1
|
Goldman JG. Non-motor Symptoms and Treatments in Parkinson's Disease. Neurol Clin 2025; 43:291-317. [PMID: 40185523 DOI: 10.1016/j.ncl.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
SYNOPSIS Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms. The non-motor features may precede the onset of motor symptoms and occur throughout all stages of PD. The non-motor symptoms reflect multisystem involvement of the central and peripheral nervous systems, multiple neurotransmitters, and multiple pathologies. PD management necessitates a comprehensive approach to address non-motor symptoms, including pharmacologic and non-pharmacological interventions and often multiple different disciplines or specialists in the PD care team. This review article discusses symptoms and treatments for the non-motor symptoms of PD including those affecting mood, cognition, behavior, sleep, autonomic function, and sensory systems.
Collapse
Affiliation(s)
- Jennifer G Goldman
- Barrow Neurological Institute, Phoenix, AZ, USA; JPG Enterprises LLC, Medical Division, Chicago, IL, USA.
| |
Collapse
|
2
|
de Souza KA, Jackson M, Chen J, Reyes J, Muayad J, Tran E, Jackson W, Newell-Rogers MK, Earnest DJ. Shift work schedules alter immune cell regulation and accelerate cognitive impairment during aging. J Neuroinflammation 2025; 22:4. [PMID: 39780172 PMCID: PMC11716134 DOI: 10.1186/s12974-024-03324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Disturbances of the sleep-wake cycle and other circadian rhythms typically precede the age-related deficits in learning and memory, suggesting that these alterations in circadian timekeeping may contribute to the progressive cognitive decline during aging. The present study examined the role of immune cell activation and inflammation in the link between circadian rhythm dysregulation and cognitive impairment in aging. METHODS C57Bl/6J mice were exposed to shifted light-dark (LD) cycles (12 h advance/5d) during early adulthood (from ≈ 4-6mo) or continuously to a "fixed" LD12:12 schedule. At middle age (13-14mo), the long-term effects of circadian rhythm dysregulation on cognitive performance, immune cell regulation and hippocampal microglia were analyzed using behavioral, flow cytometry and immunohistochemical assays. RESULTS Entrainment of the activity rhythm was stable in all mice on a fixed LD 12:12 cycle but was fully compromised during exposure to shifted LD cycles. Even during "post-treatment" exposure to standard LD 12:12 conditions, re-entrainment in shifted LD mice was marked by altered patterns of entrainment and increased day-to-day variability in activity onset times that persisted into middle-age. These alterations in light-dark entrainment were closely associated with dramatic impairment in the Barnes maze test for the entire group of shifted LD mice at middle age, well before cognitive decline was first observed in aged (18-22mo) animals maintained on fixed LD cycles. In conjunction with the effects of circadian dysregulation on cognition, shifted LD mice at middle age were distinguished by significant expansion of splenic B cells and B cell subtypes expressing the activation marker CD69 or inflammatory marker MHC Class II Invariant peptide (CLIP), differential increases in CLIP+, 41BB-Ligand+, and CD74 + B cells in the meningeal lymphatics, alterations in splenic T cell subtypes, and increased number and altered functional state of microglia in the dentate gyrus. In shifted LD mice, the expansion in splenic B cells was negatively correlated with cognitive performance; when B cell numbers were higher, performance was worse in the Barnes maze. These results indicate that disordered circadian timekeeping associated with early exposure to shift work-like schedules alone accelerates cognitive decline during aging in conjunction with altered regulation of immune cells and microglia in the brain.
Collapse
Affiliation(s)
- Karienn A de Souza
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA.
- Department of NExT, Texas A&M Health Science Center, 8447 State Highway 47, 2004 MREB, Bryan, TX, 77807-3260, USA.
| | - Morgan Jackson
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA
| | - Justin Chen
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA
| | - Jocelin Reyes
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA
| | - Judy Muayad
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA
| | - Emma Tran
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA
| | - William Jackson
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA
| | - M Karen Newell-Rogers
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA
| | - David J Earnest
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA.
