1
|
Yang J, Wang H, Chen H, Hou H, Hu Q. The association of genetic polymorphisms within the dopaminergic system with nicotine dependence: A narrative review. Heliyon 2024; 10:e33158. [PMID: 39021905 PMCID: PMC11253068 DOI: 10.1016/j.heliyon.2024.e33158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Nicotine, the main compound in cigarettes, leads to smoking addiction. Nicotine acts on the limbic dopamine reward loop in the midbrain by binding to nicotinic acetylcholine receptors, promoting the release of dopamine, and resulting in a rewarding effect or satisfaction. This satisfaction is essential for continued and compulsive tobacco use, and therefore dopamine plays a crucial role in nicotine dependence. Numerous studies have identified genetic polymorphisms of dopaminergic pathways which may influence susceptibility to nicotine addiction. Dopamine levels are greatly influenced by synthesis, storage, release, degradation, and reuptake-related genes, including genes encoding tyrosine hydroxylase, dopamine decarboxylase, dopamine transporter, dopamine receptor, dopamine 3-hydroxylase, catechol-O-methyltransferase, and monoamine oxidase. In this paper, we review research progress on the effects of polymorphisms in the above genes on downstream smoking behavior and nicotine dependence, to offer a theoretical basis for the elucidation of the genetic mechanism underlying nicotine dependence and future personalized treatment for smoking cessation.
Collapse
Affiliation(s)
- Jingjing Yang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102209, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 102209, China
| | - Hongjuan Wang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102209, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 102209, China
| | - Huan Chen
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102209, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 102209, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102209, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 102209, China
| | - Qingyuan Hu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102209, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 102209, China
| |
Collapse
|
2
|
Prom-Wormley EC, Wells JL, Landes L, Edmondson AN, Sankoh M, Jamieson B, Delk KJ, Surya S, Bhati S, Clifford J. A scoping review of smoking cessation pharmacogenetic studies to advance future research across racial, ethnic, and ancestral populations. Front Genet 2023; 14:1103966. [PMID: 37359362 PMCID: PMC10285878 DOI: 10.3389/fgene.2023.1103966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/25/2023] [Indexed: 06/28/2023] Open
Abstract
Abstinence rates among smokers attempting to quit remain low despite the wide availability and accessibility of pharmacological smoking cessation treatments. In addition, the prevalence of cessation attempts and abstinence differs by individual-level social factors such as race and ethnicity. Clinical treatment of nicotine dependence also continues to be challenged by individual-level variability in effectiveness to promote abstinence. The use of tailored smoking cessation strategies that incorporate information on individual-level social and genetic factors hold promise, although additional pharmacogenomic knowledge is still needed. In particular, genetic variants associated with pharmacological responses to smoking cessation treatment have generally been conducted in populations with participants that self-identify as White race or who are determined to be of European genetic ancestry. These results may not adequately capture the variability across all smokers as a result of understudied differences in allele frequencies across genetic ancestry populations. This suggests that much of the current pharmacogenetic study results for smoking cessation may not apply to all populations. Therefore, clinical application of pharmacogenetic results may exacerbate health inequities by racial and ethnic groups. This scoping review examines the extent to which racial, ethnic, and ancestral groups that experience differences in smoking rates and smoking cessation are represented in the existing body of published pharmacogenetic studies of smoking cessation. We will summarize results by race, ethnicity, and ancestry across pharmacological treatments and study designs. We will also explore current opportunities and challenges in conducting pharmacogenomic research on smoking cessation that encourages greater participant diversity, including practical barriers to clinical utilization of pharmacological smoking cessation treatment and clinical implementation of pharmacogenetic knowledge.
