1
|
Rangasamy B, Malafaia G, Maheswaran R. Evaluation of antioxidant response and Na +-K +-ATPase activity in zebrafish exposed to polyethylene microplastics: Shedding light on a physiological adaptation. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127789. [PMID: 34801306 DOI: 10.1016/j.jhazmat.2021.127789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Although the toxicity of microplastics has already been demonstrated in different animal models, our knowledge about the response of freshwater fish to this pollutant is still limited. Thus, we aimed to evaluate the impact of exposure of zebrafish adults (Danio rerio) to environmentally relevant concentrations of polyethylene microplastics (PE-MPs) (5 and 50 µg/L) and at different times of exposure (10 and 20 days). Initially, scanning electron microscope image illustrated size and format of the particle and FTIR analysis confirmed the presence of PE-MPs in the gastrointestinal tract of fish (at both concentrations tested). Subsequently, an alteration of oxidative and antioxidant responses was evaluated in the liver and brain. The results showed that catalase (CAT) activity, in liver, was significantly decreased, as was glutathione S-transferases (GSTs) activity (on the 10th experimental day). However, after 20 days of exposure, we observed a concentration-dependent increase in GST activity in liver of the animals exposed to PE-MPs. Furthermore, the lipid peroxidation (LPO) level was significantly increased by exposure to MPs, especially in the brain, after 20 days of exposure. The increase in Na+-K+-ATPase activity in the animals' gills was correlated with the increased production of malondialdehyde (MDA), which suggests the existence of a compensatory mechanism in which the high activity of this enzyme would be necessary to regulate the loss of ions caused by the increase in the processes of LPO, which has never been previously demonstrated. Thus, our study sheds light on a new physiological adaptation to deal with the oxidative effects of PE-MPs, in addition to supporting the future use of the assessment of Na+/K+-ATPase activity as a biomarker of the toxicity of these pollutants.
Collapse
Affiliation(s)
- Basuvannan Rangasamy
- Entomology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, Tamil Nadu 636 011, India
| | - Guilherme Malafaia
- Biological Research Laboratory, Goiano Federal Institute, Urutaí Campus, Urutaí, GO, Brazil. Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Graduate Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology and Natural Resources Conservation, Uberlândia, MG, Brazil
| | - Rajan Maheswaran
- Entomology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, Tamil Nadu 636 011, India.
| |
Collapse
|
2
|
Griego E, Hernández-Frausto M, Márquez LA, Lara-Valderrabano L, López Rubalcava C, Galván EJ. Activation of D1/D5 Receptors Ameliorates Decreased Intrinsic Excitability of Hippocampal Neurons Induced by Neonatal Blockade of NMDA Receptors. Br J Pharmacol 2021; 179:1695-1715. [PMID: 34791647 DOI: 10.1111/bph.15735] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/01/2021] [Accepted: 10/15/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Dysregulation of dopaminergic transmission combined with transient hypofunction of N-methyl-D-aspartate receptors (NMDARs) is a key mechanism that may underlie cognitive symptoms of schizophrenia. EXPERIMENTAL APPROACH Therefore, we aimed to identify electrophysiologic alterations in animals neonatally treated with the NMDA receptor antagonist, MK-801 or with saline solution. KEY RESULTS Patch-clamp whole-cell recordings from MK-801-treated animals revealed altered passive and active electrophysiologic properties compared with CA1 pyramidal cells from saline-treated animals, including upregulation of the K+ inward-rectifier conductance and fast-inactivating and slow/non-inactivating K+ currents. Upregulation of these membrane ionic currents reduced the overall excitability and altered the firing properties of CA1 pyramidal cells. We also explored the capability of cells treated with MK-801 to express intrinsic excitability potentiation, a non-synaptic form of hippocampal plasticity associated with cognition and memory formation. CA1 pyramidal cells from animals treated with MK-801 were unable to convey intrinsic excitability potentiation and had blunted synaptic potentiation. Furthermore, MK-801-treated animals also exhibited reduced cognitive performance in the Barnes maze task. Notably, activation of D1/D5 receptors with SKF-38, 393 partially restored electrophysiologic alterations caused by neonatal treatment with MK-801. CONCLUSION AND IMPLICATIONS Our results offer a molecular and mechanistic explanation based on dysregulation of glutamatergic in addition to dopaminergic transmission that may contribute to the understanding of the cognitive deterioration associated with schizophrenia.
