- Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Julian R. Thorpe
- Electron Microscope Division, Sussex Centre for Advanced Microscopy, School of Life Sciences, University of Sussex, Brighton, Sussex, UK
| |
Collapse
|
41
|
Acevedo-Arozena A, Kalmar B, Essa S, Ricketts T, Joyce P, Kent R, Rowe C, Parker A, Gray A, Hafezparast M, Thorpe JR, Greensmith L, Fisher EMC. A comprehensive assessment of the SOD1G93A low-copy transgenic mouse, which models human amyotrophic lateral sclerosis. Dis Model Mech 2011; 4:686-700. [PMID: 21540242 PMCID: PMC3180233 DOI: 10.1242/dmm.007237] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 03/10/2011] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that results in the death of motor neurons in the brain and spinal cord. The disorder generally strikes in mid-life, relentlessly leading to paralysis and death, typically 3-5 years after diagnosis. No effective treatments are available. Up to 10% of ALS is familial, usually autosomal dominant. Several causative genes are known and, of these, mutant superoxide dismutase 1 (SOD1) is by far the most frequently found, accounting for up to 20% of familial ALS. A range of human mutant SOD1 transgenic mouse strains has been produced, and these largely successfully model the human disease. Of these, the most widely used is the SOD1 mouse, which expresses a human SOD1 transgene with a causative G93A mutation. This mouse model is excellent for many purposes but carries up to 25 copies of the transgene and produces a great excess of SOD1 protein, which might affect our interpretation of disease processes. A variant of this strain carries a deletion of the transgene array such that the copy number is dropped to eight to ten mutant SOD1 genes. This 'deleted' 'low-copy' mouse undergoes a slower course of disease, over many months. Here we have carried out a comprehensive analysis of phenotype, including nerve and muscle physiology and histology, to add to our knowledge of this 'deleted' strain and give baseline data for future studies. We find differences in phenotype that arise from genetic background and sex, and we quantify the loss of nerve and muscle function over time. The slowly progressive pathology observed in this mouse strain could provide us with a more appropriate model for studying early-stage pathological processes in ALS and aid the development of therapies for early-stage treatments.
Collapse
Affiliation(s)
| | - Bernadett Kalmar
- Sobell Department of Motor Science and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Shafa Essa
- The Sussex Centre for Advanced Microscopy, University of Sussex, Brighton, BN139QG, UK
| | - Thomas Ricketts
- MRC Mammalian Genetics Unit, Harwell, OX11 0RD, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Peter Joyce
- MRC Mammalian Genetics Unit, Harwell, OX11 0RD, UK
| | - Rosie Kent
- MRC Mammalian Genetics Unit, Harwell, OX11 0RD, UK
| | - Claire Rowe
- MRC Mammalian Genetics Unit, Harwell, OX11 0RD, UK
| | - Andy Parker
- MRC Mammalian Genetics Unit, Harwell, OX11 0RD, UK
| | - Anna Gray
- Sobell Department of Motor Science and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Majid Hafezparast
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Julian R. Thorpe
- The Sussex Centre for Advanced Microscopy, University of Sussex, Brighton, BN139QG, UK
| | - Linda Greensmith
- Sobell Department of Motor Science and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Elizabeth M. C. Fisher
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
42
|
Matej R, Botond G, László L, Kopitar-Jerala N, Rusina R, Budka H, Kovacs GG. Increased neuronal Rab5 immunoreactive endosomes do not colocalize with TDP-43 in motor neuron disease. Exp Neurol 2010; 225:133-9. [PMID: 20558162 DOI: 10.1016/j.expneurol.2010.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 06/01/2010] [Accepted: 06/07/2010] [Indexed: 12/11/2022]
Abstract
Sporadic motor neuron disease (MND) is characterized by progressive degeneration of motor neurons and intraneuronal cytoplasmic translocation and deposition of the nuclear protein TDP-43. There is a paucity of data on the subcellular mechanisms of the nuclear-cytoplasmic trafficking of TDP-43, particularly about the precise role of the endosomal-lysosomal system (ELS). In the present study, using a neuron-specific morphometric approach, we examined the expression of the early endosomal marker Rab5 and lysosomal cathepsins B, D, F, and L as well as PAS-stained structures in the anterior horn cells in 11 individuals affected by sporadic MND and 5 age-matched controls. This was compared with the expression of ubiquitin, p62 and TDP-43 and its phosphorylated form. The principal finding was the increased expression of the endosomal marker Rab5 and lysosomal cathepsin D, and of PAS-positive structures in motor neurons of MND cases. Furthermore, the area-portion of Rab5 immunoreactivity correlated well with the intracellular accumulation of ubiquitin, p62 and (phosphorylated) TDP-43. However, double immunolabelling and immunogold electron microscopy excluded colocalization of phosphorylated TDP-43 with the ELS. These data contrast with observations on neuronal cytopathology in Alzheimer's or prion diseases where the disease-specific proteins are processed within endosomes, and suggest a distinct role of the ELS in MND.
Collapse
Affiliation(s)
- Radoslav Matej
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
43
|
Lagier-Tourenne C, Polymenidou M, Cleveland DW. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet 2010; 19:R46-64. [PMID: 20400460 PMCID: PMC3167692 DOI: 10.1093/hmg/ddq137] [Citation(s) in RCA: 759] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 04/06/2010] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are neurodegenerative diseases with clinical and pathological overlap. Landmark discoveries of mutations in the transactive response DNA-binding protein (TDP-43) and fused in sarcoma/translocated in liposarcoma (FUS/TLS) as causative of ALS and FTLD, combined with the abnormal aggregation of these proteins, have initiated a shifting paradigm for the underlying pathogenesis of multiple neurodegenerative diseases. TDP-43 and FUS/TLS are both RNA/DNA-binding proteins with striking structural and functional similarities. Their association with ALS and other neurodegenerative diseases is redirecting research efforts toward understanding the role of RNA processing regulation in neurodegeneration.