Collapse
Affiliation(s)
- Elizabeth C. Prom-Wormley
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Jonathan L. Wells
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Lori Landes
- Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Amy N. Edmondson
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Mariam Sankoh
- Department of Integrative Life Sciences, Virginia Commonwealth University, Richmond, VA, United States
| | - Brendan Jamieson
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Kayla J. Delk
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Sanya Surya
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Shambhavi Bhati
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - James Clifford
- Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, United States
| |
Collapse
|
3
|
DeVito EE, Sofuoglu M. Catechol-O-Methyltransferase Effects on Smoking: A Review and Proof of Concept of Sex-Sensitive Effects. Curr Behav Neurosci Rep 2022; 9:113-123. [PMID: 36644316 PMCID: PMC9838826 DOI: 10.1007/s40473-022-00251-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/19/2023]
Abstract
Purpose of Review This article reviews recent research on how catechol-O-methyltransferase (COMT) may impact cigarette smoking behavior, and how effects may be sex-sensitive. Preliminary data are presented on sex-sensitive effects of COMT on response to short-term abstinence in individuals who smoke. Recent Findings Although research is mixed, functional variants in the COMT gene have been linked with smoking behavior, cessation outcomes and nicotine abstinence-related symptoms. Our proof-of-concept preliminary data from a human laboratory study of individuals who smoke cigarettes found that those with the high COMT enzyme activity genotype (Val/Val) reported more severe smoking urges and withdrawal symptoms following overnight abstinence than Met carriers. These effects were present in women, but not in men and were abstinent-dependent, in that they dissipated following nicotine administration. Summary The preliminary data showing sex-sensitive pharmacogenetic effects may shed light on mechanisms contributing to sex differences in barriers to smoking cessation or potential sex-specific treatment options.
Collapse
Affiliation(s)
- Elise E. DeVito
- Yale University School of Medicine, Department of Psychiatry, New Haven, CT, USA
| | - Mehmet Sofuoglu
- Yale University School of Medicine, Department of Psychiatry, New Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT
| |
Collapse
|
4
|
Karelitz JL, McClure EA, Wolford-Clevenger C, Pacek LR, Cropsey KL. Cessation classification likelihood increases with higher expired-air carbon monoxide cutoffs: a meta-analysis. Drug Alcohol Depend 2021; 221:108570. [PMID: 33592559 PMCID: PMC8026538 DOI: 10.1016/j.drugalcdep.2021.108570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND Expired-air carbon monoxide (CO) is commonly used to biochemically verify smoking status. The CO cutoff and CO monitor brand may affect the probability of classifying smokers as abstinent, thus influencing conclusions about the efficacy of cessation trials. No systematic reviews have tested this hypothesis. Therefore, we performed a meta-analysis examining whether the likelihood of smoking cessation classification varied due to CO cutoff and monitor brand. METHODS Eligible studies (k = 122) longitudinally assessed CO-verified cessation in adult smokers in randomized trials. Primary meta-regressions separately assessed differences in quit classification likelihood due to continuous and categorical CO cutoffs (Low, 3-4 parts per million [ppm]; [SRNT] Recommended, 5-6 ppm; Moderate, 7-8 ppm; and High, 9-10 ppm); exploratory analyses compared likelihood outcomes between monitor brands: Bedfont and Vitalograph. RESULTS The likelihood of quit classification increased 18% with each 1 ppm increase above the lowest cutoff (3 ppm). Odds of classification as quit significantly increased between each cutoff category and High: 261% increase from Low; 162% increase from Recommended; and 150% increase from Moderate. There were no differences in cessation classification between monitor brands. CONCLUSIONS As expected, higher CO cutoffs were associated with greater likelihood of cessation classification. The lack of CO monitor brand differences may have been due to model-level variance not able to be followed up in the present dataset. Researchers are advised to report outcomes using a range of cutoffs-including the recommended range (5-6 ppm)-and the CO monitor brand/model used. Using higher CO cutoffs significantly increases likelihood of quit classification, possibly artificially elevating treatment strategies.
Collapse
Affiliation(s)
- Joshua L Karelitz
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, 5150 Centre Ave, Suite 4C, Pittsburgh, PA, 15232, USA; Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, 5150 Centre Ave, Suite 4C, Pittsburgh, PA, 15232, USA.