Collapse
Affiliation(s)
- Ernesto Griego
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - Melissa Hernández-Frausto
- Current address: Department of Neuroscience and Physiology, NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Luis A Márquez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - Leonardo Lara-Valderrabano
- Current address: A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Carolina López Rubalcava
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - Emilio J Galván
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| |
Collapse
|
3
|
Babic I, Sellers D, Else PL, Nealon J, Osborne AL, Pai N, Weston-Green K. Effect of liraglutide on neural and peripheral markers of metabolic function during antipsychotic treatment in rats. J Psychopharmacol 2021; 35:284-302. [PMID: 33570012 DOI: 10.1177/0269881120981377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Liraglutide is a glucagon-like peptide-1 (GLP-1) receptor agonist that prevents metabolic side effects of the antipsychotic drugs (APDs) olanzapine and clozapine through unknown mechanisms. AIM This study aimed to investigate the effect of chronic APD and liraglutide co-treatment on key neural and peripheral metabolic signals, and acute liraglutide co-treatment on clozapine-induced hyperglycaemia. METHODS In study 1, rats were administered olanzapine (2 mg/kg), clozapine (12 mg/kg), liraglutide (0.2 mg/kg), olanzapine + liraglutide co-treatment, clozapine + liraglutide co-treatment or vehicle for six weeks. Feeding efficiency was examined weekly. Examination of brain tissue (dorsal vagal complex (DVC) and mediobasal hypothalamus (MBH)), plasma metabolic hormones and peripheral (liver and kidney) cellular metabolism and oxidative stress was conducted. In study 2, rats were administered a single dose of clozapine (12 mg/kg), liraglutide (0.4 mg/kg), clozapine + liraglutide co-treatment or vehicle. Glucose tolerance and plasma hormone levels were assessed. RESULTS Liraglutide co-treatment prevented the time-dependent increase in feeding efficiency caused by olanzapine, which plateaued by six weeks. There was no effect of chronic treatment on melanocortinergic, GABAergic, glutamatergic or endocannabionoid markers in the MBH or DVC. Peripheral hormones and cellular metabolic markers were unaltered by chronic APD treatment. Acute liraglutide co-treatment was unable to prevent clozapine-induced hyperglycaemia, but it did alter catecholamine levels. CONCLUSION The unexpected lack of change to central and peripheral markers following chronic treatment, despite the presence of weight gain, may reflect adaptive mechanisms. Further studies examining alterations across different time points are required to continue to elucidate the mechanisms underlying the benefits of liraglutide on APD-induced metabolic side effects.
Collapse
Affiliation(s)
- Ilijana Babic
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Neurohorizons Laboratory, Molecular Horizons, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia.,Illawarra and Shoalhaven Local Health District, Wollongong, Australia
| | - Dominic Sellers
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Paul L Else
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Jessica Nealon
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Ashleigh L Osborne
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Neurohorizons Laboratory, Molecular Horizons, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Nagesh Pai
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia.,Illawarra and Shoalhaven Local Health District, Wollongong, Australia
| | - Katrina Weston-Green
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Neurohorizons Laboratory, Molecular Horizons, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia.,Illawarra and Shoalhaven Local Health District, Wollongong, Australia
| |
Collapse
|
4
|
Venkataramaiah C. Modulations in the ATPases during ketamine-induced schizophrenia and regulatory effect of "3-(3, 4-dimethoxy phenyl) -1- (4-methoxyphenyl) prop-2-en-1-one": an in vivo and in silico studies. J Recept Signal Transduct Res 2020; 40:148-156. [PMID: 32009493 DOI: 10.1080/10799893.2020.1720242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Schizophrenia is a devastating illness and displays a wide range of psychotic symptoms. Accumulating evidence indicate impairment of bioenergetic pathways including energy storage and usage in the pathogenesis of schizophrenia. Although well-established synthetic drugs are being used for the management of schizophrenia, most of them have several adverse effects. Hence, natural products derived from medicinal plants represent a continuous major source for ethnomedicine-derived pharmaceuticals for different neurological disorders including schizophrenia. In the present study, we have investigated the neuroprotective effect of the novel bioactive compound i.e. "3-(3,4-dimethoxy phenyl) -1- (4-methoxyphenyl) prop-2-en-1-one" of Celastrus paniculata against ketamine-induced schizophrenia with particular reference to the activities of ATPase using in vivo and in silico methods. Ketamine-induced schizophrenia caused significant reduction in the activities of all three ATPases (Na+/K+, Ca2+ and Mg2+) in different regions of brain which reflects the decreased turnover of ATP, presumably due to the inhibition of oxidoreductase system and uncoupling of the same from the electron transport system. On par with the reference compound, clozapine, the activity levels of all three ATPases were restored to normal after pretreatment with the compound suggesting recovery of energy loss that was occurred during ketamine-induced schizophrenia. Besides, the compound has shown strong interaction and exhibited highest binding energies against all the three ATPases with a lowest inhibition constant value than the clozapine. The results of the present study clearly imply that the compound exhibit significant neuroprotective and antischizophrenic effect by modulating bioenergietic pathways that were altered during induced schizophrenia.
