1
|
Schwarz JA, Schulz P, Utz J, Rudtke L, Jablonowski J, Klement N, Lewczuk P, Kornhuber J, Maler JM, Oberstein TJ. Comparison of ERlangen Score with pTau/Aβ1-42 Ratio for Predicting Cognitive Decline and Conversion to Alzheimer's Disease. Brain Sci 2025; 15:334. [PMID: 40309797 PMCID: PMC12026031 DOI: 10.3390/brainsci15040334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 05/02/2025] Open
Abstract
Background/Objectives: The ERlangen Score (ERS) and the pTau/Aβ1-42 ratio are dementia risk scores that use only surrogate markers of amyloid and tau pathology, whose performance has taken on added importance with the advent of anti-amyloid antibody therapies. Direct comparisons between the scores are limited, which is why the performance of the ERlangen Score (ERS) and the pTau/Aβ1-42 ratio in predicting cognitive decline and dementia risk were compared. Methods: Measurements of Aβ1-42, Aβ1-40, and pTau181 were conducted in cerebrospinal fluid samples using immunoassays. Linear mixed models and the area under the receiver operating characteristic curve (AUC, receiver operating characteristic = ROC) of 259 non-demented subjects were calculated. Results: The pTau/Aβ1-42 ratio correctly identified 55 out of 60 individuals with a positive Aβ1-42/Aβ1-40 ratio and pTau181 as having Alzheimer's disease (AD), while the ERS correctly identified all of these individuals. The model using the ERS to predict cognitive trajectories (Akaike Information Criterion AIC = 2365) exhibited a marginally superior fit than the model using the pTau/Aβ1-42 ratio (AIC = 2371). There was no statistically significant difference in the AUC of the ERS (0.717) for dementia risk compared to the pTau/Aβ1-42 ratio (0.739), p = 0.179. However, when the Aβ1-42/Aβ1-40 ratio was not included in the ERS (AUC = 0.685), the pTau/Aβ1-42 score was found to be statistically significantly better, p = 0.007. Conclusions: The ERS showed an advantage in grouping, identifying all patients with a positive Aβ1-42/Aβ1-40 ratio and elevated pTau181 as having AD. The ERS and pTau/Aβ1-42 ratio were comparable in predicting dementia or cognitive decline. However, when the Aβ1-42/Aβ1-40 ratio is not available, the pTau/Aβ1-42 ratio should be preferred.
Collapse
Affiliation(s)
- Julian Alexander Schwarz
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.A.S.)
| | - Pauline Schulz
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.A.S.)
| | - Janine Utz
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.A.S.)
| | - Laura Rudtke
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.A.S.)
| | - Johannes Jablonowski
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.A.S.)
| | - Neele Klement
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.A.S.)
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.A.S.)
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-267 Białystok, Poland
- Department of Biochemical Diagnostics, University Hospital of Bialystok, 15-267 Białystok, Poland
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.A.S.)
| | - Juan Manuel Maler
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.A.S.)
| | - Timo Jan Oberstein
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.A.S.)
| |
Collapse
|
2
|
Kulczyńska-Przybik A, Dulewicz M, Doroszkiewicz J, Borawska R, Słowik A, Zetterberg H, Hanrieder J, Blennow K, Mroczko B. The Relationships between Cerebrospinal Fluid Glial (CXCL12, CX3CL, YKL-40) and Synaptic Biomarkers (Ng, NPTXR) in Early Alzheimer's Disease. Int J Mol Sci 2023; 24:13166. [PMID: 37685973 PMCID: PMC10487764 DOI: 10.3390/ijms241713166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
In addition to amyloid and tau pathology in the central nervous system (CNS), inflammatory processes and synaptic dysfunction are highly important mechanisms involved in the development and progression of dementia diseases. In the present study, we conducted a comparative analysis of selected pro-inflammatory proteins in the CNS with proteins reflecting synaptic damage and core biomarkers in mild cognitive impairment (MCI) and early Alzheimer's disease (AD). To our knowledge, no studies have yet compared CXCL12 and CX3CL1 with markers of synaptic disturbance in cerebrospinal fluid (CSF) in the early stages of dementia. The quantitative assessment of selected proteins in the CSF of patients with MCI, AD, and non-demented controls (CTRL) was performed using immunoassays (single- and multiplex techniques). In this study, increased CSF concentration of CX3CL1 in MCI and AD patients correlated positively with neurogranin (r = 0.74; p < 0.001, and r = 0.40; p = 0.020, respectively), ptau181 (r = 0.49; p = 0.040), and YKL-40 (r = 0.47; p = 0.050) in MCI subjects. In addition, elevated CSF levels of CXCL12 in the AD group were significantly associated with mini-mental state examination score (r = -0.32; p = 0.040). We found significant evidence to support an association between CX3CL1 and neurogranin, already in the early stages of cognitive decline. Furthermore, our findings indicate that CXCL12 might be a useful marker for tract severity of cognitive impairment.
Collapse
Affiliation(s)
| | - Maciej Dulewicz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Julia Doroszkiewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Renata Borawska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Agnieszka Słowik
- Department of Neurology, Jagiellonian University, 30-688 Kraków, Poland
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 405 30 Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London WC1N 3AR, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792-2460, USA
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 405 30 Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- SciLifeLab, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 405 30 Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
3
|
Yosypyshyn D, Kučikienė D, Ramakers I, Schulz JB, Reetz K, Costa AS. Clinical characteristics of patients with suspected Alzheimer's disease within a CSF Aß-ratio grey zone. Neurol Res Pract 2023; 5:40. [PMID: 37533121 PMCID: PMC10398972 DOI: 10.1186/s42466-023-00262-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND The AT(N) research framework for Alzheimer's disease (AD) remains unclear on how to best deal with borderline cases. Our aim was to characterise patients with suspected AD with a borderline Aß1-42/Aß1-40 ratio in cerebrospinal fluid. METHODS We analysed retrospective data from two cohorts (memory clinic cohort and ADNI) of patients (n = 63) with an Aß1-42/Aß1-40 ratio within a predefined borderline area-Q1 above the validated cut-off value(grey zone). We compared demographic, clinical, neuropsychological and neuroimaging features between grey zone patients and patients with low Aß1-42 (normal Aß ratio but pathological Aß1-42, n = 42) and patients with AD (pathological Aß, P-Tau, und T-Tau, n = 80). RESULTS Patients had mild cognitive impairment or mild dementia and a median age of 72 years. Demographic and general clinical characteristics did not differ between the groups. Patients in the grey zone group were the least impaired in cognition. However, they overlapped with the low Aß1-42 group in verbal episodic memory performance, especially in delayed recall and recognition. The grey zone group had less severe medial temporal atrophy, but mild posterior atrophy and mild white matter hyperintensities, similar to the low Aß1-42 group. CONCLUSIONS Patients in the Aß ratio grey zone were less impaired, but showed clinical overlap with patients on the AD continuum. These borderline patients may be at an earlier disease stage. Assuming an increased risk of AD and progressive cognitive decline, careful consideration of clinical follow-up is recommended when using dichotomous approaches to classify Aß status.
Collapse
Affiliation(s)
- Dariia Yosypyshyn
- Department of Neurology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Domantė Kučikienė
- Department of Neurology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Inez Ramakers
- Department of Neurology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | - Jörg B Schulz
- Department of Neurology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
- JARA Institute Molecular Neuroscience and Neuroimaging, RWTH Aachen & Forschungszentrum Jülich, Aachen, Germany
| | - Kathrin Reetz
- Department of Neurology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.
- JARA Institute Molecular Neuroscience and Neuroimaging, RWTH Aachen & Forschungszentrum Jülich, Aachen, Germany.
| | - Ana Sofia Costa
- Department of Neurology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
- JARA Institute Molecular Neuroscience and Neuroimaging, RWTH Aachen & Forschungszentrum Jülich, Aachen, Germany
| |
Collapse
|
4
|
Sembill JA, Lusse C, Linnerbauer M, Sprügel MI, Mrochen A, Knott M, Engelhorn T, Schmidt MA, Doerfler A, Oberstein TJ, Maler JM, Kornhuber J, Lewczuk P, Rothhammer V, Schwab S, Kuramatsu JB. Cerebrospinal fluid biomarkers for cerebral amyloid angiopathy. Brain Commun 2023; 5:fcad159. [PMID: 37389304 PMCID: PMC10300526 DOI: 10.1093/braincomms/fcad159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/10/2023] [Accepted: 05/17/2023] [Indexed: 07/01/2023] Open
Abstract
Integrating cerebrospinal fluid-biomarkers into diagnostic workup of patients with sporadic cerebral amyloid angiopathy may support early and correct identification. We aimed to identify and validate clinical- and cerebrospinal fluid-biomarkers for in vivo diagnosis of cerebral amyloid angiopathy. This observational cohort study screened 2795 consecutive patients admitted for cognitive complaints to the academic departments of neurology and psychiatry over a 10-year period (2009-2018). We included 372 patients with available hemosiderin-sensitive MR imaging and cerebrospinal fluid-based neurochemical dementia diagnostics, i.e. Aβ40, Aβ42, t-tau, p-tau. We investigated the association of clinical- and cerebrospinal fluid-biomarkers with the MRI-based diagnosis of cerebral amyloid angiopathy, applying confounder-adjusted modelling, receiver operating characteristic and unsupervised cluster analyses. We identified 67 patients with cerebral amyloid angiopathy, 76 patients with Alzheimer's disease, 75 patients with mild cognitive impairment due to Alzheimer's disease, 76 patients with mild cognitive impairment with unlikely Alzheimer's disease and 78 healthy controls. Patients with cerebral amyloid angiopathy showed a specific cerebrospinal fluid pattern: average concentration of Aß40 [13 792 pg/ml (10 081-18 063)] was decreased compared to all controls (P < 0.05); Aß42 [634 pg/ml (492-834)] was comparable to Alzheimer's disease and mild cognitive impairment due to Alzheimer's disease (P = 0.10, P = 0.93) but decreased compared to mild cognitive impairment and healthy controls (both P < 0.001); p-tau [67.3 pg/ml (42.9-91.9)] and t-tau [468 pg/ml (275-698)] were decreased compared to Alzheimer's disease (P < 0.001, P = 0.001) and mild cognitive impairment due to Alzheimer's disease (P = 0.001, P = 0.07), but elevated compared to mild cognitive impairment and healthy controls (both P < 0.001). Multivariate modelling validated independent clinical association of cerebral amyloid angiopathy with older age [odds-ratio: 1.06, 95% confidence interval (1.02-1.10), P < 0.01], prior lobar intracerebral haemorrhage [14.00 (2.64-74.19), P < 0.01], prior ischaemic stroke [3.36 (1.58-7.11), P < 0.01], transient focal neurologic episodes (TFNEs) [4.19 (1.06-16.64), P = 0.04] and gait disturbance [2.82 (1.11-7.15), P = 0.03]. For cerebrospinal fluid-biomarkers per 1 pg/ml, both lower Aß40 [0.9999 (0.9998-1.0000), P < 0.01] and lower Aß42 levels [0.9989 (0.9980-0.9998), P = 0.01] provided an independent association with cerebral amyloid angiopathy controlled for all aforementioned clinical confounders. Both amyloid biomarkers showed good discrimination for diagnosis of cerebral amyloid angiopathy among adjusted receiver operating characteristic analyses (area under the receiver operating characteristic curves, Aß40: 0.80 (0.73-0.86), P < 0.001; Aß42: 0.81 (0.75-0.88), P < 0.001). Unsupervised Euclidian clustering of all cerebrospinal fluid-biomarker-profiles resulted in distinct segregation of cerebral amyloid angiopathy patients from all controls. Together, we demonstrate that a distinctive set of cerebrospinal fluid-biomarkers effectively differentiate cerebral amyloid angiopathy patients from patients with Alzheimer's disease, mild cognitive impairment with or without underlying Alzheimer's disease, and healthy controls. Integrating our findings into a multiparametric approach may facilitate diagnosing cerebral amyloid angiopathy, and may aid clinical decision-making, but warrants future prospective validation.
Collapse
Affiliation(s)
- Jochen A Sembill
- Department of Neurology, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Christoph Lusse
- Department of Neurology, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Mathias Linnerbauer
- Department of Neurology, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Maximilian I Sprügel
- Department of Neurology, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Anne Mrochen
- Department of Neurology, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Michael Knott
- Department of Neuroradiology, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Tobias Engelhorn
- Department of Neuroradiology, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Manuel Alexander Schmidt
- Department of Neuroradiology, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Timo Jan Oberstein
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Juan Manuel Maler
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, and Department of Biochemical Diagnostics, University Hospital of Bialystok, 15-090 Bialystok, Poland
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Stefan Schwab
- Department of Neurology, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Joji B Kuramatsu
- Correspondence to: Joji B. Kuramatsu, MD Department of Neurology, University Hospital Erlangen Schwabachanlage 6, 91054 Erlangen, Germany E-mail:
| |
Collapse
|
5
|
Alzheimer's Disease-Biochemical and Psychological Background for Diagnosis and Treatment. Int J Mol Sci 2023; 24:ijms24021059. [PMID: 36674580 PMCID: PMC9866942 DOI: 10.3390/ijms24021059] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
There is a paucity of empirical research on the use of non-pharmacological interventions to both treat and curb the spread of Alzheimer's disease (AD) across the globe. This paper examines the biochemical and clinical outlook and the social implications of the condition in relation to psychological aspects that may indicate a direction for further interventions. There is a scarcity of research on the effectiveness of using various psychological aspects of AD, a disease characterized by a process of transition from health and independence to a dependent state with a progressive loss of memory and functional skills. The paper investigates the biochemical and psychological aspects of AD and their significance for improving quality of life for patients with this disease. Psychological interventions based on, among other factors, biochemical studies, are conducted to improve the emotional wellbeing of AD patients and may assist in slowing down the progression of the disease. To date, however, no effective methods of AD treatment have been established.
Collapse
|
6
|
Utz J, Olm P, Jablonowski J, Siegmann EM, Spitzer P, Lewczuk P, Kornhuber J, Maler JM, Oberstein TJ. Reconceptualization of the Erlangen Score for the Assessment of Dementia Risk: The ERlangen Score. J Alzheimers Dis 2023; 96:265-275. [PMID: 37742651 PMCID: PMC10657695 DOI: 10.3233/jad-230524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND The established Erlangen Score (ES) for the interpretation of cerebrospinal fluid (CSF) biomarkers in the diagnostics of Alzheimer's disease (AD) uses markers of amyloidopathy and tauopathy, equally weighted to form an easy-interpretable ordinal scale. However, these biomarkers are not equally predictive for AD. OBJECTIVE The higher weighting of the Aβ42/Aβ40 ratio, as a reconceptualized ERlangen Score (ERS), was tested for advantages in diagnostic performance. METHODS Non-demented subjects (N = 154) with a mean follow up of 5 years were assigned to a group ranging from 0 to 4 in ES or ERS. Psychometric trajectories and dementia risk were assessed. RESULTS The distribution of subjects between ES and ERS among the groups differed considerably, as grouping allocated 32 subjects to ES group 2, but only 2 to ERS group 2. The discriminative accuracy between the ES (AUC 73.2%, 95% CI [64.2, 82.2]) and ERS (AUC 72.0%, 95% CI [63.1, 81.0]) for dementia risk showed no significant difference. Without consideration of the Aβ42/Aβ40 ratio in ES grouping, the optimal cut-off of the ES shifted to ≥2. CONCLUSIONS The ERS showed advantages over the ES in test interpretation with comparable overall test performance, as fewer cases were allocated to the intermediate risk group. The established cut-off of ≥2 can be maintained for the ERS, whereas it must be adjusted for the ES when determining the Aβ42/Aβ40 ratio.