- Department of NExT, Texas A&M Health Science Center, 8447 State Highway 47, 2004 MREB, Bryan, TX, 77807-3260, USA.
| |
Collapse
|
3
|
Verma AK, Yu Y, Acosta-Lenis SF, Havel T, Sanabria DE, Molnar GF, MacKinnon CD, Howell MJ, Vitek JL, Johnson LA. Parkinsonian daytime sleep-wake classification using deep brain stimulation lead recordings. Neurobiol Dis 2023; 176:105963. [PMID: 36521781 PMCID: PMC9869648 DOI: 10.1016/j.nbd.2022.105963] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/01/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Excessive daytime sleepiness is a recognized non-motor symptom that adversely impacts the quality of life of people with Parkinson's disease (PD), yet effective treatment options remain limited. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for PD motor signs. Reliable daytime sleep-wake classification using local field potentials (LFPs) recorded from DBS leads implanted in STN can inform the development of closed-loop DBS approaches for prompt detection and disruption of sleep-related neural oscillations. We performed STN DBS lead recordings in three nonhuman primates rendered parkinsonian by administrating neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Reference sleep-wake states were determined on a second-by-second basis by video monitoring of eyes (eyes-open, wake and eyes-closed, sleep). The spectral power in delta (1-4 Hz), theta (4-8 Hz), low-beta (8-20 Hz), high-beta (20-35 Hz), gamma (35-90 Hz), and high-frequency (200-400 Hz) bands were extracted from each wake and sleep epochs for training (70% data) and testing (30% data) a support vector machines classifier for each subject independently. The spectral features yielded reasonable daytime sleep-wake classification (sensitivity: 90.68 ± 1.28; specificity: 88.16 ± 1.08; accuracy: 89.42 ± 0.68; positive predictive value; 88.70 ± 0.89, n = 3). Our findings support the plausibility of monitoring daytime sleep-wake states using DBS lead recordings. These results could have future clinical implications in informing the development of closed-loop DBS approaches for automatic detection and disruption of sleep-related neural oscillations in people with PD to promote wakefulness.
Collapse
Affiliation(s)
- Ajay K Verma
- Department of Neurology, University of Minnesota, Minneapolis, United States of America
| | - Ying Yu
- Department of Neurology, University of Minnesota, Minneapolis, United States of America
| | - Sergio F Acosta-Lenis
- Department of Neurology, University of Minnesota, Minneapolis, United States of America
| | - Tyler Havel
- Department of Neurology, University of Minnesota, Minneapolis, United States of America
| | | | - Gregory F Molnar
- Department of Neurology, University of Minnesota, Minneapolis, United States of America
| | - Colum D MacKinnon
- Department of Neurology, University of Minnesota, Minneapolis, United States of America
| | - Michael J Howell
- Department of Neurology, University of Minnesota, Minneapolis, United States of America
| | - Jerrold L Vitek
- Department of Neurology, University of Minnesota, Minneapolis, United States of America
| | - Luke A Johnson
- Department of Neurology, University of Minnesota, Minneapolis, United States of America.