Collapse
Affiliation(s)
- Chintha Venkataramaiah
- Division of Molecular Biology, Department of Zoology, Sri Venkateswara University, Tirupati, India
| |
Collapse
|
5
|
Demin KA, Meshalkina DA, Volgin AD, Yakovlev OV, de Abreu MS, Alekseeva PA, Friend AJ, Lakstygal AM, Zabegalov K, Amstislavskaya TG, Strekalova T, Bao W, Kalueff AV. Developing zebrafish experimental animal models relevant to schizophrenia. Neurosci Biobehav Rev 2019; 105:126-133. [DOI: 10.1016/j.neubiorev.2019.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/20/2019] [Accepted: 07/27/2019] [Indexed: 12/18/2022]
|
6
|
Mezzomo NJ, Fontana BD, Kalueff AV, Barcellos LJ, Rosemberg DB. Understanding taurine CNS activity using alternative zebrafish models. Neurosci Biobehav Rev 2018; 90:471-485. [DOI: 10.1016/j.neubiorev.2018.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Fontana BD, Mezzomo NJ, Kalueff AV, Rosemberg DB. The developing utility of zebrafish models of neurological and neuropsychiatric disorders: A critical review. Exp Neurol 2018; 299:157-171. [DOI: 10.1016/j.expneurol.2017.10.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/15/2017] [Accepted: 10/04/2017] [Indexed: 12/30/2022]
|
8
|
Sharma N, Khurana N, Muthuraman A. Lower vertebrate and invertebrate models of Alzheimer's disease - A review. Eur J Pharmacol 2017; 815:312-323. [PMID: 28943103 DOI: 10.1016/j.ejphar.2017.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/20/2017] [Accepted: 09/13/2017] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease is a common neurodegenerative disorder which is characterized by the presence of beta- amyloid protein and neurofibrillary tangles (NFTs) in the brain. Till now, various higher vertebrate models have been in use to study the pathophysiology of this disease. But, these models possess some limitations like ethical restrictions, high cost, difficult maintenance of large quantity and lesser reproducibility. Besides, various lower chordate animals like Danio rerio, Drosophila melanogaster, Caenorhabditis elegans and Ciona intestinalis have been proved to be an important model for the in vivo determination of targets of drugs with least limitations. In this article, we reviewed different studies conducted on theses models for the better understanding of the pathophysiology of AD and their subsequent application as a potential tool in the preclinical evaluation of new drugs.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Navneet Khurana
- Department of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Arunachalam Muthuraman
- Department of Pharmacology, Akal College of Pharmacy and Technical Education, Mastuana Sahib, Sangrur, Punjab, India; Department of Pharmacology, JSS College of Pharmacy, Jagadguru Sri Shivarathreeshwara University, Mysuru 570015, Karnataka, India.
| |
Collapse
|
9
|
Understanding taurine CNS activity using alternative zebrafish models. Neurosci Biobehav Rev 2017; 83:525-539. [PMID: 28916270 DOI: 10.1016/j.neubiorev.2017.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/08/2017] [Accepted: 09/02/2017] [Indexed: 12/11/2022]
Abstract
Taurine is a highly abundant "amino acid" in the brain. Despite the potential neuroactive role of taurine in vertebrates has long been recognized, the underlying molecular mechanisms related to its pleiotropic effects in the brain remain poorly understood. Due to the genetic tractability, rich behavioral repertoire, neurochemical conservation, and small size, the zebrafish (Danio rerio) has emerged as a powerful candidate for neuropsychopharmacology investigation and in vivo drug screening. Here, we summarize the main physiological roles of taurine in mammals, including neuromodulation, osmoregulation, membrane stabilization, and antioxidant action. In this context, we also highlight how zebrafish models of brain disorders may present interesting approaches to assess molecular mechanisms underlying positive effects of taurine in the brain. Finally, we outline recent advances in zebrafish drug screening that significantly improve neuropsychiatric translational researches and small molecule screens.