Collapse
Affiliation(s)
- Janine Utz
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Bayern, Germany
| | - Pauline Olm
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Bayern, Germany
| | - Johannes Jablonowski
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Bayern, Germany
| | - Eva-Maria Siegmann
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Bayern, Germany
| | - Philipp Spitzer
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Bayern, Germany
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Bayern, Germany
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, and Department of Biochemical Diagnostics, University Hospital of Bialystok, Białystok, Poland
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Bayern, Germany
| | - Juan Manuel Maler
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Bayern, Germany
| | - Timo Jan Oberstein
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Bayern, Germany
| |
Collapse
|
7
|
Gu J, Huang X, Zhang Y, Bao C, Zhou Z, Tong H, Jin J. Cerebrospinal fluid interleukin-6 is a potential diagnostic biomarker for central nervous system involvement in adult acute myeloid leukemia. Front Oncol 2022; 12:1013781. [DOI: 10.3389/fonc.2022.1013781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
ObjectiveWe evaluated the correlation between cerebrospinal fluid (CSF) cytokine levels and central nervous system (CNS) involvement in adult acute myeloid leukemia (AML).MethodsThe study sample consisted of 90 patients diagnosed with AML and 20 with unrelated CNS involvement. The AML group was divided into two sub-groups: those with (CNS+, n=30) and without CNS involvement (CNS-, n=60). We used a cytometric bead assay to measure CSF interleukin (IL)-2, IL-4, IL-6, and IL-10, tumor necrosis factor-α, interferon-γ, and IL-17A. We used receiver operating characteristic curves to evaluate the ability of CSF cytokine levels to identify CNS involvement in adult AML.ResultsCSF IL-6 levels were significantly higher in CNS+adult AML patients and positively correlated with the lactate dehydrogenase levels (r=0.738, p<0.001) and white blood cell (WBC) count (r=0.455, p=0.012) in the blood, and the protein (r=0.686, p<0.001) as well as WBC count in the CSF (r=0.427, p=0.019). Using a CSF IL-6 cut-off value of 8.27 pg/ml yielded a diagnostic sensitivity and specificity was 80.00% and 88.46%, respectively (AUC, 0.8923; 95% CI, 0.8168–0.9678). After treating a subset of tested patients, their CSF IL-6 levels decreased. Consequently, the elevated CSF IL-6 levels remaining in CNS+ adult AML patients post-treatment were associated with disease progression.ConclusionCSF IL-6 is a promising marker for the diagnosis of adult AML with CNS involvement and a crucial dynamic indicator for therapeutic response.
Collapse
|
8
|
Delaby C, Teunissen CE, Blennow K, Alcolea D, Arisi I, Amar EB, Beaume A, Bedel A, Bellomo G, Bigot‐Corbel E, Bjerke M, Blanc‐Quintin M, Boada M, Bousiges O, Chapman MD, DeMarco ML, D'Onofrio M, Dumurgier J, Dufour‐Rainfray D, Engelborghs S, Esselmann H, Fogli A, Gabelle A, Galloni E, Gondolf C, Grandhomme F, Grau‐Rivera O, Hart M, Ikeuchi T, Jeromin A, Kasuga K, Keshavan A, Khalil M, Körtvelyessy P, Kulczynska‐Przybik A, Laplanche J, Lewczuk P, Li Q, Lleó A, Malaplate C, Marquié M, Masters CL, Mroczko B, Nogueira L, Orellana A, Otto M, Oudart J, Paquet C, Paoletti FP, Parnetti L, Perret‐Liaudet A, Peoc'h K, Poesen K, Puig‐Pijoan A, Quadrio I, Quillard‐Muraine M, Rucheton B, Schraen S, Schott JM, Shaw LM, Suárez‐Calvet M, Tsolaki M, Tumani H, Udeh‐Momoh CT, Vaudran L, Verbeek MM, Verde F, Vermunt L, Vogelgsang J, Wiltfang J, Zetterberg H, Lehmann S. Clinical reporting following the quantification of cerebrospinal fluid biomarkers in Alzheimer's disease: An international overview. Alzheimers Dement 2022; 18:1868-1879. [PMID: 34936194 PMCID: PMC9787404 DOI: 10.1002/alz.12545] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 01/28/2023]
Abstract
INTRODUCTION The current practice of quantifying cerebrospinal fluid (CSF) biomarkers as an aid in the diagnosis of Alzheimer's disease (AD) varies from center to center. For a same biochemical profile, interpretation and reporting of results may differ, which can lead to misunderstandings and raises questions about the commutability of tests. METHODS We obtained a description of (pre-)analytical protocols and sample reports from 40 centers worldwide. A consensus approach allowed us to propose harmonized comments corresponding to the different CSF biomarker profiles observed in patients. RESULTS The (pre-)analytical procedures were similar between centers. There was considerable heterogeneity in cutoff definitions and report comments. We therefore identified and selected by consensus the most accurate and informative comments regarding the interpretation of CSF biomarkers in the context of AD diagnosis. DISCUSSION This is the first time that harmonized reports are proposed across worldwide specialized laboratories involved in the biochemical diagnosis of AD.
Collapse
Affiliation(s)
- Constance Delaby
- LBPC‐PPCUniv MontpellierCHU MontpellierINSERMMontpellierFrance,Hospital de la Santa Creu i Sant Pau ‐ Biomedical Research Institute Sant Pau ‐ Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Charlotte E. Teunissen
- Neurochemistry LabDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam UMCVrije Universiteit AmsterdamAmsterdamNetherlands
| | - Kaj Blennow
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Daniel Alcolea
- Hospital de la Santa Creu i Sant Pau ‐ Biomedical Research Institute Sant Pau ‐ Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Ivan Arisi
- European Brain Research Institute (EBRI) “Rita Levi‐Montalcini”RomaItaly
| | - Elodie Bouaziz Amar
- Université de ParisCognitive Neurology CenterGHU APHP Nord Lariboisière Fernand‐Widal HospitalParisFrance
| | | | | | - Giovanni Bellomo
- Lab of Clinical NeurochemistrySection of NeurologyDept. of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | | | - Maria Bjerke
- Vrije Universiteit BrusselCenter for Neurosciences and Department of Clinical BiologyClinical Neurochemistry LaboratoryUniversitair Ziekenhuis BrusselBrusselsBelgium,Department of Biomedical Sciences, Institute Born‐BungeUniversity of AntwerpAntwerpBelgium
| | | | - Mercè Boada
- Research Center and Memory ClinicFundació ACEInstitut Català de Neurociències Aplicades and Universitat Internacional de Catalunya (UIC)BarcelonaSpain,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos IIIMadridSpain
| | - Olivier Bousiges
- Laboratoire de Biochimie et Biologie Moléculaire, et CNRSICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg)Team IMISHôpitaux Universitaires de StrasbourgStrasbourgFrance
| | - Miles D Chapman
- Department of NeuroimmunologyNational Hospital for Neurology and Neurosurgery, UCL Queen SquareLondonUK
| | - Mari L. DeMarco
- Department of Pathology and Laboratory MedicineSt. Paul's Hospital, Providence Health Care, Vancouver, Canada & Department of Pathology & Laboratory MedicineUniversity of British ColumbiaVancouverCanada
| | - Mara D'Onofrio
- European Brain Research Institute (EBRI) “Rita Levi‐Montalcini”RomaItaly
| | - Julien Dumurgier
- Université de ParisCognitive Neurology CenterGHU APHP Nord Lariboisière Fernand‐Widal HospitalParisFrance
| | | | - Sebastiaan Engelborghs
- Department of Biomedical Sciences, Institute Born‐BungeUniversity of AntwerpAntwerpBelgium,Vrije Universiteit BrusselUniversitair Ziekenhuis BrusselCenter for Neurosciences and Department of NeurologyBrusselsBelgium
| | - Hermann Esselmann
- Department of Psychiatry and PsychotherapyUniversity Medical Center Goettingen (UMGGoettingenGermany
| | - Anne Fogli
- CHU Clermont‐FerrandClermont‐FerrandFrance
| | - Audrey Gabelle
- LBPC‐PPCUniv MontpellierCHU MontpellierINSERMMontpellierFrance
| | | | | | | | - Oriol Grau‐Rivera
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain,Servei de NeurologiaHospital del MarUnitat de deteriorament cognitiu i transtorns del movimentBarcelonaSpain,IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Melanie Hart
- Department of NeuroimmunologyNational Hospital for Neurology and Neurosurgery, UCL Queen SquareLondonUK
| | - Takeshi Ikeuchi
- Dept. of Molecular GeneticsCenter for BioresourcesBrain Research InstituteNiigata UniversityNiigataJapan
| | | | - Kensaku Kasuga
- Dept. of Molecular GeneticsCenter for BioresourcesBrain Research InstituteNiigata UniversityNiigataJapan
| | - Ashvini Keshavan
- Dementia Research CentreUCL Queen Square Institute of NeurologyLondonUK
| | | | - Peter Körtvelyessy
- Freie Universität Berlin and Humboldt‐Universität zu BerlinDepartment of NeurologyGerman Center for Neurodegenerative Diseases, Magdeburg, Germany and Charité‐Universitäts medizin BerlinBerlinGermany
| | | | - Jean‐Louis Laplanche
- Université de ParisCognitive Neurology CenterGHU APHP Nord Lariboisière Fernand‐Widal HospitalParisFrance
| | - Piotr Lewczuk
- Department of Neurodegeneration DiagnosticsMedical University of BialystokBialystokPoland,Lab for Clinical Neurochemistry and Neurochemical Dementia DiagnosticsUniversitätsklinikum Erlangen and Friedrich‐Alexander Universität Erlangen‐NürnbergErlangenGermany
| | - Qiao‐Xin Li
- Florey Institute and The University of MelbourneMelbourneVictoriaAustralia
| | - Alberto Lleó
- Hospital de la Santa Creu i Sant Pau ‐ Biomedical Research Institute Sant Pau ‐ Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Catherine Malaplate
- CHRU de NancyLaboratoire de BiochimieBiologie Moléculaire et Nutrition/ Université de LorraineNancyFrance
| | - Marta Marquié
- Research Center and Memory ClinicFundació ACEInstitut Català de Neurociències Aplicades and Universitat Internacional de Catalunya (UIC)BarcelonaSpain,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos IIIMadridSpain
| | - Colin L. Masters
- Florey Institute and The University of MelbourneMelbourneVictoriaAustralia
| | - Barbara Mroczko
- Department of Neurodegeneration DiagnosticsMedical University of BialystokBialystokPoland
| | - Léonor Nogueira
- Laboratoire de Biologie Cellulaire et CytologieCHU PURPANToulouseFrance
| | - Adelina Orellana
- Research Center and Memory ClinicFundació ACEInstitut Català de Neurociències Aplicades and Universitat Internacional de Catalunya (UIC)BarcelonaSpain,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos IIIMadridSpain
| | - Markus Otto
- Department of Neurology and CSF LaboratoryUniversity of UlmUlmGermany
| | | | - Claire Paquet
- Université de ParisCognitive Neurology CenterGHU APHP Nord Lariboisière Fernand‐Widal HospitalParisFrance
| | - Federico Paolini Paoletti
- Lab of Clinical NeurochemistrySection of NeurologyDept. of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Lucilla Parnetti
- Lab of Clinical NeurochemistrySection of NeurologyDept. of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Armand Perret‐Liaudet
- Lyon Neuroscience Research Center BIORAN Team ‐ CNRS UMR 5292INSERM U1028Lyon University HospitalLyonFrance
| | - Katell Peoc'h
- Université de Paris GHU APHP Nord Beaujon HospitalParisFrance
| | - Koen Poesen
- Laboratory for Molecular Neurobiomarker Research (LaMoN)Department of NeurosciencesKU LeuvenLeuven Brain InstituteLeuvenBelgium
| | - Albert Puig‐Pijoan
- Servei de NeurologiaHospital del MarUnitat de deteriorament cognitiu i transtorns del movimentBarcelonaSpain,IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
| | - Isabelle Quadrio
- Lyon Neuroscience Research Center BIORAN Team ‐ CNRS UMR 5292INSERM U1028Lyon University HospitalLyonFrance
| | - Muriel Quillard‐Muraine
- UNIROUENRouen University HospitalDepartment of Clinical biologyBiochemistry laboratoryNormandie UnivRouenFrance
| | | | - Susanna Schraen
- InsermCHU LilleU1172‐LilNCogLICENDLabEx DISTALZUniversité de LilleLilleFrance
| | | | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine HospitalUniversity of PennsylvaniaPennsylvaniaUSA
| | - Marc Suárez‐Calvet
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain,Servei de NeurologiaHospital del MarUnitat de deteriorament cognitiu i transtorns del movimentBarcelonaSpain,IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Magda Tsolaki
- 1st Department of NeurologySchool of MedicineFaculty of Health of SciencesAristotle University of ThessalonikiThessalonikiGreece
| | - Hayrettin Tumani
- Department of Neurology and CSF LaboratoryUniversity of UlmUlmGermany
| | | | | | - Marcel M Verbeek
- Donders Institute for Brain, Cognition and BehaviourRadboud Alzheimer CentreDepartments of Neurology and Laboratory MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Federico Verde
- Department of Neurology ‐ Stroke Unit and Laboratory of NeuroscienceIRCCS Istituto Auxologico ItalianoMilanItaly,Department of Pathophysiology and Transplantation“Dino Ferrari” Center, Università degli Studi di MilanoMilanItaly
| | - Lisa Vermunt
- Neurochemistry LabDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam UMCVrije Universiteit AmsterdamAmsterdamNetherlands
| | - Jonathan Vogelgsang
- Department of Psychiatry and PsychotherapyUniversity Medical Center Goettingen (UMGGoettingenGermany,McLean HospitalTranslational Neuroscience LaboratoryHarvard Medical SchoolBelmontMassachusettsUSA
| | - Jens Wiltfang
- Department of Psychiatry and PsychotherapyUniversity Medical Center Goettingen (UMGGoettingenGermany,German Center for Neurodegenerative Diseases (DZNE)GoettingenGermany,Neurosciences and Signaling GroupInstitute of Biomedicine (iBiMED)Department of Medical SciencesUniversity of AveiroAveiroPortugal
| | - Henrik Zetterberg
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden,Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden,UK Dementia Research Institute at UCLLondonUK,Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
| | - Sylvain Lehmann
- LBPC‐PPCUniv MontpellierCHU MontpellierINSERMMontpellierFrance
| |
Collapse
|
9
|
Xu C, Zhao L, Dong C. A Review of Application of Aβ42/40 Ratio in Diagnosis and Prognosis of Alzheimer’s Disease. J Alzheimers Dis 2022; 90:495-512. [DOI: 10.3233/jad-220673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The number of patients with Alzheimer’s disease (AD) and non-Alzheimer’s disease (non-AD) has drastically increased over recent decades. The amyloid cascade hypothesis attributes a vital role to amyloid-β protein (Aβ) in the pathogenesis of AD. As the main pathological hallmark of AD, amyloid plaques consist of merely the 42 and 40 amino acid variants of Aβ (Aβ 42 and Aβ 40). The cerebrospinal fluid (CSF) biomarker Aβ 42/40 has been extensively investigated and eventually integrated into important diagnostic tools to support the clinical diagnosis of AD. With the development of highly sensitive assays and technologies, blood-based Aβ 42/40, which was obtained using a minimally invasive and cost-effective method, has been proven to be abnormal in synchrony with CSF biomarker values. This paper presents the recent progress of the CSF Aβ 42/40 ratio and plasma Aβ 42/40 for AD as well as their potential clinical application as diagnostic markers or screening tools for dementia.