| |
Collapse
|
4
|
Ji Q, Wang X, Zhao W, Wills M, Yun HJ, Tong Y, Cai L, Geng X, Ding Y. Effects of remote ischemic conditioning on sleep complaints in Parkinson's disease-rationale, design, and protocol for a randomized controlled study. Front Neurol 2022; 13:932199. [PMID: 35959392 PMCID: PMC9359623 DOI: 10.3389/fneur.2022.932199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Sleep disturbances are common non-motor symptoms of Parkinson's disease. The symptoms affect the quality of patients' life by impeding normal sleep cycles and causing excessive daytime sleepiness. Remote Ischemic Conditioning (RIC) is a therapy often used for ischemic stroke patients to minimize infarct size and maximize post-stroke neurological function. Animal experiments have shown that RIC plays a protective role for retinal ganglion cells and other critical areas of the brain of Parkinson's disease. However, whether RIC improves excessive daytime sleepiness (EDS) for patients with Parkinson's disease remains to be determined. METHODS This is a single-center, double-blind, and randomized controlled trial, which includes patients with Parkinson's disease with EDS. All recruited patients will be randomly assigned either to the RIC or the control group (i.e., sham-RIC) with 20 patients in each group. Both groups receive RIC or sham-RIC treatment once a day for 28 days within 24 h of enrollment. Epworth Sleepiness Scale (ESS), Pittsburgh Sleep Quality Index (PSQI), Parkinson Disease Sleep Scale-2 (PDSS-2), Parkinson's Disease Questionnaire39 (PDQ39) score scales, and adverse events, such as inability to tolerate the treatment leading to suspension of the study or objective signs of tissue or neurovascular injury caused by RIC and/or sham-RIC are evaluated at 7, 14, 28, and 90 days after enrollment. RESULTS The primary goal of this study is to assess the feasibility of the treatments in patients with Parkinson's disease by measuring serious RIC-related adverse events and any reduced incidence of adverse events during the trial and to study potential efficacy, improvement of patients' excessive daytime sleepiness, quality of life-based on ESS, PSQI, PDSS-2, and PDQ39 scores. The secondary goal is to confirm the safety of the treatments. CONCLUSION This study is a prospective randomized controlled trial to determine the safety, feasibility, and potential efficacy of RIC for patients with Parkinson's disease associated with EDS.
Collapse
Affiliation(s)
- Qiling Ji
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xuemei Wang
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Melissa Wills
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ho Jun Yun
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Yanna Tong
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Lipeng Cai
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
5
|
Peng J, Yang J, Li J, Lei D, Li N, Suo X, Duan L, Chen C, Zeng Y, Xi J, Jiang Y, Gong Q, Peng R. Disrupted Brain Functional Network Topology in Essential Tremor Patients With Poor Sleep Quality. Front Neurosci 2022; 16:814745. [PMID: 35360181 PMCID: PMC8960629 DOI: 10.3389/fnins.2022.814745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/14/2022] [Indexed: 11/30/2022] Open
Abstract
Sleep disturbances, especially poor quality of sleep (QoS), are common among essential tremor (ET) patients and may have adverse effects on their quality of life, but the etiology driving the poor QoS in these individuals remains inadequately understood. Few data are available on the neuroimaging alterations of ET with poor QoS. Thirty-eight ET patients with poor QoS (SleET), 48 ET patients with normal QoS (NorET), and 80 healthy controls (HCs) participated in this study. All subjects underwent a 3.0-T magnetic resonance imaging (MRI) scan for resting-state functional MRI data collection. Then, the whole-brain functional connectome was constructed by thresholding the partial correlation matrices of 116 brain regions. Graph theory and network-based statistical analyses were performed. We used a non-parametric permutation test for group comparisons of topological metrics. Partial correlation analyses between the topographical features and clinical characteristics were conducted. The SleET and NorET groups exhibited decreased clustering coefficients, global efficiency, and local efficiency and increased the characteristic path length. Both of these groups also showed reduced nodal degree and nodal efficiency in the left superior dorsolateral frontal gyrus, superior frontal medial gyrus (SFGmed), posterior cingulate gyrus (PCG), lingual gyrus, superior occipital gyrus, right middle occipital gyrus, and right fusiform gyrus. The SleET group additionally presented reduced nodal degrees and nodal efficiency in the right SFGmed relative to the NorET and HC groups, and nodal efficiency in the right SFGmed was negatively correlated with the Pittsburgh Sleep Quality Index score. The observed impaired topographical organizations of functional brain networks within the central executive network (CEN), default mode network (DMN), and visual network serve to further our knowledge of the complex interactions between tremor and sleep, adding to our understanding of the underlying neural mechanisms of ET with poor QoS.