| | - Erin A McClure
- Department of Psychiatry and Behavioral Sciences, College of Medicine, Medical University of South Carolina, 67 President St, MSC 861, Charleston, SC, 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 67 President St, MSC 861, Charleston, SC, 29425, USA
| | - Caitlin Wolford-Clevenger
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1670 University Blvd Birmingham, AL, 35233, USA
| | - Lauren R Pacek
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, 2068 Erwin Road, Room 3038, Durham, NC, 27705, USA
| | - Karen L Cropsey
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1670 University Blvd Birmingham, AL, 35233, USA
| |
Collapse
|
5
|
Cao M, Yin D, Qin Y, Liao F, Su Y, Xia X, Gao J, Zhu Y, Zhang W, Shu Y, Lu X. Screening of Novel Pharmacogenetic Candidates for Mercaptopurine-Induced Toxicity in Patients With Acute Lymphoblastic Leukemia. Front Pharmacol 2020; 11:267. [PMID: 32265697 PMCID: PMC7098961 DOI: 10.3389/fphar.2020.00267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 02/25/2020] [Indexed: 02/05/2023] Open
Abstract
A small proportion of patients with acute lymphoblastic leukemia (ALL) may experience severe leukopenia after treating with 6-mercaptopurine (6MP), which can be largely explained by germline variants in TPMT and NUDT15. However, a minority of patients who suffered such adverse drug reaction have NUDT15 wt/wt TPMT wt/wt genotype, indicating that other genetic factors may take part in. In this study, we genotyped 539 exon-located nonsilent pharmacogenetic variants in genes involved in phase I/II of drug metabolism in 173 pediatric patients with ALL and conducted association screening for 6MP-induced leukopenia. Besides NUDT15 (rs116855232, P = 6.4 × 10-11) and TPMT (rs1142345, P = 0.003), a novel variant was identified in CYP2A7 gene (i.e., rs73032311, P = 0.0007), which is independent of NUDT15/TPMT variant. In addition, a variant (i.e., rs4680) in COMT is significantly associated with 6MP-induced hepatotoxicity (P = 0.007). In conclusion, variants in CYP2A7 and COMT may be considered as novel potential pharmacogenetic markers for 6MP-induced toxicities, but additional independent validations with large sample size and investigations on related mechanisms are further needed.
Collapse
Affiliation(s)
- Minyuan Cao
- Department of Pediatric Hematology and Oncology, West China Second Hospital, Sichuan University, Chengdu, China.,Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dandan Yin
- Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Qin
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Liao
- Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yali Su
- Department of Pediatric Hematology and Oncology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xuyang Xia
- Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ju Gao
- Department of Pediatric Hematology and Oncology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Yiping Zhu
- Department of Pediatric Hematology and Oncology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Shu
- Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxi Lu
- Department of Pediatric Hematology and Oncology, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Salloum NC, Buchalter ELF, Chanani S, Espejo G, Ismail MS, Laine RO, Nageeb M, Srivastava AB, Trapp N, Trillo L, Vance E, Wenzinger M, Hartz SM, David SP, Chen LS. From genes to treatments: a systematic review of the pharmacogenetics in smoking cessation. Pharmacogenomics 2018; 19:861-871. [PMID: 29914292 PMCID: PMC6219447 DOI: 10.2217/pgs-2018-0023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Smoking cessation treatment outcomes may be heavily influenced by genetic variations among smokers. Therefore, identifying specific variants that affect response to different pharmacotherapies is of major interest to the field. In the current study, we systematically review all studies published in or after the year 1990 which examined one or more gene-drug interactions for smoking cessation treatment. Out of 644 citations, 46 articles met the inclusion criteria for the systematic review. We summarize evidence on several genetic polymorphisms (CHRNA5-A3-B4, CYP2A6, DBH, CHRNA4, COMT, DRD2, DRD4 and CYP2B6) and their potential moderating pharamacotherarpy effects on patient cessation efficacy rates. These findings are promising and call for further research to demonstrate the effectiveness of genetic testing in personalizing treatment decision-making and improving outcome.
Collapse
Affiliation(s)
- Naji C Salloum
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Erica LF Buchalter
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Swati Chanani
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Gemma Espejo
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Mahjabeen S Ismail
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Randy O Laine
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Maysaa Nageeb
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - A Benjamin Srivastava
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Nicholas Trapp
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Ludwig Trillo
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Erica Vance
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Michael Wenzinger
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Sarah M Hartz