Collapse
Affiliation(s)
- Chang Xu
- Department of Neurology, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Li Zhao
- Department of Neurology, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Chunbo Dong
- Department of Neurology, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
10
|
Dulewicz M, Kulczyńska-Przybik A, Mroczko P, Kornhuber J, Lewczuk P, Mroczko B. Biomarkers for the Diagnosis of Alzheimer’s Disease in Clinical Practice: The Role of CSF Biomarkers during the Evolution of Diagnostic Criteria. Int J Mol Sci 2022; 23:ijms23158598. [PMID: 35955728 PMCID: PMC9369334 DOI: 10.3390/ijms23158598] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive condition and the most common cause of dementia worldwide. The neuropathological changes characteristic of the disorder can be successfully detected before the development of full-blown AD. Early diagnosis of the disease constitutes a formidable challenge for clinicians. CSF biomarkers are the in vivo evidence of neuropathological changes developing in the brain of dementia patients. Therefore, measurement of their concentrations allows for improved accuracy of clinical diagnosis. Moreover, AD biomarkers may provide an indication of disease stage. Importantly, the CSF biomarkers of AD play a pivotal role in the new diagnostic criteria for the disease, and in the recent biological definition of AD by the National Institute on Aging, NIH and Alzheimer’s Association. Due to the necessity of collecting CSF by lumbar puncture, the procedure seems to be an important issue not only from a medical, but also a legal, viewpoint. Furthermore, recent technological advances may contribute to the automation of AD biomarkers measurement and may result in the establishment of unified cut-off values and reference limits. Moreover, a group of international experts in the field of AD biomarkers have developed a consensus and guidelines on the interpretation of CSF biomarkers in the context of AD diagnosis. Thus, technological advancement and expert recommendations may contribute to a more widespread use of these diagnostic tests in clinical practice to support a diagnosis of mild cognitive impairment (MCI) or dementia due to AD. This review article presents up-to-date data regarding the usefulness of CSF biomarkers in routine clinical practice and in biomarkers research.
Collapse
Affiliation(s)
- Maciej Dulewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (P.L.); (B.M.)
- Correspondence:
| | - Agnieszka Kulczyńska-Przybik
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (P.L.); (B.M.)
| | - Piotr Mroczko
- Department of Criminal Law and Criminology, Faculty of Law, University of Bialystok, 15-213 Bialystok, Poland;
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Piotr Lewczuk
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (P.L.); (B.M.)
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (P.L.); (B.M.)
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
11
|
Perovnik M, Tomše P, Jamšek J, Emeršič A, Tang C, Eidelberg D, Trošt M. Identification and validation of Alzheimer's disease-related metabolic brain pattern in biomarker confirmed Alzheimer's dementia patients. Sci Rep 2022; 12:11752. [PMID: 35817836 PMCID: PMC9273623 DOI: 10.1038/s41598-022-15667-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
Metabolic brain biomarkers have been incorporated in various diagnostic guidelines of neurodegenerative diseases, recently. To improve their diagnostic accuracy a biologically and clinically homogeneous sample is needed for their identification. Alzheimer's disease-related pattern (ADRP) has been identified previously in cohorts of clinically diagnosed patients with dementia due to Alzheimer's disease (AD), meaning that its diagnostic accuracy might have been reduced due to common clinical misdiagnosis. In our study, we aimed to identify ADRP in a cohort of AD patients with CSF confirmed diagnosis, validate it in large out-of-sample cohorts and explore its relationship with patients' clinical status. For identification we analyzed 2-[18F]FDG PET brain scans of 20 AD patients and 20 normal controls (NCs). For validation, 2-[18F]FDG PET scans from 261 individuals with AD, behavioral variant of frontotemporal dementia, mild cognitive impairment and NC were analyzed. We identified an ADRP that is characterized by relatively reduced metabolic activity in temporoparietal cortices, posterior cingulate and precuneus which co-varied with relatively increased metabolic activity in the cerebellum. ADRP expression significantly differentiated AD from NC (AUC = 0.95) and other dementia types (AUC = 0.76-0.85) and its expression correlated with clinical measures of global cognition and neuropsychological indices in all cohorts.
Collapse
Affiliation(s)
- Matej Perovnik
- Department of Neurology, University Medical Center Ljubljana, Zaloska cesta 2, 1000, Ljubljana, Slovenia.
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia.
| | - Petra Tomše
- Department of Nuclear Medicine, University Medical Center Ljubljana, Zaloska cesta 2, 1000, Ljubljana, Slovenia
| | - Jan Jamšek
- Department of Nuclear Medicine, University Medical Center Ljubljana, Zaloska cesta 2, 1000, Ljubljana, Slovenia
| | - Andreja Emeršič
- Laboratory for CSF Diagnostics, Department of Neurology, University Medical Center Ljubljana, Zaloska cesta 2, 1000, Ljubljana, Slovenia
| | - Chris Tang
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Maja Trošt
- Department of Neurology, University Medical Center Ljubljana, Zaloska cesta 2, 1000, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
- Department of Nuclear Medicine, University Medical Center Ljubljana, Zaloska cesta 2, 1000, Ljubljana, Slovenia
| |
Collapse
|
12
|
Kulczyńska-Przybik A, Dulewicz M, Słowik A, Borawska R, Kułakowska A, Kochanowicz J, Mroczko B. The Clinical Significance of Cerebrospinal Fluid Reticulon 4 (RTN4) Levels in the Differential Diagnosis of Neurodegenerative Diseases. J Clin Med 2021; 10:jcm10225281. [PMID: 34830564 PMCID: PMC8622503 DOI: 10.3390/jcm10225281] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Neurodegenerative diseases (NDs) belong to the top global causes of mortality. Diagnostic approaches to improve early diagnosis and differentiation of these diseases are constantly being sought. Therefore, we aimed to assess the cerebrospinal fluid (CSF) concentrations of Reticulon 4 (RTN4) in patients with neurodegenerative diseases and evaluate the potential clinical usefulness of this protein. RTNs are transmembrane proteins mediating neuroanatomical plasticity and functional recovery after central nervous system injury or diseases. According to our best knowledge, this is the first investigation providing the data concerning the dynamic of CSF RTN4 protein levels in patients with different NDs. Methods: Overall, 77 newly diagnosed patients with neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and multiple sclerosis (MS), as well as 21 controls, were enrolled in the study. The CSF concentrations of tested proteins were assessed using immunological assays. Results: We revealed significantly higher CSF RTN4A levels in patients with AD, PD, and MS in comparison to the controls. Moreover, the comparative analysis of RTN4 concentration between different neurodegenerative diseases revealed the highest concentration of RTN4A in AD patients and a statistically significant difference between AD vs. PD, and AD vs. MS groups. The increased CSF level of the protein correlated with Tau, and pTau181 proteins in AD as well as in PD patients. Conclusions: Our study presents a previously not identified clinical utility of RTN4 in the differential diagnosis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Agnieszka Kulczyńska-Przybik
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (M.D.); (R.B.); (B.M.)
- Correspondence:
| | - Maciej Dulewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (M.D.); (R.B.); (B.M.)
| | - Agnieszka Słowik
- Department of Neurology, Jagiellonian University, 30-688 Kraków, Poland;
| | - Renata Borawska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (M.D.); (R.B.); (B.M.)
| | - Alina Kułakowska
- Department of Neurology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.); (J.K.)
| | - Jan Kochanowicz
- Department of Neurology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.); (J.K.)
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (M.D.); (R.B.); (B.M.)
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
13
|
Dulewicz M, Kulczyńska-Przybik A, Słowik A, Borawska R, Mroczko B. Neurogranin and Neuronal Pentraxin Receptor as Synaptic Dysfunction Biomarkers in Alzheimer's Disease. J Clin Med 2021; 10:jcm10194575. [PMID: 34640593 PMCID: PMC8509697 DOI: 10.3390/jcm10194575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022] Open
Abstract
Synaptic loss and dysfunction are one of the earliest signs of neurodegeneration associated with cognitive decline in Alzheimer’s disease (AD). It seems that by assessing proteins related to synapses, one may reflect their dysfunction and improve the understanding of neurobiological processes in the early stage of the disease. To our best knowledge, this is the first study that analyzes the CSF concentrations of two synaptic proteins together, such as neurogranin (Ng) and neuronal pentraxins receptor (NPTXR) in relation to neurochemical dementia biomarkers in Alzheimer’s disease. Methods: Ng, NPTXR and classical AD biomarkers concentrations were measured in the CSF of patients with AD and non-demented controls (CTRL) using an enzyme-linked immunosorbent assay (ELISA) and Luminex xMAP technology. Results: The CSF level of Ng was significantly higher, whereas the NPTXR was significantly lower in the AD patients than in cognitively healthy controls. As a first, we calculated the NPTXR/Ng ratio as an indicator of synaptic disturbance. The patients with AD presented a significantly decreased NPTXR/Ng ratio. The correlation was observed between both proteins in the AD and the whole study group. Furthermore, the relationship between the Ng level and pTau181 was found in the AD group of patients. Conclusions: The Ng and NPTXR concentrations in CSF are promising synaptic dysfunction biomarkers reflecting pathological changes in AD.
Collapse
Affiliation(s)
- Maciej Dulewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (R.B.); (B.M.)
- Correspondence:
| | - Agnieszka Kulczyńska-Przybik
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (R.B.); (B.M.)
| | - Agnieszka Słowik
- Department of Neurology, Jagiellonian University, 30-688 Krakow, Poland;
| | - Renata Borawska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (R.B.); (B.M.)
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (R.B.); (B.M.)
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
14
|
Cerebrospinal Fluid Biomarkers for Alzheimer's Disease in the Era of Disease-Modifying Treatments. Brain Sci 2021; 11:brainsci11101258. [PMID: 34679323 PMCID: PMC8534246 DOI: 10.3390/brainsci11101258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 01/04/2023] Open
Abstract
Correct in vivo diagnosis of Alzheimer’s disease (AD) helps to avoid administration of disease-modifying treatments in non-AD patients, and allows the possible use of such treatments in clinically atypical AD patients. Cerebrospinal fluid (CSF) biomarkers offer a tool for AD diagnosis. A reduction in CSF β-amyloid (marker of amyloid plaque burden), although compatible with Alzheimer’s pathological change, may also be observed in other dementing disorders, including vascular cognitive disorders due to subcortical small-vessel disease, dementia with Lewy bodies and normal-pressure hydrocephalus. Thus, for the diagnosis of AD, an abnormal result of CSF β-amyloid may not be sufficient, and an increase in phospho-tau (marker of tangle pathology) is also required in order to confirm AD diagnosis in patients with a typical amnestic presentation and reveal underlying AD in patients with atypical or mixed and diagnostically confusing clinical presentations.
Collapse
|
15
|
Fatty Acid Binding Protein 3 (FABP3) and Apolipoprotein E4 (ApoE4) as Lipid Metabolism-Related Biomarkers of Alzheimer's Disease. J Clin Med 2021; 10:jcm10143009. [PMID: 34300173 PMCID: PMC8303862 DOI: 10.3390/jcm10143009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Lipid metabolism-related biomarkers gain increasing researchers interest in the field of neurodegenerative disorders. Mounting evidence have indicated the role of fatty acid-binding proteins and pathology lipid metabolism in Alzheimer’s Disease (AD). The imbalance of fatty acids (FA) and lipids may negatively affect brain functions related to neurodegenerative disorders. The ApoE4 and FABP3 proteins may reflect processes leading to neurodegeneration. This study aimed to evaluate the relationship between the CSF levels of FABP3 and ApoE4 proteins and cognitive decline as well as the diagnostic performance of these candidate biomarkers in AD and mild cognitive impairment (MCI). Methods: A total of 70 subjects, including patients with AD, MCI, and non-demented controls, were enrolled in the study. CSF concentrations of FABP3 and ApoE4 were measured using immunoassay technology. Results: Significantly higher CSF concentrations of FABP3 and ApoE4 were observed in AD patients compared to MCI subjects and individuals without cognitive impairment. Both proteins were inversely associated with Aβ42/40 ratio: ApoE4 (rho = −0.472, p < 0.001), and FABP3 (rho = −0.488, p < 0.001) in the whole study group, respectively. Additionally, FABP3 was negatively correlated with Mini-Mental State Examination score in the whole study cohort (rho = −0.585 p < 0.001). Conclusion: Presented results indicate the pivotal role of FABP3 and ApoE4 in AD pathology as lipid-related biomarkers, but studies on larger cohorts are needed.
Collapse
|
16
|
Winkel I, Ermann N, Żelwetro A, Sambor B, Mroczko B, Kornhuber J, Paradowski B, Lewczuk P. Cerebrospinal fluid α synuclein concentrations in patients with positive AD biomarkers and extrapyramidal symptoms. J Neural Transm (Vienna) 2021; 128:817-825. [PMID: 34036433 PMCID: PMC8205875 DOI: 10.1007/s00702-021-02351-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022]
Abstract
Extrapyramidal symptoms (EP) are not uncommon in Alzheimer's Disease (AD); when present, they negatively influence the course of the disorder. A large proportion of AD patients shows concomitant Lewy bodies' pathology post mortem. Total α Synuclein (αSyn) concentrations are frequently increased in the cerebrospinal fluid (CSF) of AD patients, but are decreased in Parkinson's Disease (PD) and Dementia with Lewy Bodies (DLB). αSyn CSF concentrations in AD patients with EP (EP+) have not been reported so far. αSyn and the four Neurochemical Dementia Diagnostics (NDD) CSF biomarkers, (Aβ1-42, Aβ42/40, Tau, and pTau181), interpreted according to the Erlangen Score algorithm, were measured in patients with positive NDD results and presence of extrapyramidal symptoms (NDD + / EP+; n = 26), in patients with positive NDD results and absence of extrapyramidal symptoms (NDD+ / EP-; n = 54), and in subjects with negative NDD results (NDD-; n = 34). Compared to the NDD- controls (379.8 ± 125.2 pg/mL), NDD+ patients showed, on average, highly significantly increased CSF αSyn (519 ± 141.3 pg/mL, p < 0.01), but without differences between NDD+ / EP+ and NDD+ / EP- subgroups (p = 0. 38). Moderate but highly significant association was observed between concentrations of αSyn and Tau (r = 0.47, p < 0.01) and pTau181 (r = 0.65, p < 0.01). Adjusted for diagnoses, age, and sex, subjects with more advanced neurodegeneration on neuroimaging showed significantly lower αSyn concentrations (p < 0.02). In the setting AD versus controls, the area under the receiver operating characteristic (ROC) curve was 0.804 [0.712; 0.896] with the sensitivity and the specificity of 0.863 and 0.618, respectively. αSyn in AD patients does not differentiate between subjects with- and without EP. Its increased average concentration reflects probably neurodegenerative process, and is not specific for any pathophysiologic mechanisms. Further studies are necessary to explain the role of CSF αSyn as a potential biomarker.
Collapse
Affiliation(s)
- Izabela Winkel
- Dementia Disorders Center of the Medical University of Wrocław, Ścinawa, Poland.,Department and Clinic of Geriatrics, Medical University of Wrocław, Wrocław, Poland
| | - Natalia Ermann
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Agnieszka Żelwetro
- Interdyscyplinarne Studia Doktoranckie Uniwersytetu SWPS, II Wydział Psychologii, Wrocław, Poland
| | | | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, Poland.,Department of Biochemical Diagnostics, University Hospital of Białystok, Białystok, Poland
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany. .,Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, Poland. .,Department of Biochemical Diagnostics, University Hospital of Białystok, Białystok, Poland. .,Department of Psychiatry and Psychotherapy, Lab for Clinical Neurochemistry and Neurochemical Dementia Diagnostics, Schwabachanlage 6, 91054, Erlangen, Germany.
| |
Collapse
|
17
|
Kulczyńska-Przybik A, Słowik A, Mroczko P, Borawski B, Groblewska M, Borawska R, Mroczko B. Cerebrospinal Fluid and Blood CX3CL1 as a Potential Biomarker in Early Diagnosis and Prognosis of Dementia. Curr Alzheimer Res 2020; 17:709-721. [PMID: 33167838 DOI: 10.2174/1567205017666201109095657] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/11/2020] [Accepted: 10/13/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND A growing body of evidence highlights the crucial role of neuroinflammation and chemokine involvement in cognitive impairment pathophysiology. Fractalkine (CX3CL1) appears to be a relevant causative factor in the development of dementia, particularly at the early stages of the disease. However, limited data are available on the levels of CX3CL1 in the cerebrospinal fluid (CSF) and blood. Additionally, to date, its utility as a biomarker for MCI or AD has not been studied. OBJECTIVE The aim of the present study was to evaluate the clinical utility of CX3CL1 in the early diagnosis of cognitive impairment. We also compared the diagnostic usefulness of CX3CL1 with other biomarkers associated with neuroinflammation. METHODS A total of 60 patients with cognitive impairment, including 42 patients with AD and 18 subjects with MCI, as well as 20 cognitively healthy controls were enrolled in the study. CSF and blood concentrations of CX3CL1, CCL-2, and YKL-40 were measured by ELISA. RESULTS Significantly higher CSF and blood concentrations of CX3CL1 were observed in MCI and AD patients compared to older individuals without cognitive impairment. The increase in the levels of CX3CL1 and YKL-40 in non-demented subjects was associated with MCI. The area under the ROC curve for CX3CL1 in MCI subjects was larger in comparison to classical AD markers. CONCLUSION Presented results indicate a crucial role of CX3CL1 in the pathology of cognitive impairment and the potential usefulness of this protein in the early diagnosis of MCI and AD.