Collapse
Affiliation(s)
| | | | - Don W. Cleveland
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-6070, USA
| |
Collapse
|
44
|
Geser F, Lee VMY, Trojanowski JQ. Amyotrophic lateral sclerosis and frontotemporal lobar degeneration: a spectrum of TDP-43 proteinopathies. Neuropathology 2010; 30:103-12. [PMID: 20102519 DOI: 10.1111/j.1440-1789.2009.01091.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
It is now established that pathological transactive response DNA-binding protein with a Mr of 43 kD (TDP-43) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis is the major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitin-positive inclusions (now known as FTLD-TDP). In fact, the discovery of pathological TDP-43 solidified the idea that these disorders are multi-system diseases and this led to the concept of a TDP-43 proteinopathy as a spectrum of disorders comprised of different clinical and pathological entities extending from ALS to ALS with cognitive impairment/dementia and FTLD-TDP without or with motor neuron disease (FTLD-MND). These align along a broad disease continuum sharing similar pathogenetic mechanisms linked to pathological TDP-43. We here review salient findings in the development of a concept of TDP-43 proteinopathy as a novel group of neurodegenerative diseases similar in concept to alpha-synucleinopathies and tauopathies.
Collapse
Affiliation(s)
- Felix Geser
- The Institute on Aging, Center for Neurodegenerative Disease Research and the Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Pennsylvania 19104-4283, USA
| | | | | |
Collapse
|
45
|
Geser F, Martinez-Lage M, Kwong LK, Lee VMY, Trojanowski JQ. Amyotrophic lateral sclerosis, frontotemporal dementia and beyond: the TDP-43 diseases. J Neurol 2009; 256:1205-14. [PMID: 19271105 PMCID: PMC2790321 DOI: 10.1007/s00415-009-5069-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Accepted: 02/09/2009] [Indexed: 12/12/2022]
Abstract
Ever since the significance of pathological 43-kDa transactivating responsive sequence DNA-binding protein (TDP-43) for human disease has been recognized in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin positive inclusions (FTLD-U), a number of publications have emerged reporting on this pathology in a variety of neurodegenerative diseases. Given the heterogeneous and, in part, conflicting nature of the recent findings, we here review pathological TDP-43 and its relationship to human disease with a special focus on ALS and FTLD-U. To this end, we propose a classification scheme in which pathological TDP-43 is the major disease defining pathology in one group, or is present in addition to other neurodegenerative hallmark pathologies in a second category. We conclude that the TDP-43 proteinopathies represent a novel class of neurodegenerative disorders akin to alpha-synucleinopathies and tauopathies, with the concept of ALS and FTLD-U to be widened to a broad clinico-pathological multisystem disease, i.e., TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Felix Geser
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, HUP, Maloney 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-4283, USA.
| | | | | | | | | |
Collapse
|
46
|
Casafont I, Bengoechea R, Tapia O, Berciano MT, Lafarga M. TDP-43 localizes in mRNA transcription and processing sites in mammalian neurons. J Struct Biol 2009; 167:235-41. [PMID: 19539030 DOI: 10.1016/j.jsb.2009.06.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/04/2009] [Accepted: 06/10/2009] [Indexed: 12/30/2022]
Abstract
TDP-43 is a RNA/DNA-binding protein structurally related to nuclear hnRNP proteins. Previous biochemical studies have shown that this nuclear protein plays a role in the regulation of gene transcription, alternative splicing and mRNA stability. Despite the ubiquitous distribution of TDP-43, the growing list of TDP-43 proteinopathies is primarily associated with neurodegenerative disorders. Particularly, TDP-43 redistributes to the cytoplasm and forms pathological inclusions in amyotrophic lateral sclerosis and several forms of sporadic and familiar frontotemporal lobar degeneration. Here, we have studied the nuclear compartmentalization of TDP-43 in normal rat neurons by using light and electron microscopy immunocytochemistry with molecular markers for nuclear compartments, a transcription assay with 5'-fluorouridine, and in situ hybridization for telomeric DNA. TDP-43 is concentrated in euchromatin domains, specifically in perichromatin fibrils, nuclear sites of transcription and cotranscriptional splicing. In these structures, TDP-43 colocalizes with 5'-fluorouridine incorporation sites into nascent pre-mRNA. TDP-43 is absent in transcriptionally silent centromeric and telomeric heterochromatin, as well as in the Cajal body, a transcription free nuclear compartment. Furthermore, a weak TDP-43 immunolabeling is found in nuclear speckles of splicing factors. The specific localization of TDP-43 in active sites of transcription and cotranscriptional splicing is consistent with biochemical data indicating a role of TDP-43 in the regulation of transcription and alternative splicing.
Collapse
Affiliation(s)
- Iñigo Casafont
- Department of Anatomy and Cell Biology and Centro de Investigación Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria, 39011 Santander, Spain
| | | | | | | | | |
Collapse
|
47
|
Jellinger KA. Recent advances in our understanding of neurodegeneration. J Neural Transm (Vienna) 2009; 116:1111-62. [DOI: 10.1007/s00702-009-0240-y] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 05/05/2009] [Indexed: 12/12/2022]
|