Collapse
|
10
|
Kysil EV, Meshalkina DA, Frick EE, Echevarria DJ, Rosemberg DB, Maximino C, Lima MG, Abreu MS, Giacomini AC, Barcellos LJG, Song C, Kalueff AV. Comparative Analyses of Zebrafish Anxiety-Like Behavior Using Conflict-Based Novelty Tests. Zebrafish 2017; 14:197-208. [DOI: 10.1089/zeb.2016.1415] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Elana V. Kysil
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Darya A. Meshalkina
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Erin E. Frick
- Department of Psychology, University of Southern Mississippi, Hattiesburg, Mississippi
| | - David J. Echevarria
- Department of Psychology, University of Southern Mississippi, Hattiesburg, Mississippi
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, Louisiana
| | - Denis B. Rosemberg
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, Louisiana
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Caio Maximino
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, Louisiana
- Laboratory of Neurosciences and Behavior “Frederico Guilherme Graeff,” Center for Biological and Health Sciences, Institute of Health and Biological Studies, Federal University of Southern and Southeastern Pará (UNIFESSPA), Marabá, Brazil
| | - Monica Gomes Lima
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, Louisiana
- University of the State of Pará (UEPA), Marabá, Brazil
| | - Murilo S. Abreu
- Postgraduate Program in Bio-Experimentation, University of Passo Fundo (UPF), Passo Fundo, Brazil
| | - Ana C. Giacomini
- Postgraduate Program in Bio-Experimentation, University of Passo Fundo (UPF), Passo Fundo, Brazil
| | - Leonardo J. G. Barcellos
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, Louisiana
- Postgraduate Program in Bio-Experimentation, University of Passo Fundo (UPF), Passo Fundo, Brazil
- Postgraduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Graduate Institute of Neural and Cognitive Sciences, China Medical University Hospital, Taichung, Taiwan
| | - Allan V. Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, Louisiana
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Ural Federal University, Ekaterinburg, Russia
- ZENEREI Research Center, Slidell, Louisiana
| |
Collapse
|
11
|
Pierozan P, Biasibetti H, Schmitz F, Ávila H, Fernandes CG, Pessoa-Pureur R, Wyse ATS. Neurotoxicity of Methylmercury in Isolated Astrocytes and Neurons: the Cytoskeleton as a Main Target. Mol Neurobiol 2016; 54:5752-5767. [DOI: 10.1007/s12035-016-0101-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/05/2016] [Indexed: 01/16/2023]
|
12
|
Roy S, Dasgupta A, Banerjee U, Chowdhury P, Mukhopadhyay A, Saha G, Singh O. Role of membrane cholesterol and lipid peroxidation in regulating the Na +/K +-ATPase activity in schizophrenia. Indian J Psychiatry 2016; 58:317-325. [PMID: 28066011 PMCID: PMC5100125 DOI: 10.4103/0019-5545.192023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Na+/K+-ATPase (NKA) activity is compromised in several neuropsychiatric disorders. Oxidative stress and membrane lipid composition play important roles in regulating NKA activity. AIMS The present study was undertaken to evaluate the effects of oxidative stress-induced membrane lipid damage and membrane cholesterol composition on NKA pump activity in schizophrenia. SETTINGS AND DESIGN It was a hospital-based, cross-sectional, observational study in 49 cases and 51 controls for 1 year. MATERIALS AND METHODS NKA pump activity in red blood cell membrane, serum levels of thiobarbituric acid reactive substances (TBARS), protein carbonyl (PC) adducts, and cholesterol were measured by standard spectrophotometric techniques in newly diagnosed schizophrenia patients by Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision criteria. Membrane cholesterol was analyzed by chloroform and isopropanol extraction followed by measuring the cholesterol concentration by spectrophotometric technique. STATISTICAL ANALYSIS AND RESULTS Mean values for NKA pump activity, membrane cholesterol level, and serum cholesterol levels were significantly lower in the case group (P < 0.001). The activity of NKA pump was found to be directly correlated to membrane cholesterol level rather than with the serum cholesterol values. Although the NKA pump activity showed inverse relationship with the serum values of TBARS and PC products both, on multiple linear regression analysis, it was found to be significantly positively dependent on the membrane cholesterol (β = 0.268, P = 0.01) and negatively dependent on the serum TBARS (β = -0.63, P < 0.001) levels only. CONCLUSION Reduced membrane cholesterol and oxidative stress-induced damage to membrane lipids play crucial roles in decreasing the NKA activity in schizophrenia. Hence, for a better prognosis and treatment, measures are required to maintain optimum levels of cholesterol in neuronal tissues along with a proper control on oxidative stress.