Collapse
Affiliation(s)
| | - Agnieszka Słowik
- Department of Neurology, Jagiellonian University, Krakow, Poland
| | - Piotr Mroczko
- Department of Criminal Law and Criminology, Faculty of Law, University of Bialystok, Bialystok, Poland
| | - Bartłomiej Borawski
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Waszyngtona, Bialystok, Poland
| | - Magdalena Groblewska
- Department of Biochemical Diagnostics, University Hospital in Bialystok, Bialystok, Poland
| | - Renata Borawska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Waszyngtona, Bialystok, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Waszyngtona, Bialystok, Poland.,Department of Biochemical Diagnostics, University Hospital in Bialystok, Bialystok, Poland.,Department of Biochemical Diagnostics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
18
|
Skillbäck T, Kornhuber J, Blennow K, Zetterberg H, Lewczuk P. Erlangen Score Predicts Cognitive and Neuroimaging Progression in Mild Cognitive Impairment Stage of Alzheimer's Disease. J Alzheimers Dis 2020; 69:551-559. [PMID: 31104027 DOI: 10.3233/jad-190067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND To alleviate the interpretation of the core Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers, amyloid β1-42 (Aβ42), total tau (T-tau), and phosphorylated tau (P-tau), the Erlangen Score (ES) interpretation algorithm has been proposed. OBJECTIVE In this study, we aim to assess the predictive properties of the ES algorithm on cognitive and neuroimaging outcomes in mild cognitive impairment (MCI). METHODS All MCI subjects with an available baseline CSF sample from ADNI-1 were included (n = 193), and assigned an ES between 0 and 4 based on their baseline CSF biomarker profile. Structural magnetic resonance imaging brain scans and MMSE and ADAS-Cog scores were collected at up to 7 times in follow-up examinations. RESULTS We observed strong and significant correlations between the ES at baseline and neuroimaging and cognitive results with patients with neurochemically probable AD (ES = 4) progressing significantly (p≤0.01) faster than those with a neurochemically improbable AD (ES = 0 or 1), and the subjects with neurochemically possible AD (ES = 2 or 3) in-between these two groups. CONCLUSION This study further demonstrates the utility of the ES algorithm as a as a tool in predicting cognitive and imaging progression in MCI patients.
Collapse
Affiliation(s)
- Tobias Skillbäck
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1, N 3BG, UK.,UK Dementia Research Institute at UCL, London WC1, N 3BG, UK
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Poland
| | | |
Collapse
|
19
|
Diagnostic Impact of Cerebrospinal Fluid Biomarkers in Atypical Dementias in Canada. Can J Neurol Sci 2020; 48:312-320. [PMID: 32892784 DOI: 10.1017/cjn.2020.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND In Canada, standard dementia workup consists of clinical, neurological, and cognitive evaluation, as well as structural brain imaging. For atypical dementia presentations, additional FDG-PET brain imaging is recommended. Cerebrospinal fluid (CSF) biomarkers have recently been proposed as the gold standard for in vivo detection of Alzheimer's disease (AD) pathophysiology (NIA-AA research framework, 2018). As clinical implementation of CSF assessment is still limited in Canada, the present study assessed its impact on diagnostic accuracy in atypical neurodegenerative disorders in the clinical practice. METHODS This retrospective clinical chart review included patients with cognitive complaints who underwent lumbar puncture (LP) in addition to the standard diagnostic workup. CSF analysis determined the presence of biological AD based on reduced amyloid-β42-to-total-tau index (ATI) and increased phosphorylated-tau (p-tau) levels. CSF-based diagnoses were compared to standard workup and FDG-PET-based diagnoses. RESULTS A total of 28 patients with atypical dementia presentations were included in the present study after evaluation for cognitive complaints at a specialized dementia clinic between November 2017 and July 2019. CSF analysis changed or better specified the initial clinical diagnosis in 43.0% of cases (alternative diagnosis revealed in 25% and excluded in 18%). In patients with additional FDG-PET imaging (n = 23), FDG-PET and CSF-based diagnosis did not correspond in 35% of patients, even though FDG-PET appeared to increase diagnostic accuracy compared to the initial clinical diagnosis. CONCLUSION CSF biomarkers improved diagnostic accuracy in atypical cognitively-impaired patients beyond standard workup and FDG-PET imaging. These results support CSF analysis implementation for atypical dementias in Canada, in addition to the standard diagnostic workup.
Collapse
|
20
|
Somers C, Lewczuk P, Sieben A, Van Broeckhoven C, De Deyn PP, Kornhuber J, Martin JJ, Bjerke M, Engelborghs S. Validation of the Erlangen Score Algorithm for Differential Dementia Diagnosis in Autopsy-Confirmed Subjects. J Alzheimers Dis 2020; 68:1151-1159. [PMID: 30883344 PMCID: PMC6484252 DOI: 10.3233/jad-180563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Background: Despite decades of research on the optimization of the diagnosis of Alzheimer’s disease (AD), its biomarker-based diagnosis is being hampered by the lack of comparability of raw biomarker data. In order to overcome this limitation, the Erlangen Score (ES), among other approaches, was set up as a diagnostic-relevant interpretation algorithm. Objective: To validate the ES algorithm in a cohort of neuropathologically confirmed cases with AD (n = 106) and non-AD dementia (n = 57). Methods: Cerebrospinal fluid (CSF) biomarker concentrations of Aβ1-42, T-tau, and P-tau181 were measured with commercially available single analyte ELISA kits. Based on these biomarkers, ES was calculated as previously reported. Results: This algorithm proved to categorize AD in different degrees of likelihood, ranging from neurochemically “normal”, “improbably having AD”, “possibly having AD”, to “probably having AD”, with a diagnostic accuracy of 74% using the neuropathology as a reference. Conclusion: The ability of the ES to overcome the high variability of raw CSF biomarker data may provide a useful diagnostic tool for comparing neurochemical diagnoses between different labs or methods used.
Collapse
Affiliation(s)
- Charisse Somers
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, Poland
| | - Anne Sieben
- Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Peter Paul De Deyn
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Maria Bjerke
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| |
Collapse
|
21
|
Lewczuk P, Łukaszewicz-Zając M, Mroczko P, Kornhuber J. Clinical significance of fluid biomarkers in Alzheimer's Disease. Pharmacol Rep 2020; 72:528-542. [PMID: 32385624 PMCID: PMC7329803 DOI: 10.1007/s43440-020-00107-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 12/23/2022]
Abstract
The number of patients with Alzheimer's Disease (AD) and other types of dementia disorders has drastically increased over the last decades. AD is a complex progressive neurodegenerative disease affecting about 14 million patients in Europe and the United States. The hallmarks of this disease are neurotic plaques consist of the Amyloid-β peptide (Aβ) and neurofibrillary tangles (NFTs) formed of hyperphosphorylated Tau protein (pTau). Currently, four CSF biomarkers: Amyloid beta 42 (Aβ42), Aβ42/40 ratio, Tau protein, and Tau phosphorylated at threonine 181 (pTau181) have been indicated as core neurochemical AD biomarkers. However, the identification of additional fluid biomarkers, useful in the prognosis, risk stratification, and monitoring of drug response is sorely needed to better understand the complex heterogeneity of AD pathology as well as to improve diagnosis of patients with the disease. Several novel biomarkers have been extensively investigated, and their utility must be proved and eventually integrated into guidelines for use in clinical practice. This paper presents the research and development of CSF and blood biomarkers for AD as well as their potential clinical significance. Upper panel: Aβ peptides are released from transmembrane Amyloid Precursor Protein (APP) under physiological conditions (blue arrow). In AD, however, pathologic accumulation of Aβ monomers leads to their accumulation in plaques (red arrow). This is reflected in decreased concentration of Aβ1-42 and decreased Aβ42/40 concentration ratio in the CSF. Lower panel: Phosphorylated Tau molecules maintain axonal structures; hyperphosphorylation of Tau (red arrow) in AD leads to degeneration of axons, and release of pTau molecules, which then accumulate in neurofibrillary tangles. This process is reflected by increased concentrations of Tau and pTau in the CSF.
Collapse
Affiliation(s)
- Piotr Lewczuk
- Lab for Clinical Neurochemistry and Neurochemical Dementia Diagnostics, Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany.
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, Poland.
| | | | - Piotr Mroczko
- Department of Criminal Law and Criminology, Faculty of Law, University of Białystok, Białystok, Poland
| | - Johannes Kornhuber
- Lab for Clinical Neurochemistry and Neurochemical Dementia Diagnostics, Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| |
Collapse
|
22
|
Dodel R, Deuschl G. [Early diagnosis of dementia]. MMW Fortschr Med 2020; 162:60-68. [PMID: 32248504 DOI: 10.1007/s15006-020-0011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Richard Dodel
- Universität Duisburg-Essen, Germaniastrasse 1-3, D-45356, Essen, Deutschland.
| | | |
Collapse
|
23
|
Biochemical Markers in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21061989. [PMID: 32183332 PMCID: PMC7139967 DOI: 10.3390/ijms21061989] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most frequent neurodegenerative diseases affecting more than 35 million people in the world, and its incidence is estimated to triple by 2050. Alzheimer’s disease is an age-related disease characterized by the progressive loss of memory and cognitive function, caused by the unstoppable neurodegeneration and brain atrophy. Current AD treatments only relieve the symptoms. The first molecular signs of the disease identified decades ago and were related to the tau neurofibrillary tangles and the β amyloid plaques. Despite the considerable progress in the diagnostic field, there is no certain knowledge of the specific biomarkers reflecting molecular mechanisms that trigger the symptoms of the disease. Therefore, there is an enormous need to find biomarkers useful for early diagnosis, before the first symptoms appear, and develop new therapeutic targets, which would guarantee improving patients’ quality of life. Researchers from all around the world are looking for biomarkers that can be identified in different biological fluids such as plasma, serum, and cerebrospinal fluid, specific for Alzheimer’s disease. In this review, we would like to resume some of the most interesting discovery in pathological mechanisms underlying Alzheimer’s disease and promising biomarkers.
Collapse
|
24
|
Nabers A, Hafermann H, Wiltfang J, Gerwert K. Aβ and tau structure-based biomarkers for a blood- and CSF-based two-step recruitment strategy to identify patients with dementia due to Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2019; 11:257-263. [PMID: 30911600 PMCID: PMC6416642 DOI: 10.1016/j.dadm.2019.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) diagnosis requires invasive CSF analysis or expensive brain imaging. Therefore, a minimal-invasive reliable and cost-effective blood test is requested to power large clinical AD trials at reduced screening failure. METHODS We applied an immuno-infrared sensor to measure the amyloid-β (Aβ) and tau secondary structure distribution in plasma and CSF as structure-based biomarkers for AD (61 disease controls, 39 AD cases). RESULTS Within a first diagnostic screening step, the structure-based Aβ blood biomarker supports AD identification with a sensitivity of 90%. In a second diagnostic validation step, the combined use of the structure-based CSF biomarkers Aβ and tau excluded false-positive cases which offers an overall specificity of 97%. DISCUSSION The primary Aβ-based blood biomarker funnels individuals with suspected AD for subsequent validation of the diagnosis by structure-based combined analysis of the CSF biomarkers Aβ and tau. Our novel two-step recruitment strategy substantiates the diagnosis of AD with a likelihood of 29.
Collapse
Affiliation(s)
- Andreas Nabers
- Department of Biophysics, Ruhr-University Bochum, Bochum, Germany
| | - Henning Hafermann
- LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August-University Goettingen, Göttingen, Germany
- German Center for Neurodegenrative Diseases (DZNE), Göttingen, Germany
- iBiMED, Medical Sciences Department, University of Aveiro, Aveiro, Portugal
| | - Klaus Gerwert
- Department of Biophysics, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
25
|
Leitão MJ, Silva-Spínola A, Santana I, Olmedo V, Nadal A, Le Bastard N, Baldeiras I. Clinical validation of the Lumipulse G cerebrospinal fluid assays for routine diagnosis of Alzheimer's disease. Alzheimers Res Ther 2019; 11:91. [PMID: 31759396 PMCID: PMC6875031 DOI: 10.1186/s13195-019-0550-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Ongoing efforts within the Alzheimer's disease (AD) field have focused on improving the intra- and inter-laboratory variability for cerebrospinal fluid (CSF) biomarkers. Fully automated assays offer the possibility to eliminate sample manipulation steps and are expected to contribute to this improvement. Recently, fully automated chemiluminescence enzyme immunoassays for the quantification of all four AD biomarkers in CSF became available. The aims of this study were to (i) evaluate the analytical performance of the Lumipulse G β-Amyloid 1-42 (restandardized to Certified Reference Materials), β-Amyloid 1-40, total Tau, and pTau 181 assays on the fully automated LUMIPULSE G600II; (ii) compare CSF biomarker results of the Lumipulse G assays with the established manual ELISA assays (INNOTEST®) from the same company (Fujirebio); and (iii) establish cut-off values and the clinical performance of the Lumipulse G assays for AD diagnosis. METHODS Intra- and inter-assay variation was assessed in CSF samples with low, medium, and high concentrations of each parameter. Method comparison and clinical evaluation were performed on 40 neurological controls (NC) and 80 patients with a diagnosis of probable AD supported by a follow-up ≥ 3 years and/or positive amyloid PET imaging. A small validation cohort of 10 NC and 20 AD patients was also included to validate the cut-off values obtained on the training cohort. RESULTS The maximal observed intra-assay and inter-assay coefficients of variation (CVs) were 3.25% and 5.50%, respectively. Method comparisons revealed correlation coefficients ranging from 0.89 (for Aβ40) to 0.98 (for t-Tau), with those for Aβ42 (0.93) and p-Tau (0.94) in-between. ROC curve analysis showed area under the curve values consistently above 0.85 for individual biomarkers other than Aβ40, and with the Aβ42/40, Aβ42/t-Tau, and Aβ42/p-Tau ratios outperforming Aβ42. Validation of the cut-off values in the independent cohort showed a sensitivity ranging from 75 to 95% and a specificity of 100%. The overall percentage of agreement between Lumipulse and INNOTEST was very high (> 87.5%). CONCLUSIONS The Lumipulse G assays show a very good analytical performance that makes them well-suited for CSF clinical routine measurements. The good clinical concordance between the Lumipulse G and INNOTEST assays facilitates the implementation of the new method in routine practice.
Collapse
Affiliation(s)
- Maria João Leitão
- Laboratory of Neurochemistry, Neurology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Anuschka Silva-Spínola
- Laboratory of Neurochemistry, Neurology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Isabel Santana
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Dementia Clinic, Neurology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | | | | | | | - Inês Baldeiras
- Laboratory of Neurochemistry, Neurology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
26
|
Vogelgsang J, Wiltfang J. [New biomarkers for Alzheimer's disease in cerebrospinal fluid and blood]. DER NERVENARZT 2019; 90:907-913. [PMID: 31407045 DOI: 10.1007/s00115-019-0772-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In accordance with the current German dementia guidelines, the dementia biomarkers amyloid beta 42, the tau peptides total tau and phosphorylated tau 181 are recommended for cerebrospinal fluid (CSF)-based diagnostics of dementia. Several studies have clearly shown that determination of the amyloid beta 42 to amyloid beta 40 peptide ratio is superior to the interpretation of amyloid beta 42 alone and should be implemented in the clinical work-up; however, in recent years different studies have presented many other innovative CSF and blood-based biomarkers. Besides CSF-based neurochemical diagnostics of dementia promising novel protocols for the detection of amyloid beta peptides in blood have meanwhile been published, which can currently be used in clinical studies for blood-based early diagnostics of Alzheimer's dementia. Following further validation and assay optimization these blood assays should be available for routine diagnostics in the near future.