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Sean P David
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Li-Shiun Chen
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
7
|
Schuit E, Panagiotou OA, Munafò MR, Bennett DA, Bergen AW, David SP, Cochrane Tobacco Addiction Group. Pharmacotherapy for smoking cessation: effects by subgroup defined by genetically informed biomarkers. Cochrane Database Syst Rev 2017; 9:CD011823. [PMID: 28884473 PMCID: PMC6483659 DOI: 10.1002/14651858.cd011823.pub2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Smoking cessation therapies are not effective for all smokers, and researchers are interested in identifying those subgroups of individuals (e.g. based on genotype) who respond best to specific treatments. OBJECTIVES To assess whether quit rates vary by genetically informed biomarkers within pharmacotherapy treatment arms and as compared with placebo. To assess the effects of pharmacotherapies for smoking cessation in subgroups of smokers defined by genotype for identified genome-wide significant polymorphisms. SEARCH METHODS We searched the Cochrane Tobacco Addiction Group specialised register, clinical trial registries, and genetics databases for trials of pharmacotherapies for smoking cessation from inception until 16 August 2016. SELECTION CRITERIA We included randomised controlled trials (RCTs) that recruited adult smokers and reported pharmacogenomic analyses from trials of smoking cessation pharmacotherapies versus controls. Eligible trials included those with data on a priori genome-wide significant (P < 5 × 10-8) single-nucleotide polymorphisms (SNPs), replicated non-SNPs, and/or the nicotine metabolite ratio (NMR), hereafter collectively described as biomarkers. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. The primary outcome was smoking abstinence at six months after treatment. The secondary outcome was abstinence at end of treatment (EOT). We conducted two types of meta-analyses- one in which we assessed smoking cessation of active treatment versus placebo within genotype groups, and another in which we compared smoking cessation across genotype groups within treatment arms. We carried out analyses separately in non-Hispanic whites (NHWs) and non-Hispanic blacks (NHBs). We assessed heterogeneity between genotype groups using T², I², and Cochrane Q statistics. MAIN RESULTS Analyses included 18 trials including 9017 participants, of whom 6924 were NHW and 2093 NHB participants. Data were available for the following biomarkers: nine SNPs (rs1051730 (CHRNA3); rs16969968, rs588765, and rs2036527 (CHRNA5); rs3733829 and rs7937 (in EGLN2, near CYP2A6); rs1329650 and rs1028936 (LOC100188947); and rs215605 (PDE1C)), two variable number tandem repeats (VNTRs; DRD4 and SLC6A4), and the NMR. Included data produced a total of 40 active versus placebo comparisons, 16 active versus active comparisons, and 64 between-genotype comparisons within treatment arms.For those meta-analyses showing statistically significant heterogeneity between genotype groups, we found the quality of evidence (GRADE) to be generally moderate. We downgraded quality most often because of imprecision or risk of bias due to potential selection bias in genotyping trial participants. Comparisons of relative treatment effects by genotypeFor six-month abstinence, we found statistically significant heterogeneity between genotypes (rs16969968) for nicotine replacement therapy (NRT) versus placebo at six months for NHB participants (P = 0.03; n = 2 trials), but not for other biomarkers or treatment comparisons. Six-month abstinence was increased in the active NRT group as compared to placebo among participants with a GG genotype (risk ratio (RR) 1.47, 95% confidence interval (CI) 1.07 to 2.03), but not in the combined group of participants with a GA or AA genotype (RR 0.43, 95% CI 0.15 to 1.26; ratio of risk ratios (RRR) GG vs GA or AA of 3.51, 95% CI 1.19 to 10.3). Comparisons of treatment effects between genotype groups within pharmacotherapy randomisation armsFor those receiving active NRT, treatment was more effective in achieving six-month abstinence among individuals with a slow NMR than among those with a normal NMR among NHW and NHB combined participants (normal NMR vs slow NMR: RR 0.54, 95% CI 0.37 to 0.78; n = 2 trials). We found no such differences in treatment effects between genotypes at six months for any of the other biomarkers among individuals who received pharmacotherapy or placebo. AUTHORS' CONCLUSIONS We did not identify widespread differential treatment effects of pharmacotherapy based on genotype. Some genotype groups within certain ethnic groups may benefit more from NRT or may benefit less from the combination of bupropion with NRT. The reader should interpret these results with caution because none of the statistically significant meta-analyses included more than two trials per genotype comparison, many confidence intervals were wide, and the quality of this evidence (GRADE) was generally moderate. Although we found evidence of superior NRT efficacy for NMR slow versus normal metabolisers, because of the lack of heterogeneity between NMR groups, we cannot conclude that NRT is more effective for slow metabolisers. Access to additional data from multiple trials is needed, particularly for comparisons of different pharmacotherapies.