Collapse
Affiliation(s)
- Suparna Roy
- Department of Biochemistry, Calcutta National Medical College, Kolkata, West Bengal, India
| | - Anindya Dasgupta
- Department of Biochemistry, Calcutta National Medical College, Kolkata, West Bengal, India
| | - Ushasi Banerjee
- Department of Biochemistry, Calcutta National Medical College, Kolkata, West Bengal, India; Department of Biochemistry, North Bengal Medical College, Susrutanagar, Darjeeling, West Bengal, India
| | - Piali Chowdhury
- Department of Biochemistry, Calcutta National Medical College, Kolkata, West Bengal, India
| | - Ashis Mukhopadhyay
- Department of Psychiatry, Calcutta National Medical College and Hospital, Kolkata, West Bengal, India
| | - Gautam Saha
- Consultant Psychiatrist and Director, Clinic Brain, Barasat, West Bengal, India
| | - Omprakash Singh
- Department of Psychiatry, NRS Medical College, Kolkata, West Bengal, India
| |
Collapse
|
13
|
Kyzar EJ, Kalueff AV. Exploring Hallucinogen Pharmacology and Psychedelic Medicine with Zebrafish Models. Zebrafish 2016; 13:379-90. [PMID: 27002655 DOI: 10.1089/zeb.2016.1251] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
After decades of sociopolitical obstacles, the field of psychiatry is experiencing a revived interest in the use of hallucinogenic agents to treat brain disorders. Along with the use of ketamine for depression, recent pilot studies have highlighted the efficacy of classic serotonergic hallucinogens, such as lysergic acid diethylamide and psilocybin, in treating addiction, post-traumatic stress disorder, and anxiety. However, many basic pharmacological and toxicological questions remain unanswered with regard to these compounds. In this study, we discuss psychedelic medicine as well as the behavioral and toxicological effects of hallucinogenic drugs in zebrafish. We emphasize this aquatic organism as a model ideally suited to assess both the potential toxic and therapeutic effects of major known classes of hallucinogenic compounds. In addition, novel drugs with hallucinogenic properties can be efficiently screened using zebrafish models. Well-designed preclinical studies utilizing zebrafish can contribute to the reemerging treatment paradigm of psychedelic medicine, leading to new avenues of clinical exploration for psychiatric disorders.
Collapse
Affiliation(s)
- Evan J Kyzar
- 1 Department of Psychiatry, College of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Allan V Kalueff
- 2 Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University (GDOU) , Zhanjiang, China .,3 ZENEREI Institute , Slidell, Louisiana.,4 Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg, Russia .,5 Institutes of Chemical Technology and Natural Sciences, Ural Federal University , Ekaterinburg, Russia .,6 The International Zebrafish Neuroscience Research Consortium (ZNRC) , Slidell, Louisiana
| |
Collapse
|
14
|
Doganli C, Nyengaard JR, Lykke-Hartmann K. Zebrafish Whole-Mount In Situ Hybridization Followed by Sectioning. Methods Mol Biol 2016; 1377:353-363. [PMID: 26695046 DOI: 10.1007/978-1-4939-3179-8_31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In situ hybridization is a powerful technique used for locating specific nucleic acid targets within morphologically preserved tissues and cell preparations. A labeled RNA or DNA probe hybridizes to its complementary mRNA or DNA sequence within a sample. Here, we describe RNA in situ hybridization protocol for whole-mount zebrafish embryos.
Collapse
Affiliation(s)
- Canan Doganli
- Smith Cardiovascular Research Institute, University of California, San Francisco, CA, 94158-9001, USA
| | - Jens Randel Nyengaard
- Stereology and Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, Aarhus University, Aarhus C, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine and Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation, Aarhus University, Aarhus C, Denmark.