Collapse
Affiliation(s)
- Jonathan Vogelgsang
- Universitätsmedizin Göttingen (UMG), Klinik für Psychiatrie und Psychotherapie, Georg-August-Universität, Von-Siebold-Str. 5, 37075, Göttingen, Deutschland
| | - Jens Wiltfang
- Universitätsmedizin Göttingen (UMG), Klinik für Psychiatrie und Psychotherapie, Georg-August-Universität, Von-Siebold-Str. 5, 37075, Göttingen, Deutschland. .,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Deutschland. .,iBiMED, Medical Science Department, Universität Aveiro, Aveiro, Portugal.
| |
Collapse
|
27
|
Hori T, Sasayama T, Tanaka K, Koma YI, Nishihara M, Tanaka H, Nakamizo S, Nagashima H, Maeyama M, Fujita Y, Yokozaki H, Hirose T, Kohmura E. Tumor-associated macrophage related interleukin-6 in cerebrospinal fluid as a prognostic marker for glioblastoma. J Clin Neurosci 2019; 68:281-289. [PMID: 31327593 DOI: 10.1016/j.jocn.2019.07.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/06/2019] [Indexed: 12/22/2022]
Abstract
Interleukin-6 (IL-6) is one of the pleiotropic cytokines and has received attention as a critical factor implicated in the invasion and the angiogenesis of various cancers. In glioma, IL-6 is known to be associated with the prognosis; however, the roles of IL-6 in cerebrospinal fluid (CSF) has not been studied sufficiently. We examined the concentration of CSF IL-6 using 75 CSF samples of glioma (54 glioblastomas (GBMs) and 21 other grades of gliomas) and analyzed the association CSF IL-6 with infiltration levels of tumor-associated macrophages (TAMs) and prognosis. The concentration of CSF IL-6 in GBM patients was significantly higher than that in other grades of gliomas. CSF IL-6 levels were associated with the infiltration rate of TAMs in GBMs, and IL-6 levels were increased in the GBM cells co-cultured with TAM-like macrophages. The CSF of GBM patients, which contained high concentration of IL-6, promoted the migration ability of GBM cells, and neutralization antibodies of IL-6 inhibited its migration ability. Finally, in both univariate and multivariate analysis, higher CSF IL-6 levels were associated with poorer prognosis in GBM patients. These results indicated that the concentration of CSF IL-6 is associated with TAMs' infiltration level and may be a useful prognostic biomarker for the GBM patients.
Collapse
Affiliation(s)
- Tatsuo Hori
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Takashi Sasayama
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Kazuhiro Tanaka
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yu-Ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | - Hirotomo Tanaka
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Satoshi Nakamizo
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Hiroaki Nagashima
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; Department of Neurosurgery, Massachusetts General Hospital Research Institute, Simches Research Center, Boston, MA, United States
| | - Masahiro Maeyama
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yuichi Fujita
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takanori Hirose
- Department of Pathology for Regional Communication, Kobe University Hospital, Kobe, Japan
| | - Eiji Kohmura
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
28
|
Biscetti L, Salvadori N, Farotti L, Cataldi S, Eusebi P, Paciotti S, Parnetti L. The added value of Aβ42/Aβ40 in the CSF signature for routine diagnostics of Alzheimer's disease. Clin Chim Acta 2019; 494:71-73. [DOI: 10.1016/j.cca.2019.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 01/09/2023]
|
29
|
Hansson O, Lehmann S, Otto M, Zetterberg H, Lewczuk P. Advantages and disadvantages of the use of the CSF Amyloid β (Aβ) 42/40 ratio in the diagnosis of Alzheimer's Disease. ALZHEIMERS RESEARCH & THERAPY 2019; 11:34. [PMID: 31010420 PMCID: PMC6477717 DOI: 10.1186/s13195-019-0485-0] [Citation(s) in RCA: 356] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cerebrospinal fluid (CSF) biochemical markers (biomarkers) Amyloidβ 42 (Aβ42), total Tau (T-tau) and Tau phosphorylated at threonine 181 (P-tau181) have proven diagnostic accuracy for mild cognitive impairment and dementia due to Alzheimer’s Disease (AD). In an effort to improve the accuracy of an AD diagnosis, it is important to be able to distinguish between AD and other types of dementia (non-AD). The concentration ratio of Aβ42 to Aβ40 (Aβ42/40 Ratio) has been suggested to be superior to the concentration of Aβ42 alone when identifying patients with AD. This article reviews the available evidence on the use of the CSF Aβ42/40 ratio in the diagnosis of AD. Based on the body of evidence presented herein, it is the conclusion of the current working group that the CSF Aβ42/40 ratio, rather than the absolute value of CSF Aβ42, should be used when analysing CSF AD biomarkers to improve the percentage of appropriately diagnosed patients.
Collapse
Affiliation(s)
- Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Sylvain Lehmann
- Center of Excellence for Neurodegenerative disorders (COEN) of Montpellier, Montpellier University, CHU Montpellier, INSERM, Montpellier, France
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute, London, UK
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany. .,Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Bialystok, Poland. .,Lab for Clinical Neurochemistry and Neurochemical Dementia Diagnostics, Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany.
| |
Collapse
|
30
|
Baldeiras I, Santana I, Leitão MJ, Vieira D, Duro D, Mroczko B, Kornhuber J, Lewczuk P. Erlangen Score as a tool to predict progression from mild cognitive impairment to dementia in Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2019; 11:2. [PMID: 30611311 PMCID: PMC6320577 DOI: 10.1186/s13195-018-0456-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/28/2018] [Indexed: 02/01/2023]
Abstract
Background The previously described and validated Erlangen Score (ES) algorithm enables interpretation of the cerebrospinal fluid (CSF) biomarkers of Alzheimer’s disease (AD), ordering them on an ordinal scale: from neurochemically normal (ES = 0) through improbable AD (ES = 1), possible AD (ES = 2 or 3), to probable AD (ES = 4). Here we assess the accuracy of the ES in predicting hazards of progression from the mild cognitive impairment (MCI) stage of AD to the dementia stage of the disease (Alzheimer’s disease dementia (ADD)) in a novel, single-center cohort. Methods Baseline CSF biomarkers (amyloid beta (Aβ) 1–42, Aβ42/40, Tau, and pTau181), interpreted according to the ES, were used to estimate time to progression from the MCI stage of AD to ADD, conditional on age, gender, APOE ε4 genotype, and Mini Mental State Examination score in 144 MCI subjects, using the Extended Cox Model; the subjects were followed-up until they developed dementia or until they had been cognitively stable for at least 2 years. In addition, ES distributions were studied in 168 ADD cases and 66 neurologic controls. Further, we stratified MCI patients into those who progressed to ADD faster (within 3 years, n = 47) and those who progressed slower (n = 74). Results The distributions of the ES categories across the four diagnostic groups (Controls, MCI-Stable, MCI-AD, and ADD) were highly significantly different (Kruskal–Wallis χ2(df = 3) = 151.4, p < 0.001), with significant contrasts between each pair (p < 0.005), except between the ADD and the MCI-AD groups (p = 1.0). MCI patients with ES = 2 or 3 had 6–8 times higher hazards to progress to ADD compared to patients with ES = 0 or 1 in the first 3 follow-up years, and then their hazards decreased to those of the group with ES = 0 or 1. Patients with ES = 4 had hazards 8–12 times higher compared to the ES = 0 or 1 group. Faster progressors with ES = 2 or 3 had, in comparison to slower progressors, significantly lower Aβ1–42, Aβ1–40, and Aβ42/40, but comparable Tau and pTau181. A highly significant difference of the ES distributions between these two groups was observed (p < 0.001). Conclusions Our current results reconfirm and extend the conclusions of the previously published report that the Erlangen Score is a useful tool facilitating interpretation of a complex pattern of the CSF AD biomarkers. Electronic supplementary material The online version of this article (10.1186/s13195-018-0456-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Inês Baldeiras
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Maria João Leitão
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Daniela Vieira
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Diana Duro
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, Poland
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Lab for Clinical Neurochemistry and Neurochemical Dementia Diagnostics, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Piotr Lewczuk
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, Poland. .,Department of Psychiatry and Psychotherapy, Lab for Clinical Neurochemistry and Neurochemical Dementia Diagnostics, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany.
| |
Collapse
|
31
|
Lewczuk P, Ermann N, Andreasson U, Schultheis C, Podhorna J, Spitzer P, Maler JM, Kornhuber J, Blennow K, Zetterberg H. Plasma neurofilament light as a potential biomarker of neurodegeneration in Alzheimer's disease. Alzheimers Res Ther 2018; 10:71. [PMID: 30055655 PMCID: PMC6064615 DOI: 10.1186/s13195-018-0404-9] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/09/2018] [Indexed: 01/31/2023]
Abstract
BACKGROUND A growing body of evidence suggests that the plasma concentration of the neurofilament light chain (NfL) might be considered a plasma biomarker for the screening of neurodegeneration in Alzheimer's disease (AD). METHODS With a single molecule array method (Simoa, Quanterix), plasma NfL concentrations were measured in 99 subjects with AD at the stage of mild cognitive impairment (MCI-AD; n = 25) or at the stage of early dementia (ADD; n = 33), and in nondemented controls (n = 41); in all patients, the clinical diagnoses were in accordance with the results of the four core cerebrospinal fluid (CSF) biomarkers (amyloid β (Aβ)1-42, Aβ42/40, Tau, and pTau181), interpreted according to the Erlangen Score algorithm. The influence of preanalytical storage procedures on the NfL in plasma was tested on samples exposed to six different conditions. RESULTS NfL concentrations significantly increased in the samples exposed to more than one freezing/thawing cycle, and in those stored for 5 days at room temperature or at 4 °C. Compared with the control group of nondemented subjects (22.0 ± 12.4 pg/mL), the unadjusted plasma NfL concentration was highly significantly higher in the MCI-AD group (38.1 ± 15.9 pg/mL, p < 0.005) and even further elevated in the ADD group (49.1 ± 28.4 pg/mL; p < 0.001). A significant association between NfL and age (ρ = 0.65, p < 0.001) was observed; after correcting for age, the difference in NfL concentrations between AD and controls remained significant (p = 0.044). At the cutoff value of 25.7 pg/mL, unconditional sensitivity, specificity, and accuracy were 0.84, 0.78, and 0.82, respectively. Unadjusted correlation between plasma NfL and Mini Mental State Examination (MMSE) across all patients was moderate but significant (r = -0.49, p < 0.001). We observed an overall significant correlation between plasma NfL and the CSF biomarkers, but this correlation was not observed within the diagnostic groups. CONCLUSIONS This study confirms increased concentrations of plasma NfL in patients with Alzheimer's disease compared with nondemented controls.
Collapse
Affiliation(s)
- Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Lab for Clinical Neurochemistry and Neurochemical Dementia Diagnostics, Universitätsklinikum Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
- Department of Neurodegeneration Diagnostics, Department of Biochemical Diagnostics, Medical University of Bialystok, University Hospital of Bialystok, Bialystok, Poland
| | - Natalia Ermann
- Department of Psychiatry and Psychotherapy, Lab for Clinical Neurochemistry and Neurochemical Dementia Diagnostics, Universitätsklinikum Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Ulf Andreasson
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | | | - Jana Podhorna
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | - Philipp Spitzer
- Department of Psychiatry and Psychotherapy, Lab for Clinical Neurochemistry and Neurochemical Dementia Diagnostics, Universitätsklinikum Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Juan Manuel Maler
- Department of Psychiatry and Psychotherapy, Lab for Clinical Neurochemistry and Neurochemical Dementia Diagnostics, Universitätsklinikum Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Lab for Clinical Neurochemistry and Neurochemical Dementia Diagnostics, Universitätsklinikum Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| |
Collapse
|
32
|
Hansson O, Mikulskis A, Fagan AM, Teunissen C, Zetterberg H, Vanderstichele H, Molinuevo JL, Shaw LM, Vandijck M, Verbeek MM, Savage M, Mattsson N, Lewczuk P, Batrla R, Rutz S, Dean RA, Blennow K. The impact of preanalytical variables on measuring cerebrospinal fluid biomarkers for Alzheimer's disease diagnosis: A review. Alzheimers Dement 2018; 14:1313-1333. [DOI: 10.1016/j.jalz.2018.05.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/20/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Oskar Hansson
- Department of Neurology; Skåne University Hospital; Lund Sweden
- Memory Clinic; Skåne University Hospital; Malmö Sweden
| | | | - Anne M. Fagan
- Department of Neurology; Washington University School of Medicine; St Louis MO USA
| | | | - Henrik Zetterberg
- UK Dementia Research Institute; London UK
- Department of Molecular Neuroscience; UCL Institute of Neurology; London UK
- Clinical Neurochemistry Laboratory; Sahlgrenska University Hospital; Mölndal Sweden
- Department of Psychiatry and Neurochemistry; Sahlgrenska Academy at the University of Gothenburg; Mölndal Sweden
| | | | - Jose Luis Molinuevo
- BarcelonaBeta Brain Research Center; Pasqual Maragall Foundation; Barcelona Spain
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine; Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| | | | - Marcel M. Verbeek
- Radboud University Medical Center; Departments of Neurology and Laboratory Medicine; Donders Institute for Brain; Cognition and Behaviour; Nijmegen The Netherlands
| | | | - Niklas Mattsson
- Department of Neurology; Skåne University Hospital; Lund Sweden
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy; Universitätsklinikum Erlangen; Friedrich-Alexander Universität Erlangen-Nürnberg; Germany
- Department of Neurodegeneration Diagnostics; Medical University of Bialystok; Poland
| | | | | | - Robert A. Dean
- Department of Pathology and Laboratory Medicine; Indiana University School of Medicine; Indianapolis IN USA
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory; Sahlgrenska University Hospital; Mölndal Sweden
- Department of Psychiatry and Neurochemistry; Sahlgrenska Academy at the University of Gothenburg; Mölndal Sweden
| |
Collapse
|
33
|
Lewczuk P, Riederer P, O’Bryant SE, Verbeek MM, Dubois B, Visser PJ, Jellinger KA, Engelborghs S, Ramirez A, Parnetti L, Jack CR, Teunissen CE, Hampel H, Lleó A, Jessen F, Glodzik L, de Leon MJ, Fagan AM, Molinuevo JL, Jansen WJ, Winblad B, Shaw LM, Andreasson U, Otto M, Mollenhauer B, Wiltfang J, Turner MR, Zerr I, Handels R, Thompson AG, Johansson G, Ermann N, Trojanowski JQ, Karaca I, Wagner H, Oeckl P, van Waalwijk van Doorn L, Bjerke M, Kapogiannis D, Kuiperij HB, Farotti L, Li Y, Gordon BA, Epelbaum S, Vos SJB, Klijn CJM, Van Nostrand WE, Minguillon C, Schmitz M, Gallo C, Mato AL, Thibaut F, Lista S, Alcolea D, Zetterberg H, Blennow K, Kornhuber J, Riederer P, Gallo C, Kapogiannis D, Mato AL, Thibaut F. Cerebrospinal fluid and blood biomarkers for neurodegenerative dementias: An update of the Consensus of the Task Force on Biological Markers in Psychiatry of the World Federation of Societies of Biological Psychiatry. World J Biol Psychiatry 2018; 19:244-328. [PMID: 29076399 PMCID: PMC5916324 DOI: 10.1080/15622975.2017.1375556] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the 12 years since the publication of the first Consensus Paper of the WFSBP on biomarkers of neurodegenerative dementias, enormous advancement has taken place in the field, and the Task Force takes now the opportunity to extend and update the original paper. New concepts of Alzheimer's disease (AD) and the conceptual interactions between AD and dementia due to AD were developed, resulting in two sets for diagnostic/research criteria. Procedures for pre-analytical sample handling, biobanking, analyses and post-analytical interpretation of the results were intensively studied and optimised. A global quality control project was introduced to evaluate and monitor the inter-centre variability in measurements with the goal of harmonisation of results. Contexts of use and how to approach candidate biomarkers in biological specimens other than cerebrospinal fluid (CSF), e.g. blood, were precisely defined. Important development was achieved in neuroimaging techniques, including studies comparing amyloid-β positron emission tomography results to fluid-based modalities. Similarly, development in research laboratory technologies, such as ultra-sensitive methods, raises our hopes to further improve analytical and diagnostic accuracy of classic and novel candidate biomarkers. Synergistically, advancement in clinical trials of anti-dementia therapies energises and motivates the efforts to find and optimise the most reliable early diagnostic modalities. Finally, the first studies were published addressing the potential of cost-effectiveness of the biomarkers-based diagnosis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, and Department of Biochemical Diagnostics, University Hospital of Białystok, Białystok, Poland
| | - Peter Riederer
- Center of Mental Health, Clinic and Policlinic of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - Sid E. O’Bryant
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Marcel M. Verbeek
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer center, Nijmegen, The Netherlands
| | - Bruno Dubois