Collapse
Affiliation(s)
- Jiaxin Peng
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Yang
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
| | - Junying Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Du Lei
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
| | - Nannan Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Xueling Suo
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
| | - Liren Duan
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Chaolan Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Zeng
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Xi
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Jiang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Qiyong Gong,
| | - Rong Peng
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Rong Peng,
| |
Collapse
|
6
|
Schütz L, Sixel-Döring F, Hermann W. Management of Sleep Disturbances in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2029-2058. [PMID: 35938257 PMCID: PMC9661340 DOI: 10.3233/jpd-212749] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 06/07/2023]
Abstract
Parkinson's disease (PD) is defined by its motor symptoms rigidity, tremor, and akinesia. However, non-motor symptoms, particularly autonomic disorders and sleep disturbances, occur frequently in PD causing equivalent or even greater discomfort than motor symptoms effectively decreasing quality of life in patients and caregivers. Most common sleep disturbances in PD are insomnia, sleep disordered breathing, excessive daytime sleepiness, REM sleep behavior disorder, and sleep-related movement disorders such as restless legs syndrome. Despite their high prevalence, therapeutic options in the in- and outpatient setting are limited, partly due to lack of scientific evidence. The importance of sleep disturbances in neurodegenerative diseases has been further emphasized by recent evidence indicating a bidirectional relationship between neurodegeneration and sleep. A more profound insight into the underlying pathophysiological mechanisms intertwining sleep and neurodegeneration might lead to unique and individually tailored disease modifying or even neuroprotective therapeutic options in the long run. Therefore, current evidence concerning the management of sleep disturbances in PD will be discussed with the aim of providing a substantiated scaffolding for clinical decisions in long-term PD therapy.
Collapse
Affiliation(s)
- Lukas Schütz
- Department of Neurology, University of Rostock, Rostock, Germany
| | | | - Wiebke Hermann
- Department of Neurology, University of Rostock, Rostock, Germany
| |
Collapse
|
7
|
|
8
|
Pak K, Kim J, Kim K, Kim SJ, Kim IJ. Sleep and Neuroimaging. Nucl Med Mol Imaging 2020; 54:98-104. [PMID: 32377261 PMCID: PMC7198660 DOI: 10.1007/s13139-020-00636-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/06/2020] [Accepted: 02/27/2020] [Indexed: 10/24/2022] Open
Abstract
We spend about one-third of our lives either sleeping or attempting to sleep. Therefore, the socioeconomic implications of sleep disorders may be higher than expected. However, the fundamental mechanisms and functions of sleep are not yet fully understood. Neuroimaging has been utilized to reveal the connectivity between sleep and the brain, which is associated with the physiology of sleep. Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging studies have become increasingly common in sleep research. Recently, significant progress has been made in understanding the physiology of sleep through neuroimaging and the use of various radiopharmaceuticals, as the sleep-wake cycle is regulated by multiple neurotransmitters, including dopamine, adenosine, glutamate, and others. In addition, the characteristics of rapid eye and non-rapid eye movement sleep have been investigated by measuring cerebral glucose metabolism. The physiology of sleep has been investigated using PET to study glymphatic function as a means to clear the amyloid burden. However, the basic mechanisms and functions of sleep are not yet fully understood. Further studies are needed to investigate the effects and consequences of chronic sleep deprivation, and the relevance of sleep to other diseases.
Collapse
Affiliation(s)
- Kyoungjune Pak
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital and School of Medicine, Pusan National University, Busan, Republic of Korea
| | - Jiyoung Kim
- Department of Neurology and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Keunyoung Kim
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital and School of Medicine, Pusan National University, Busan, Republic of Korea
| | - Seong Jang Kim
- Department of Nuclear Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - In Joo Kim
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital and School of Medicine, Pusan National University, Busan, Republic of Korea
| |
Collapse
|