Collapse
Affiliation(s)
- Ewoud Schuit
- Stanford UniversityMeta‐Research Innovation Center at Stanford (METRICS)StanfordCAUSA
- University Medical Center UtrechtCochrane NetherlandsUtrechtNetherlands
- University Medical Center UtrechtJulius Center for Health Sciences and Primary CareUtrechtNetherlands
| | - Orestis A. Panagiotou
- School of Public Health, Brown UniversityDepartment of Health Services, Policy & Practice121 S. Main StreetProvidenceRIUSA02903
| | - Marcus R Munafò
- University of BristolSchool of Experimental Psychology and MRC Integrative Epidemiology Unit8 Woodland RoadBristolUKBS8 1TN
| | - Derrick A Bennett
- University of OxfordClinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population HealthRichard Doll BuildingOld Road CampusOxfordUKOX3 7LF
| | | | - Sean P David
- Stanford UniversityDivision of Primary Care and Population Health, Department of MedicineStanfordCaliforniaUSA94304‐5559
| | | |
Collapse
|
8
|
Choi HD, Shin WG. Association between catechol-O-methyltransferase (COMT) Val/Met genotype and smoking cessation treatment with nicotine: a meta-analysis. Pharmacogenomics 2015; 16:1879-85. [PMID: 26555332 DOI: 10.2217/pgs.15.127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Catechol-O-methyltransferase (COMT) is one of the major degradative pathways of dopamine and COMT Val/Met polymorphisms are associated with the enzyme activity, which is related to dopamine involvement in the nicotine addiction process. However, the reported results of several genetic studies are not consistent. MATERIALS & METHODS We reviewed the smoking cessation outcomes among previously reported studies by comparing COMT polymorphism. A total of five studies were assessed in the present meta-analysis and the Met/Met, Val/Met or Val/Val genotype were compared with respect to smoking cessation outcomes. RESULTS As the results, any significant association between COMT polymorphism and smoking cessation were not observed. In the subgroup analysis for evaluating the association between COMT polymorphism and smoking cessation therapy, three studies were assessed by comparing two groups (Met/Met vs Val/Met plus Val/Val). A significant association between COMT polymorphism and smoking cessation was observed (odds ratio: 1.871 and 95% CI: 1.382-2.534). CONCLUSION The COMT polymorphisms are associated with the outcomes following smoking cessation treatment with nicotine.
Collapse
Affiliation(s)
- Hye Duck Choi
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan 712-749, Gyeongsangbuk-do, Republic of Korea
| | - Wan Gyoon Shin
- College of Pharmacy & Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 151-742, Seoul, Republic of Korea
| |
Collapse
|
9
|
Herman AI, DeVito EE, Jensen KP, Sofuoglu M. Pharmacogenetics of nicotine addiction: role of dopamine. Pharmacogenomics 2015; 15:221-34. [PMID: 24444411 DOI: 10.2217/pgs.13.246] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The neurotransmitter dopamine (DA) plays a central role in addictive disorders, including nicotine addiction. Specific DA-related gene variants have been studied to identify responsiveness to treatment for nicotine addiction. Genetic variants in DRD2, DRD4, ANKK1, DAT1, COMT and DBH genes show some promise in informing personalized prescribing of smoking cessation pharmacotherapies. However, many trials studying these variants had small samples, used retrospective design or were composed of mainly self-identified Caucasian individuals. Furthermore, many of these studies lacked a comprehensive measurement of nicotine metabolism rate, did not assess the roles of sex or the menstrual cycle, and did not investigate the role of rare variants and/or epigenetic factors. Future work should be conducted addressing these limitations to more effectively utilize DA genetic information to unlock the potential of smoking cessation pharmacogenetics.
Collapse
Affiliation(s)
- Aryeh I Herman
- Yale University, School of Medicine, Department of Psychiatry & VA Connecticut Healthcare System, VA Medical Center, 950 Campbell Avenue, West Haven, CT 06516, USA
| | | | | | | |
Collapse
|
10
|
Sun Y, Meng S, Li J, Shi J, Lu L. Advances in genetic studies of substance abuse in China. SHANGHAI ARCHIVES OF PSYCHIATRY 2014; 25:199-211. [PMID: 24991158 PMCID: PMC4054556 DOI: 10.3969/j.issn.1002-0829.2013.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Summary The importance of genetic factors in substance addiction has long been established. The rationale for this work is that understanding of the function of addiction genes and delineation of the key molecular pathways of these genes would enhance the development of novel therapeutic targets and biomarkers that could be used in the prevention and management of substance abuse. Over the past few years, there has been a substantial increase in the number of genetic studies conducted on addiction in China; these studies have primarily focused on heroin, alcohol, and nicotine dependence. Most studies of candidate genes have concentrated on the dopamine, opioid, and serotonin systems. A number of genes associated with substance abuse in Caucasians are also risk factors in Chinese, but several novel genes and genetic risk factors associated with substance abuse in Chinese subjects have also been identified. This paper reviews the genetic studies of substance abuse performed by Chinese researchers. Genotypes and alleles related to addictive behavior in Chinese individuals are discussed and the contributions of Chinese researchers to the international corpus of knowledge about the genetic understanding of substance abuse are described.
Collapse
Affiliation(s)
- Yan Sun
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Shiqiu Meng
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Jiali Li
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Lin Lu
- Institute of Mental Health, Peking University, Beijing, China
| |
Collapse
|