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Salpêtrièrie Hospital, INSERM UMR-S 975 (ICM), Paris 6 University, Paris, France
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
- Department of Neurology, Alzheimer Centre, Amsterdam Neuroscience VU University Medical Centre, Amsterdam, The Netherlands
| | | | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), University of Antwerp, Antwerp, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Alfredo Ramirez
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Lucilla Parnetti
- Section of Neurology, Center for Memory Disturbances, Lab of Clinical Neurochemistry, University of Perugia, Perugia, Italy
| | | | - Charlotte E. Teunissen
- Neurochemistry Lab and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Harald Hampel
- AXA Research Fund & UPMC Chair, Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, Paris, France
| | - Alberto Lleó
- Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED, Spain
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- German Center for Neurodegenerative Disorders (DZNE), Bonn, Germany
| | - Lidia Glodzik
- Center for Brain Health, Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA
| | - Mony J. de Leon
- Center for Brain Health, Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA
| | - Anne M. Fagan
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - José Luis Molinuevo
- Barcelonabeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Willemijn J. Jansen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | - Bengt Winblad
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ulf Andreasson
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel and University Medical Center Göttingen, Department of Neurology, Göttingen, Germany
| | - Jens Wiltfang
- Department of Psychiatry & Psychotherapy, University of Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- iBiMED, Medical Sciences Department, University of Aveiro, Aveiro, Portugal
| | - Martin R. Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Inga Zerr
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Clinical Dementia Centre, Department of Neurology, University Medical School, Göttingen, Germany
| | - Ron Handels
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden
| | | | - Gunilla Johansson
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden
| | - Natalia Ermann
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - John Q. Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ilker Karaca
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Holger Wagner
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Patrick Oeckl
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Linda van Waalwijk van Doorn
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer center, Nijmegen, The Netherlands
| | - Maria Bjerke
- Reference Center for Biological Markers of Dementia (BIODEM), University of Antwerp, Antwerp, Belgium
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, National Institute on Aging/National Institutes of Health (NIA/NIH), Baltimore, MD, USA
| | - H. Bea Kuiperij
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer center, Nijmegen, The Netherlands
| | - Lucia Farotti
- Section of Neurology, Center for Memory Disturbances, Lab of Clinical Neurochemistry, University of Perugia, Perugia, Italy
| | - Yi Li
- Center for Brain Health, Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA
| | - Brian A. Gordon
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Stéphane Epelbaum
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Salpêtrièrie Hospital, INSERM UMR-S 975 (ICM), Paris 6 University, Paris, France
| | - Stephanie J. B. Vos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | - Catharina J. M. Klijn
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Nijmegen, The Netherlands
| | | | - Carolina Minguillon
- Barcelonabeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Matthias Schmitz
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Clinical Dementia Centre, Department of Neurology, University Medical School, Göttingen, Germany
| | - Carla Gallo
- Departamento de Ciencias Celulares y Moleculares/Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Andrea Lopez Mato
- Chair of Psychoneuroimmunoendocrinology, Maimonides University, Buenos Aires, Argentina
| | - Florence Thibaut
- Department of Psychiatry, University Hospital Cochin-Site Tarnier 89 rue d’Assas, INSERM 894, Faculty of Medicine Paris Descartes, Paris, France
| | - Simone Lista
- AXA Research Fund & UPMC Chair, Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, Paris, France
| | - Daniel Alcolea
- Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED, Spain
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Spitzer P, Lang R, Oberstein TJ, Lewczuk P, Ermann N, Huttner HB, Masouris I, Kornhuber J, Ködel U, Maler JM. A Specific Reduction in Aβ 1-42 vs. a Universal Loss of Aβ Peptides in CSF Differentiates Alzheimer's Disease From Meningitis and Multiple Sclerosis. Front Aging Neurosci 2018; 10:152. [PMID: 29881343 PMCID: PMC5976781 DOI: 10.3389/fnagi.2018.00152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/04/2018] [Indexed: 11/23/2022] Open
Abstract
A reduced concentration of Aβ1−42 in CSF is one of the established biomarkers of Alzheimer's disease. Reduced CSF concentrations of Aβ1−42 have also been shown in multiple sclerosis, viral encephalitis and bacterial meningitis. As neuroinflammation is one of the neuropathological hallmarks of Alzheimer's disease, an infectious origin of the disease has been proposed. According to this hypothesis, amyloid pathology is a consequence of a microbial infection and the resulting immune defense. Accordingly, changes in CSF levels of amyloid-β peptides should be similar in AD and inflammatory brain diseases. Aβ1−42 and Aβ1−40 levels were measured in cerebrospinal fluid by ELISA and Western blotting in 34 patients with bacterial meningitis (n = 9), multiple sclerosis (n = 5) or Alzheimer's disease (n = 9) and in suitable controls (n = 11). Reduced concentrations of Aβ1−42 were detected in patients with bacterial meningitis, multiple sclerosis and Alzheimer's disease. However, due to a concurrent reduction in Aβ1−40 in multiple sclerosis and meningitis patients, the ratio of Aβ1−42/Aβ1−40 was reduced only in the CSF of Alzheimer's disease patients. Urea-SDS-PAGE followed by Western blotting revealed that all Aβ peptide variants are reduced in bacterial meningitis, whereas in Alzheimer's disease, only Aβ1−42 is reduced. These results have two implications. First, they confirm the discriminatory diagnostic power of the Aβ1−42/Aβ1−40 ratio. Second, the differential pattern of Aβ peptide reductions suggests that the amyloid pathology in meningitis and multiple sclerosis differs from that in AD and does not support the notion of AD as an infection-triggered immunopathology.
Collapse
Affiliation(s)
- Philipp Spitzer
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, Friedrich-Alexander-University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Timo J Oberstein
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.,Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Natalia Ermann
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Hagen B Huttner
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Ilias Masouris
- Department of Neurology, Ludwig-Maximilian-University, Munich, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Uwe Ködel
- Department of Neurology, Ludwig-Maximilian-University, Munich, Germany
| | - Juan M Maler
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
35
|
Cerami C, Dodich A, Iannaccone S, Magnani G, Santangelo R, Presotto L, Marcone A, Gianolli L, Cappa SF, Perani D. A biomarker study in long-lasting amnestic mild cognitive impairment. ALZHEIMERS RESEARCH & THERAPY 2018; 10:42. [PMID: 29695292 PMCID: PMC5918759 DOI: 10.1186/s13195-018-0369-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 03/19/2018] [Indexed: 01/09/2023]
Abstract
Background Mild cognitive impairment (MCI) is a heterogeneous syndrome resulting from Alzheimer’s disease (AD) as well as to non-AD and non-neurodegenerative conditions. A subset of patients with amnestic MCI (aMCI) present with an unusually long-lasting course, a slow rate of clinical neuropsychological progression, and evidence of focal involvement of medial temporal lobe structures. In the present study, we explored positron emission tomography (PET) and cerebrospinal fluid (CSF) biomarkers in a sample of subjects with aMCI with such clinical features in order to provide in vivo evidence to improve disease characterisation in this subgroup. Methods Thirty consecutive subjects with aMCI who had long-lasting memory impairment (more than 4 years from symptom onset) and a very slow rate of cognitive progression were included. All subjects underwent fluorodeoxyglucose-positron emission tomography (FDG-PET) metabolic imaging. A measure of cerebral amyloid load, by PET and/or CSF, was obtained in 26 of 30 subjects. The mean clinical follow-up was 58.3 ± 10.1 months. Results No patient progressed to dementia during the follow-up. The typical AD FDG-PET pattern of temporoparietal hypometabolism was not present in any of the subjects. In contrast, a selective medial temporal lobe hypometabolism was present in all subjects, with an extension to frontolimbic regions in some subjects. PET imaging showed absent or low amyloid load in the majority of samples. The values were well below those reported in prodromal AD, and they were slightly elevated in only two subjects, consistent with the CSF β-amyloid (1–42) protein values. Notably, no amyloid load was present in the hippocampal structures. Conclusions FDG-PET and amyloid-PET together with CSF findings questioned AD pathology as a unique neuropathological substrate in this aMCI subgroup with long-lasting disease course. The possibility of alternative pathological conditions, such as argyrophilic grain disease, primary age-related tauopathy or age-related TDP-43 proteinopathy, known to spread throughout the medial temporal lobe and limbic system structures should be considered in these patients with MCI.
Collapse
Affiliation(s)
- Chiara Cerami
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy. .,Clinical Neuroscience Department, San Raffaele Turro Hospital, Milan, Italy.
| | - Alessandra Dodich
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.,Clinical Neuroscience Department, San Raffaele Turro Hospital, Milan, Italy
| | - Sandro Iannaccone
- Clinical Neuroscience Department, San Raffaele Turro Hospital, Milan, Italy
| | | | | | - Luca Presotto
- Nuclear Medicine Department, San Raffaele Hospital, Milan, Italy
| | - Alessandra Marcone
- Clinical Neuroscience Department, San Raffaele Turro Hospital, Milan, Italy
| | - Luigi Gianolli
- Nuclear Medicine Department, San Raffaele Hospital, Milan, Italy
| | - Stefano F Cappa
- NeTS Center, Istituto Universitario di Studi Superiori, Pavia, Italy.,IRCCS S. Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Daniela Perani
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.,Nuclear Medicine Department, San Raffaele Hospital, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
36
|
Muszyński P, Groblewska M, Kulczyńska-Przybik A, Kułakowska A, Mroczko B. YKL-40 as a Potential Biomarker and a Possible Target in Therapeutic Strategies of Alzheimer's Disease. Curr Neuropharmacol 2018; 15:906-917. [PMID: 28183245 PMCID: PMC5652033 DOI: 10.2174/1570159x15666170208124324] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/14/2016] [Accepted: 01/14/2017] [Indexed: 01/06/2023] Open
Abstract
Background: Growing body of evidence suggests that the pathogenesis of Alzheimer’s disease (AD), a progressing neurodegenerative condition, is not limited to the neuronal compartment, but also involves various immunological mechanisms. Insoluble Aβ aggregates in the brain can induce the activation of microglia, resulting in the synthesis of proinflammatory mediators, which further can stimulate astrocytic expression of YKL-40. Therefore, the aim of the current review is to present up-to-date data about the role of YKL-40 as a biomarker of AD as well as the possibility of therapeutic strategies targeting neuroinflammation. Objective/Methods: We searched PubMed articles for the terms “YKL-40”, “neurodegeneration”, “neuroinflammation” and “Alzheimer’s disease”, and included papers focusing on this review’s scope. Results: Recent studies indicate that CSF concentrations of YKL-40 were significantly higher in AD patients than in cognitively normal individuals and correlated with dementia biomarkers, such as tau proteins and amyloid beta. Determination of YKL-40 CSF concentration may be also helpful in differentiation between types of dementia and in the distinction of patients in the stable phase of MCI from those who progressed to dementia. Moreover, significantly increased levels of YKL-40 mRNA were found in AD brains in comparison with non-demented controls. Additionally, it was suggested that anti-inflammatory treatment might relief the symptoms of AD and slow its progression. Conclusion: Based on the recent knowledge, YKL-40 might be useful as a possible biomarker in the diagnosis and prognosis of AD. Modulation of risk factors and targeting of immune mechanisms, including systemic inflammation could lead to future preventive or therapeutic strategies for AD.
Collapse
Affiliation(s)
- Paweł Muszyński
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, Poland
| | - Magdalena Groblewska
- Department of Biochemical Diagnostics, University Hospital in Białystok, Białystok, Poland
| | | | - Alina Kułakowska
- Department of Neurology, Medical University of Białystok, Białystok, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
37
|
Muszyński P, Kulczyńska-Przybik A, Borawska R, Litman-Zawadzka A, Słowik A, Klimkowicz-Mrowiec A, Pera J, Dziedzic T, Mroczko B. The Relationship between Markers of Inflammation and Degeneration in the Central Nervous System and the Blood-Brain Barrier Impairment in Alzheimer's Disease. J Alzheimers Dis 2018; 59:903-912. [PMID: 28697565 DOI: 10.3233/jad-170220] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND It is known that YKL-40- a marker of glial inflammation, and VILIP-1- a marker of neuronal injury, reflect functional and structural changes in AD brains, although there is limited data concerning their potential influence on blood-brain barrier (BBB) homeostasis. OBJECTIVE Therefore, the aim of our study was to investigate the relationship between markers of inflammation and degeneration in the central nervous system (CNS) of patients with AD and mild cognitive impairment (MCI) as well as immunological response in CNS and BBB function. METHODS Cerebrospinal fluid (CSF) concentrations of proteins tested were determined in 45 AD patients, 18 MCI subjects, and 23 non-demented controls using ELISA method. RESULTS CSF concentrations of YKL-40 were significantly higher in MCI and AD patients, whereas CSF levels of VILIP-1 were statistically higher in the AD group as compared to the subjects without cognitive deficits. Elevated concentrations of YKL-40 correlated significantly with increased albumin quotient and decreased Aβ42/40 ratio in AD patients and with IgG quotient in the total study group. We did not find a relationship between VILIP-1 and immunological parameters reflecting BBB dysfunction and humoral immune response. CONCLUSION Our findings indicate that YKL-40 may contribute to decreased stability and increased permeability of BBB in AD patients. It is assumed that YKL-40 is implicated in the development of brain barriers, although its precise mechanism of action in the BBB disruption remains unrevealed. Further studies on larger groups of patients are required to confirm our hypothesis.
Collapse
Affiliation(s)
- Paweł Muszyński
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Poland
| | | | - Renata Borawska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Poland
| | - Ala Litman-Zawadzka
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Poland
| | - Agnieszka Słowik
- Department of Neurology, Jagiellonian University, Kraków, Poland
| | | | - Joanna Pera
- Department of Neurology, Jagiellonian University, Kraków, Poland
| | - Tomasz Dziedzic
- Department of Neurology, Jagiellonian University, Kraków, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Poland
| |
Collapse
|
38
|
Hansson O, Seibyl J, Stomrud E, Zetterberg H, Trojanowski JQ, Bittner T, Lifke V, Corradini V, Eichenlaub U, Batrla R, Buck K, Zink K, Rabe C, Blennow K, Shaw LM. CSF biomarkers of Alzheimer's disease concord with amyloid-β PET and predict clinical progression: A study of fully automated immunoassays in BioFINDER and ADNI cohorts. Alzheimers Dement 2018; 14:1470-1481. [PMID: 29499171 PMCID: PMC6119541 DOI: 10.1016/j.jalz.2018.01.010] [Citation(s) in RCA: 531] [Impact Index Per Article: 75.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/11/2022]
Abstract
Introduction We studied whether fully automated Elecsys cerebrospinal fluid (CSF) immunoassay results were concordant with positron emission tomography (PET) and predicted clinical progression, even with cutoffs established in an independent cohort. Methods Cutoffs for Elecsys amyloid-β1–42 (Aβ), total tau/Aβ(1–42), and phosphorylated tau/Aβ(1–42) were defined against [18F]flutemetamol PET in Swedish BioFINDER (n = 277) and validated against [18F]florbetapir PET in Alzheimer’s Disease Neuroimaging Initiative (n = 646). Clinical progression in patients with mild cognitive impairment (n = 619) was studied. Results CSF total tau/Aβ(1–42) and phosphorylated tau/Aβ(1–42) ratios were highly concordant with PET classification in BioFINDER (overall percent agreement: 90%; area under the curve: 94%). The CSF biomarker statuses established by predefined cutoffs were highly concordant with PET classification in Alzheimer’s Disease Neuroimaging Initiative (overall percent agreement: 89%–90%; area under the curves: 96%) and predicted greater 2-year clinical decline in patients with mild cognitive impairment. Strikingly, tau/Aβ ratios were as accurate as semiquantitative PET image assessment in predicting visual read–based outcomes. Discussion Elecsys CSF biomarker assays may provide reliable alternatives to PET in Alzheimer’s disease diagnosis.