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
15
|
Moussavi Nik SH, Croft K, Mori TA, Lardelli M. The Comparison of Methods for Measuring Oxidative Stress in Zebrafish Brains. Zebrafish 2014; 11:248-54. [DOI: 10.1089/zeb.2013.0958] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Seyyed Hani Moussavi Nik
- Discipline of Genetics, School of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, Australia
| | - Kevin Croft
- School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Trevor A. Mori
- School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Michael Lardelli
- Discipline of Genetics, School of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
16
|
Doğanli C, Oxvig C, Lykke-Hartmann K. Zebrafish as a novel model to assess Na+/K(+)-ATPase-related neurological disorders. Neurosci Biobehav Rev 2013; 37:2774-87. [PMID: 24091024 DOI: 10.1016/j.neubiorev.2013.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/08/2013] [Accepted: 09/23/2013] [Indexed: 11/26/2022]
Abstract
Modeling neurological disorders using zebrafish increases rapidly as this model system allows easy access to all developmental stages and imaging of pathological processes. A surprising degree of functional conservation has been demonstrated between human genes implicated in neurodegenerative diseases and their zebrafish orthologues. Zebrafish offers rapid high throughput screening of therapeutic compounds and live imaging of pathogenic mechanisms in vivo. Several recent zebrafish studies functionally assessed the role of the sodium-potassium pump (Na(+)/K(+)-ATPase). The Na(+)/K(+)-ATPase maintains the electrochemical gradients across the plasma membrane, essential for e.g. signaling, secondary active transport, glutamate re-uptake and neuron excitability in animal cells. Na(+)/K(+)-ATPase mutations are associated with neurological disorders, where mutations in the Na(+)/K(+)-ATPase α2 and α3 isoforms cause Familial hemiplegic migraine type 2 (FHM2) and Rapid-onset dystonia-parkinsonism (RDP)/Alternating hemiplegic childhood (AHC), respectively. In zebrafish, knock-down of Na(+)/K(+)-ATPase isoforms included skeletal and heart muscle defects, impaired embryonic motility, depolarized Rohon-beard neurons and abrupt brain ventricle development. In this review, we discuss zebrafish as a model to assess Na(+)/K(+)-ATPase isoform functions. Furthermore, studies investigating proteomic changes in both α2- and α3-isoform deficient embryos and their potential connections to the Na(+)/K(+)-ATPase functions will be discussed.
Collapse
Affiliation(s)
- Canan Doğanli
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Copenhagen, Denmark; Aarhus University, Department of Biomedicine, Ole Worms Allé 3, Building 1171, DK-8000 Aarhus, Denmark; Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10, Building 3135, DK-8000 Aarhus, Denmark
| | | | | |
Collapse
|
17
|
Herrmann AP, Lunardi P, Pilz LK, Tramontina AC, Linck VM, Okunji CO, Gonçalves CA, Elisabetsky E. Effects of the putative antipsychotic alstonine on glutamate uptake in acute hippocampal slices. Neurochem Int 2012; 61:1144-50. [PMID: 22940693 DOI: 10.1016/j.neuint.2012.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 08/13/2012] [Accepted: 08/15/2012] [Indexed: 11/28/2022]
Abstract
A dysfunctional glutamatergic system is thought to be central to the negative symptoms and cognitive deficits recognized as determinant to the poor quality of life of people with schizophrenia. Modulating glutamate uptake has, thus, been suggested as a novel target for antipsychotics. Alstonine is an indole alkaloid sharing with atypical antipsychotics the profile in animal models relevant to schizophrenia, though divergent in its mechanism of action. The aim of this study was to evaluate the effects of alstonine on glutamate uptake. Additionally, the effects on glutathione content and extracellular S100B levels were assessed. Acute hippocampal slices were incubated with haloperidol (10μM), clozapine (10 and 100μM) or alstonine (1-100μM), alone or in combination with apomorphine (100μM), and 5-HT(2) receptor antagonists (0.01μM altanserin and 0.1μM SB 242084). A reduction in glutamate uptake was observed with alstonine and clozapine, but not haloperidol. Apomorphine abolished the effect of clozapine, whereas 5-HT(2A) and 5-HT(2C) antagonists abolished the effects of alstonine. Increased levels of glutathione were observed only with alstonine, also the only compound that failed to decrease the release of S100B. This study shows that alstonine decreases glutamate uptake, which may be beneficial to the glutamatergic deficit observed in schizophrenia. Noteworthily, the decrease in glutamate uptake is compatible with the reversal of MK-801-induced social interaction and working memory deficits. An additional potential benefit of alstonine as an antipsychotic is its ability to increase glutathione, a key cellular antioxidant reported to be decreased in the brain of patients with schizophrenia. Adding to the characterization of the novel mechanism of action of alstonine, the lack of effect of apomorphine in alstonine-induced changes in glutamate uptake reinforces that D(2) receptors are not primarily implicated. Though clearly mediated by 5-HT(2A) and 5-HT(2C) serotonin receptors, the precise mechanisms that result in the effects of alstonine on glutamate uptake warrant elucidation.
Collapse
Affiliation(s)
- Ana P Herrmann
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|