Collapse
Affiliation(s)
- Oskar Hansson
- Clinical Memory Research Unit, Lund University, Malmö, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| | - John Seibyl
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| | - Erik Stomrud
- Clinical Memory Research Unit, Lund University, Malmö, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute, London, UK
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology and Laboratory Medicine, Philadelphia, PA, USA
| | - Tobias Bittner
- Former Employee of Roche Diagnostics GmbH, Penzberg, Germany
| | | | | | | | | | | | | | - Christina Rabe
- Former Employee of Roche Diagnostics GmbH, Penzberg, Germany
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
39
|
Lewczuk P, Lelental N, Lachmann I, Holzer M, Flach K, Brandner S, Engelborghs S, Teunissen CE, Zetterberg H, Molinuevo JL, Mroczko B, Blennow K, Popp J, Parnetti L, Chiasserini D, Perret-Liaudet A, Spitzer P, Maler JM, Kornhuber J. Non-Phosphorylated Tau as a Potential Biomarker of Alzheimer's Disease: Analytical and Diagnostic Characterization. J Alzheimers Dis 2018; 55:159-170. [PMID: 27662295 DOI: 10.3233/jad-160448] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Virtually nothing is known about a potential diagnostic role of non-phospho-epitopes of Tau (Non-P-Tau) in cerebrospinal fluid (CSF). OBJECTIVE To establish and analytically and clinically characterize the first assay capable to measure concentrations of Non-P-Tau in human CSF. METHODS An antibody (1G2) was developed that selectively binds to the Tau molecule non-phosphorylated at the positions T175 and T181, and was used in establishing a sandwich ELISA capable to measure Non-P-Tau in human CSF, following analytical and clinical validation of the method. RESULTS The 1G2 antibody shows decreasing reactivity to tau peptides containing phosphorylation mainly at positions T175 and T181. Detection limit of the assay is 25 pg/ml; the coefficients of variation (CVs) of the optical densities of the repeated standard curves were between 3.6-15.9%. Median intra-assay imprecision of double measurements was 4.8%; inter-assay imprecision was in the range of 11.2% - 15.3%. Non-P-Tau concentrations are stable in the CSF samples sent to distinct laboratories under ambient temperature; inter-laboratory variation was approximately 30%. The Non-P-Tau CSF concentrations were highly significantly increased in patients with Alzheimer's disease in stage of mild cognitive impairment or dementia (AD/MCI, n = 58, 109.2±32.0 pg/mL) compared to the non-demented Controls (n = 42, 62.1±9.3 pg/mL, p < 0.001). At the cut-off of 78.3 pg/mL, the sensitivity and the specificity were 94.8% and 97.6%, respectively. CONCLUSION For the first time, an assay is reported to reliably measure concentrations of non-phosphorylated Tau in human CSF.
Collapse
Affiliation(s)
- Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Neurodegeneration Diagnostics, Medical University of Białystok, and Department of Biochemical Diagnostics, University Hospital of Białystok, Białystok, Poland
| | - Natalia Lelental
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Max Holzer
- Paul Flechsig Institute of Brain Research, University of Leipzig, Germany
| | | | - Sebastian Brandner
- Department of Neurosurgery, Universitätsklinikum Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, and Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Charlotte E Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - José Luis Molinuevo
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, and Department of Biochemical Diagnostics, University Hospital of Białystok, Białystok, Poland
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Julius Popp
- Service of Old Age Psychiatry, Department of Psychiatry, University Hospital of Lausanne, Switzerland
| | - Lucilla Parnetti
- Laboratory of Clinical Neurochemistry, Department of Medicine, Section of Neurology, University of Perugia, Perugia, Italy
| | - Davide Chiasserini
- Laboratory of Clinical Neurochemistry, Department of Medicine, Section of Neurology, University of Perugia, Perugia, Italy
| | - Armand Perret-Liaudet
- Hospices Civils de Lyon, Groupement Hospitalier Est, Biochemistry Department, Neurochemistry unit; Lyon University, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, BioRaN Team, Bron Cedex, France
| | - Philipp Spitzer
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Juan Manuel Maler
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
40
|
Chiasserini D, Biscetti L, Farotti L, Eusebi P, Salvadori N, Lisetti V, Baschieri F, Chipi E, Frattini G, Stoops E, Vanderstichele H, Calabresi P, Parnetti L. Performance Evaluation of an Automated ELISA System for Alzheimer's Disease Detection in Clinical Routine. J Alzheimers Dis 2018; 54:55-67. [PMID: 27447425 DOI: 10.3233/jad-160298] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The variability of Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers undermines their full-fledged introduction into routine diagnostics and clinical trials. Automation may help to increase precision and decrease operator errors, eventually improving the diagnostic performance. Here we evaluated three new CSF immunoassays, EUROIMMUNtrademark amyloid-β 1-40 (Aβ1-40), amyloid-β 1-42 (Aβ1-42), and total tau (t-tau), in combination with automated analysis of the samples. The CSF biomarkers were measured in a cohort consisting of AD patients (n = 28), mild cognitive impairment (MCI, n = 77), and neurological controls (OND, n = 35). MCI patients were evaluated yearly and cognitive functions were assessed by Mini-Mental State Examination. The patients clinically diagnosed with AD and MCI were classified according to the CSF biomarkers profile following NIA-AA criteria and the Erlangen score. Technical evaluation of the immunoassays was performed together with the calculation of their diagnostic performance. Furthermore, the results for EUROIMMUN Aβ1-42 and t-tau were compared to standard immunoassay methods (INNOTESTtrademark). EUROIMMUN assays for Aβ1-42 and t-tau correlated with INNOTEST (r = 0.83, p < 0.001 for both) and allowed a similar interpretation of the CSF profiles. The Aβ1-42/Aβ1-40 ratio measured with EUROIMMUN was the best parameter for AD detection and improved the diagnostic accuracy of Aβ1-42 (area under the curve = 0.93). In MCI patients, the Aβ1-42/Aβ1-40 ratio was associated with cognitive decline and clinical progression to AD.The diagnostic performance of the EUROIMMUN assays with automation is comparable to other currently used methods. The variability of the method and the value of the Aβ1-42/Aβ1-40 ratio in AD diagnosis need to be validated in large multi-center studies.
Collapse
Affiliation(s)
- Davide Chiasserini
- Laboratory of Clinical Neurochemistry, Department of Medicine, University of Perugia, Perugia, Italy
| | - Leonardo Biscetti
- Laboratory of Clinical Neurochemistry, Department of Medicine, University of Perugia, Perugia, Italy
| | - Lucia Farotti
- Clinica Neurologica, Dipartimento di Medicina, Università di Perugia, Perugia, Italy
| | - Paolo Eusebi
- Laboratory of Clinical Neurochemistry, Department of Medicine, University of Perugia, Perugia, Italy
| | - Nicola Salvadori
- Laboratory of Clinical Neurochemistry, Department of Medicine, University of Perugia, Perugia, Italy
| | - Viviana Lisetti
- Laboratory of Clinical Neurochemistry, Department of Medicine, University of Perugia, Perugia, Italy
| | - Francesca Baschieri
- Clinica Neurologica, Dipartimento di Medicina, Università di Perugia, Perugia, Italy
| | - Elena Chipi
- Laboratory of Clinical Neurochemistry, Department of Medicine, University of Perugia, Perugia, Italy
| | - Giulia Frattini
- Laboratory of Clinical Neurochemistry, Department of Medicine, University of Perugia, Perugia, Italy
| | | | | | - Paolo Calabresi
- Clinica Neurologica, Dipartimento di Medicina, Università di Perugia, Perugia, Italy.,IRRCS Fondazione S.Lucia, Rome, Italy
| | - Lucilla Parnetti
- Laboratory of Clinical Neurochemistry, Department of Medicine, University of Perugia, Perugia, Italy.,Clinica Neurologica, Dipartimento di Medicina, Università di Perugia, Perugia, Italy
| |
Collapse
|
41
|
Caminiti SP, Ballarini T, Sala A, Cerami C, Presotto L, Santangelo R, Fallanca F, Vanoli EG, Gianolli L, Iannaccone S, Magnani G, Perani D. FDG-PET and CSF biomarker accuracy in prediction of conversion to different dementias in a large multicentre MCI cohort. Neuroimage Clin 2018; 18:167-177. [PMID: 29387532 PMCID: PMC5790816 DOI: 10.1016/j.nicl.2018.01.019] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/15/2017] [Accepted: 01/18/2018] [Indexed: 01/29/2023]
Abstract
Background/aims In this multicentre study in clinical settings, we assessed the accuracy of optimized procedures for FDG-PET brain metabolism and CSF classifications in predicting or excluding the conversion to Alzheimer's disease (AD) dementia and non-AD dementias. Methods We included 80 MCI subjects with neurological and neuropsychological assessments, FDG-PET scan and CSF measures at entry, all with clinical follow-up. FDG-PET data were analysed with a validated voxel-based SPM method. Resulting single-subject SPM maps were classified by five imaging experts according to the disease-specific patterns, as "typical-AD", "atypical-AD" (i.e. posterior cortical atrophy, asymmetric logopenic AD variant, frontal-AD variant), "non-AD" (i.e. behavioural variant FTD, corticobasal degeneration, semantic variant FTD; dementia with Lewy bodies) or "negative" patterns. To perform the statistical analyses, the individual patterns were grouped either as "AD dementia vs. non-AD dementia (all diseases)" or as "FTD vs. non-FTD (all diseases)". Aβ42, total and phosphorylated Tau CSF-levels were classified dichotomously, and using the Erlangen Score algorithm. Multivariate logistic models tested the prognostic accuracy of FDG-PET-SPM and CSF dichotomous classifications. Accuracy of Erlangen score and Erlangen Score aided by FDG-PET SPM classification was evaluated. Results The multivariate logistic model identified FDG-PET "AD" SPM classification (Expβ = 19.35, 95% C.I. 4.8-77.8, p < 0.001) and CSF Aβ42 (Expβ = 6.5, 95% C.I. 1.64-25.43, p < 0.05) as the best predictors of conversion from MCI to AD dementia. The "FTD" SPM pattern significantly predicted conversion to FTD dementias at follow-up (Expβ = 14, 95% C.I. 3.1-63, p < 0.001). Overall, FDG-PET-SPM classification was the most accurate biomarker, able to correctly differentiate either the MCI subjects who converted to AD or FTD dementias, and those who remained stable or reverted to normal cognition (Expβ = 17.9, 95% C.I. 4.55-70.46, p < 0.001). Conclusions Our results support the relevant role of FDG-PET-SPM classification in predicting progression to different dementia conditions in prodromal MCI phase, and in the exclusion of progression, outperforming CSF biomarkers.
Collapse
Key Words
- AD, Alzheimer's disease
- AUC, area under curve
- Alzheimer's disease dementia
- CBD, corticobasal degeneration
- CDR, Clinical Dementia Rating
- CSF, cerebrospinal fluid
- Clinical setting
- DLB, dementia with Lewy bodies
- EANM, European Association of Nuclear Medicine
- Erlangen Score
- FDG, fluorodeoxyglucose
- FTD, frontotemporal dementia
- Frontotemporal dementia
- LR+, positive likelihood ratio
- LR-, negative likelihood ratio
- MCI, mild cognitive impairment
- PET, positron emission tomography
- PSP, progressive supranuclear palsy
- Prognosis
- aMCI, single-domain amnestic mild cognitive impairment
- bvFTD, behavioral variant of frontotemporal dementia
- md aMCI, multi-domain amnestic mild cognitive impairment
- md naMCI, multi-domain non-amnestic mild cognitive impairment
- naMCI, single-domain non-amnestic mild cognitive impairment
- p-tau, phosphorylated tau
- t-tau, total tau
Collapse
Affiliation(s)
- Silvia Paola Caminiti
- Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tommaso Ballarini
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Arianna Sala
- Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Cerami
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Clinical Neuroscience Department, San Raffaele Turro Hospital, Milan, Italy
| | - Luca Presotto
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Santangelo
- Department of Neurology and INSPE, San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Luigi Gianolli
- Nuclear Medicine Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Sandro Iannaccone
- Clinical Neuroscience Department, San Raffaele Turro Hospital, Milan, Italy
| | - Giuseppe Magnani
- Department of Neurology and INSPE, San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Perani
- Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Nuclear Medicine Unit, IRCCS San Raffaele Hospital, Milan, Italy.
| |
Collapse
|
42
|
Struyfs H, Van Hecke W, Veraart J, Sijbers J, Slaets S, De Belder M, Wuyts L, Peters B, Sleegers K, Robberecht C, Van Broeckhoven C, De Belder F, Parizel PM, Engelborghs S. Diffusion Kurtosis Imaging: A Possible MRI Biomarker for AD Diagnosis? J Alzheimers Dis 2016; 48:937-48. [PMID: 26444762 PMCID: PMC4927852 DOI: 10.3233/jad-150253] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The purpose of this explorative study was to investigate whether diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) parameter changes are reliable measures of white matter integrity changes in Alzheimer's disease (AD) patients using a whole brain voxel-based analysis (VBA). Therefore, age- and gender-matched patients with mild cognitive impairment (MCI) due to AD (n = 18), dementia due to AD (n = 19), and age-matched cognitively healthy controls (n = 14) were prospectively included. The magnetic resonance imaging protocol included routine structural brain imaging and DKI. Datasets were transformed to a population-specific atlas space. Groups were compared using VBA. Differences in diffusion and mean kurtosis measures between MCI and AD patients and controls were shown, and were mainly found in the splenium of the corpus callosum and the corona radiata. Hence, DTI and DKI parameter changes are suggestive of white matter changes in AD.
Collapse
Affiliation(s)
- Hanne Struyfs
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Wim Van Hecke
- icoMetrix, Leuven, Belgium.,Department of Radiology, Antwerp University Hospital & University of Antwerp, Antwerp, Belgium
| | - Jelle Veraart
- iMinds-Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium.,Center for Biomedical Imaging, New York University Langone Medical Center, New York, NY, USA
| | - Jan Sijbers
- iMinds-Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Sylvie Slaets
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Maya De Belder
- Department of Experimental Psychology, University of Ghent, Ghent, Belgium
| | - Laura Wuyts
- Department of Radiology, Antwerp University Hospital & University of Antwerp, Antwerp, Belgium
| | - Benjamin Peters
- Department of Radiology, Antwerp University Hospital & University of Antwerp, Antwerp, Belgium
| | - Kristel Sleegers
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Caroline Robberecht
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Frank De Belder
- Department of Radiology, Antwerp University Hospital & University of Antwerp, Antwerp, Belgium
| | - Paul M Parizel
- Department of Radiology, Antwerp University Hospital & University of Antwerp, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| |
Collapse
|
43
|
Groblewska M, Muszyński P, Wojtulewska-Supron A, Kulczyńska-Przybik A, Mroczko B. The Role of Visinin-Like Protein-1 in the Pathophysiology of Alzheimer's Disease. J Alzheimers Dis 2016; 47:17-32. [PMID: 26402751 DOI: 10.3233/jad-150060] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Calcium ions are crucial in the process of information transmission and integration in the central nervous system (CNS). These ions participate not only in intracellular mechanisms but also in intercellular processes. The changes in the concentration of Ca2 + ions modulate synaptic transmission, whereas neuronal activity induces calcium ion waves. Disturbed calcium homeostasis is thought to be one of the main features in the pathophysiology of Alzheimer's disease (AD), and AD pathogenesis is closely connected to Ca2 + signaling pathways. The effects of changes in neuronal Ca2 + are mediated by neuronal calcium sensor (NCS) proteins. It has been revealed that NCS proteins, with special attention to visinin-like protein 1 (VILIP-1), might have a connection to the etiology of AD. In the CNS, VILIP-1 influences the intracellular neuronal signaling pathways involved in synaptic plasticity, such as cyclic nucleotide cascades and nicotinergic signaling. This particular protein is implicated in calcium-mediated neuronal injury as well. VILIP-1 also participates in the pathological mechanisms of altered Ca2 + homeostasis, leading to neuronal loss. These findings confirm the utility of VILIP-1 as a useful biomarker of neuronal injury. Moreover, VILIP-1 plays a vital role in linking calcium-mediated neurotoxicity and AD-type pathological changes. The disruption of Ca2 + homeostasis caused by AD-type neurodegeneration may result in the damage of VILIP-1-containing neurons in the brain, leading to increased cerebrospinal fluid levels of VILIP-1. Thus, the aim of this overview is to describe the relationships of the NCS protein VILIP-1 with the pathogenetic factors of AD and neurodegenerative processes, as well as its potential clinical usefulness as a biomarker of AD. Moreover, we describe the current and probable therapeutic strategies for AD, targeting calcium-signaling pathways and VILIP-1.
Collapse
Affiliation(s)
| | - Paweł Muszyński
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Poland
| | | | | | - Barbara Mroczko
- Department of Biochemical Diagnostics, University Hospital in Białystok, Poland.,Department of Neurodegeneration Diagnostics, Medical University of Białystok, Poland
| |
Collapse
|
44
|
Nabers A, Ollesch J, Schartner J, Kötting C, Genius J, Hafermann H, Klafki H, Gerwert K, Wiltfang J. Amyloid-β-Secondary Structure Distribution in Cerebrospinal Fluid and Blood Measured by an Immuno-Infrared-Sensor: A Biomarker Candidate for Alzheimer's Disease. Anal Chem 2016; 88:2755-62. [PMID: 26828829 DOI: 10.1021/acs.analchem.5b04286] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The misfolding of the Amyloid-beta (Aβ) peptide into β-sheet enriched conformations was proposed as an early event in Alzheimer's Disease (AD). Here, the Aβ peptide secondary structure distribution in cerebrospinal fluid (CSF) and blood plasma of 141 patients was measured with an immuno-infrared-sensor. The sensor detected the amide I band, which reflects the overall secondary structure distribution of all Aβ peptides extracted from the body fluid. We observed a significant downshift of the amide I band frequency of Aβ peptides in Dementia Alzheimer type (DAT) patients, which indicated an overall shift to β-sheet. The secondary structure distribution of all Aβ peptides provides a better marker for DAT detection than a single Aβ misfold or the concentration of a specific oligomer. The discrimination between DAT and disease control patients according to the amide I frequency was in excellent agreement with the clinical diagnosis (accuracy 90% for CSF and 84% for blood). The amide I band maximum above or below the decisive marker frequency appears as a novel spectral biomarker candidate of AD. Additionally, a preliminary proof-of-concept study indicated an amide I band shift below the marker band already in patients with mild cognitive impairment due to AD. The presented immuno-IR-sensor method represents a promising, simple, robust, and label-free diagnostic tool for CSF and blood analysis.
Collapse
Affiliation(s)
- Andreas Nabers
- Department of Biophysics, Ruhr-University Bochum , 44780 Bochum, Germany
| | - Julian Ollesch
- Department of Biophysics, Ruhr-University Bochum , 44780 Bochum, Germany
| | - Jonas Schartner
- Department of Biophysics, Ruhr-University Bochum , 44780 Bochum, Germany
| | - Carsten Kötting
- Department of Biophysics, Ruhr-University Bochum , 44780 Bochum, Germany
| | - Just Genius
- Clinics for Psychiatry and Psychotherapy, LVR-Clinical Center Essen , 45147 Essen, Germany
| | - Henning Hafermann
- Clinics for Psychiatry and Psychotherapy, LVR-Clinical Center Essen , 45147 Essen, Germany
| | - Hans Klafki
- Department of Psychiatry and Psychotherapy, Georg-August-University Göttingen, University Medical Center , 37099 Göttingen, Germany
| | - Klaus Gerwert
- Department of Biophysics, Ruhr-University Bochum , 44780 Bochum, Germany
| | - Jens Wiltfang
- Clinics for Psychiatry and Psychotherapy, LVR-Clinical Center Essen , 45147 Essen, Germany.,Department of Psychiatry and Psychotherapy, Georg-August-University Göttingen, University Medical Center , 37099 Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE) , 37099 Göttingen, Germany
| |
Collapse
|
45
|
Koper OM, Kaminska J, Kemona H, Dymicka-Piekarska V. Application of the Bead-Based Technique in Neurodegeneration: A Literature Review. NEURODEGENER DIS 2015; 15:281-93. [DOI: 10.1159/000433439] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/12/2015] [Indexed: 11/19/2022] Open
|
46
|
Kvartsberg H, Portelius E, Andreasson U, Brinkmalm G, Hellwig K, Lelental N, Kornhuber J, Hansson O, Minthon L, Spitzer P, Maler JM, Zetterberg H, Blennow K, Lewczuk P. Characterization of the postsynaptic protein neurogranin in paired cerebrospinal fluid and plasma samples from Alzheimer's disease patients and healthy controls. ALZHEIMERS RESEARCH & THERAPY 2015; 7:40. [PMID: 26136856 PMCID: PMC4487851 DOI: 10.1186/s13195-015-0124-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/24/2015] [Indexed: 11/21/2022]
Abstract
Introduction Synaptic dysfunction and degeneration are central events in Alzheimer’s disease (AD) pathophysiology that are thought to occur early in disease progression. Synaptic pathology may be studied by examining protein biomarkers specific for different synaptic elements. We recently showed that the dendritic protein neurogranin (Ng), including the endogenous Ng peptide 48 to 76 (Ng48–76), is markedly increased in cerebrospinal fluid (CSF) in AD and that Ng48–76 is the dominant peptide in human brain tissue. The aim of this study was to characterize Ng in plasma and CSF using mass spectrometry and to investigate the performance of plasma Ng as an AD biomarker. Methods Paired plasma and CSF samples from patients with AD (n = 25) and healthy controls (n = 20) were analyzed in parallel using an immunoassay developed in-house on the Meso Scale Discovery platform and hybrid immunoaffinity-mass spectrometry (HI-MS). A second plasma material from patients with AD (n = 13) and healthy controls (n = 17) was also analyzed with HI-MS. High-resolution mass spectrometry was used for identification of endogenous plasma Ng peptides. Results Ng in human plasma is present as several endogenous peptides. Of the 16 endogenous Ng peptides identified, seven were unique for plasma and not detectable in CSF. However, Ng48–76 was not present in plasma. CSF Ng was significantly increased in AD compared with controls (P < 0.0001), whereas the plasma Ng levels were similar between the groups in both studies. Plasma and CSF Ng levels showed no correlation. CSF Ng was stable during storage at −20°C for up to 2 days, and no de novo generation of peptides were detected. Conclusions For the first time, to our knowledge, we have identified several endogenous Ng peptides in human plasma. In agreement with previous studies, we show that CSF Ng is significantly increased in AD as compared with healthy controls. The origin of Ng in plasma and its possible use as a biomarker need to be further investigated. The results suggest that CSF Ng, in particular Ng48–76, might reflect the neurodegenerative processes within the brain, indicating a role for Ng as a potential novel clinical biomarker for synaptic function in AD. Electronic supplementary material The online version of this article (doi:10.1186/s13195-015-0124-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hlin Kvartsberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, House V3/SU Mölndal, SE-431 80 Mölndal, Sweden ; AlzeCure Foundation, Karolinska Institutet Science Park, Hälsovägen 7, SE-141 57 Huddinge, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, House V3/SU Mölndal, SE-431 80 Mölndal, Sweden
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, House V3/SU Mölndal, SE-431 80 Mölndal, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, House V3/SU Mölndal, SE-431 80 Mölndal, Sweden
| | - Konstantin Hellwig
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Natalia Lelental
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Oskar Hansson
- Department of Clinical Sciences Malmö, Memory Clinic, Clinical Memory Research Unit, Faculty of Medicine, Lund University, Malmö, Klinikgatan 22, SE-222 42 Lund, Sweden
| | - Lennart Minthon
- Department of Clinical Sciences Malmö, Memory Clinic, Clinical Memory Research Unit, Faculty of Medicine, Lund University, Malmö, Klinikgatan 22, SE-222 42 Lund, Sweden
| | - Philipp Spitzer
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Juan M Maler
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, House V3/SU Mölndal, SE-431 80 Mölndal, Sweden ; Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square 588, WC1N 3BG London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, House V3/SU Mölndal, SE-431 80 Mölndal, Sweden
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| |
Collapse
|
47
|
Cicognola C, Chiasserini D, Parnetti L. Preanalytical Confounding Factors in the Analysis of Cerebrospinal Fluid Biomarkers for Alzheimer's Disease: The Issue of Diurnal Variation. Front Neurol 2015; 6:143. [PMID: 26175714 PMCID: PMC4483516 DOI: 10.3389/fneur.2015.00143] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/12/2015] [Indexed: 12/04/2022] Open
Abstract
Given the growing use of cerebrospinal fluid (CSF) beta-amyloid (Aβ) and tau as biomarkers for early diagnosis of Alzheimer’s disease (AD), it is essential that the diagnostic procedures are standardized and the results comparable across different laboratories. Preanalytical factors are reported to be the cause of at least 50% of the total variability. Among them, diurnal variability is a key issue and may have an impact on the comparability of the values obtained. The available studies on this issue are not conclusive so far. Fluctuations of CSF biomarkers in young healthy volunteers have been previously reported, while subsequent studies have not confirmed those observations in older subjects, the ones most likely to receive this test. The observed differences in circadian rhythms need to be further assessed not only in classical CSF biomarkers but also in novel forthcoming biomarkers. In this review, the existing data on the issue of diurnal variations of CSF classical biomarkers for AD will be analyzed, also evaluating the available data on new possible biomarkers.
Collapse
Affiliation(s)
- Claudia Cicognola
- Section of Neurology, Department of Medicine, Centre for Memory Disturbances, University of Perugia , Perugia , Italy
| | - Davide Chiasserini
- Section of Neurology, Department of Medicine, Centre for Memory Disturbances, University of Perugia , Perugia , Italy
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine, Centre for Memory Disturbances, University of Perugia , Perugia , Italy
| |
Collapse
|
48
|
Lewczuk P, Mroczko B, Fagan A, Kornhuber J. Biomarkers of Alzheimer's disease and mild cognitive impairment: a current perspective. Adv Med Sci 2015; 60:76-82. [PMID: 25579841 DOI: 10.1016/j.advms.2014.11.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/12/2014] [Accepted: 11/28/2014] [Indexed: 11/16/2022]
Abstract
A growing body of evidence supports the application of the neurochemical dementia diagnostics (NDD) biomarkers for the diagnosis of dementing conditions. Biomarkers of Alzheimer's disease (AD) were recently classified as these reflecting amyloid β pathology (decreased CSF concentrations of Aβ42 and/or positive Aβ PET scan) and these reflecting neurodegeneration (increased CSF Tau concentrations, decreased uptake of FDG on FDG-PET, and cerebral atrophy on structural MRI). Particularly important seems the role of the biomarkers in the early diagnosis of AD, as the first pathophysiologic events observable in the CSF and amyloid β-PET occur years and perhaps decades before the onset of the earliest clinical symptoms. Therefore, the NDD tools enable the diagnosis of AD already in the early preclinical stage. This review summarizes pathophysiology underlying the CSF biomarkers, following a discussion of their role in the current guidelines for the diagnostic procedures.
Collapse
Affiliation(s)
- Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Bialystok, Poland; Department of Biochemical Diagnostics, University Hospital in Bialystok, Bialystok, Poland
| | - Anne Fagan
- The Knight Alzheimer's Disease Research Center, Department of Neurology, Washington University, St. Louis, MO, USA
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
49
|
Michaud TL, Kane RL, McCarten JR, Gaugler JE, Nyman JA, Kuntz KM, for the Alzheimer’s Disease Neuroimaging Initiative. Risk Stratification Using Cerebrospinal Fluid Biomarkers in Patients with Mild Cognitive Impairment: An Exploratory Analysis. J Alzheimers Dis 2015; 47:729-40. [PMID: 26401707 PMCID: PMC6342191 DOI: 10.3233/jad-150066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) biomarkers can distinguish Alzheimer's disease (AD) patients from normal controls; however, their interpretation and potential for use in patients with mild cognitive impairment (MCI) remains unclear. OBJECTIVE To examine whether biomarker levels allow for risk stratification among MCI patients who are at increased risk to develop AD, thus allowing for improved targeting of early interventions for those whose risk are higher. METHODS We analyzed data from the Alzheimer's Disease Neuroimaging Initiative on MCI patients (n = 195) to estimate their risk of developing AD for up to 6 years on the basis of baseline CSF biomarkers. We used time-dependent receiver operating characteristic analysis to identify the best combination of biomarkers to discriminate those who converted to AD from those who remained stable. We used these data to construct a multi-biomarker score and estimated the risk of progression to AD for each quintile of the multi-biomarker score. RESULTS We found that Aβ(1-42) and P-tau(181p) were the best combination among CSF biomarkers to predict the overall risk of developing AD among MCI patients (area under the curve = 0.77). The hazard ratio of developing AD among MCI patients with high-risk (3rd-5th quintiles) biomarker levels was about 4 times greater than MCI patients with low-risk (1st quintile) levels (95% confidence interval, 1.93-7.26). CONCLUSION Our study identifies MCI patients at increased risk of developing AD by applying a multi-biomarker score using CSF biomarker results. Our findings may be of value to MCI patients and their clinicians for planning purposes and early intervention as well as for future clinical trials.
Collapse
Affiliation(s)
- Tzeyu L. Michaud
- Division of Health Policy and Management, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Robert L. Kane
- Division of Health Policy and Management, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - J. Riley McCarten
- Geriatric Research, Education and Clinical Center, Minneapolis Veterans Affairs Medical Center, Minneapolis, MN, USA
- Departments of Neurology and Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Joseph E. Gaugler
- School of Nursing & Center on Aging, University of Minnesota, Minneapolis, MN, USA
| | - John A. Nyman
- Division of Health Policy and Management, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Karen M. Kuntz
- Division of Health Policy and Management, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
50
|
Lewczuk P, Kornhuber J, Toledo JB, Trojanowski JQ, Knapik-Czajka M, Peters O, Wiltfang J, Shaw LM. Validation of the Erlangen Score Algorithm for the Prediction of the Development of Dementia due to Alzheimer's Disease in Pre-Dementia Subjects. J Alzheimers Dis 2015; 48:433-41. [PMID: 26402007 PMCID: PMC5127395 DOI: 10.3233/jad-150342] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND In previous studies, a dichotomous stratification of subjects into "cerebrospinal fluid (CSF) normal" and "CSF pathologic" was used to investigate the role of biomarkers in the prediction of progression to dementia in pre-dementia/mild cognitive impairment subjects. With the previously published Erlangen Score Algorithm, we suggested a division of CSF patterns into five groups, covering all possible CSF result combinations based on the presence of pathologic tau and/or amyloid-β CSF values. OBJECTIVE This study aimed to validate the Erlangen Score diagnostic algorithm based on the results of biomarkers analyses obtained in different patients cohorts, with different pre-analytical protocols, and with different laboratory analytical platforms. METHODS We evaluated the algorithm in two cohorts of pre-dementia subjects: the US-Alzheimer's Disease Neuroimaging Initiative and the German Dementia Competence Network. RESULTS In both cohorts, the Erlangen scores were strongly associated with progression to Alzheimer's disease. Neither the scores of the progressors nor the scores of the non-progressors differed significantly between the two projects, in spite of significant differences in the cohorts, laboratory methods, and the samples treatment. CONCLUSIONS Our findings confirm the utility of the Erlangen Score algorithm as a useful tool in the early neurochemical diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jon B Toledo
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Malgorzata Knapik-Czajka
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Oliver Peters
- Department of Psychiatry and Psychotherapy, Charité Berlin, Berlin, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, Georg-August Universität Göttingen, Göttingen, Germany
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|