1
|
Shan C, Zheng Q, Li M, Ge Y, Bian J, Huang Z, Guo Z, Jiang Y, Xu P, Lu S, Chen H. Exploring the interactions of urinary metals and the mediating role of oxidative stress in Parkinson's disease risk: an epidemiological study in the elderly. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:1439-1447. [PMID: 40260611 DOI: 10.1039/d5em00166h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Parkinson's disease (PD) ranks as the second most prevalent neurodegenerative disorder, often leading to significant disability in affected individuals. Metal exposure has been implicated in PD, but the overall role, interactions among metal mixtures, and underlying mechanisms remain unclear. In this study, we measured 8 essential and 2 potentially harmful metal trace elements in urine samples from PD patients (n = 96) and healthy controls (n = 162). The concentration of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a marker of oxidative damage, was also measured. Logistic regression and restricted cubic spline (RCS) regression analyses revealed that both increased exposure to manganese (Mn) and lead (Pb), and insufficient intake of chromium (Cr), nickel (Ni), selenium (Se), and cadmium (Cd) may increase the risk of PD. However, smoking may mediate the relationship between Cd and PD, and Cd itself may not exert a protective effect against PD. Bayesian kernel machine regression (BKMR) and quantile-based g-calculation (QGC) models demonstrated that both metal deficiencies and excesses could increase the risk of PD, with Mn (73.7%) and Pb (9.3%) identified as the main contributors to PD risk. Furthermore, we observed an interaction between Mn and Cr, with Cr amplifying the promoting effect of Mn. Mediation analysis indicated that 8-OHdG mediated 11.6% of the total effect of Mn and Pb exposure on PD risk. Further research is required to explore specific metals' protective mechanisms and elucidate the interactions among different metals. Further longitudinal and cohort studies are required to better verify the causal link between metal exposure and PD.
Collapse
Affiliation(s)
- Chiqun Shan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Quanzhi Zheng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Mengyan Li
- Department of Neurology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510000, China.
| | - Yiming Ge
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Junye Bian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Zhihong Huang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Zhihui Guo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Yuxuan Jiang
- Department of Neurology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510000, China.
| | - Pan Xu
- Department of Neurology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510000, China.
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Haobo Chen
- Department of Neurology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510000, China.
| |
Collapse
|
2
|
Fabbri M, Corvol JC, Rascol O. Disease-Modifying Therapies in Parkinson's Disease. Neurol Clin 2025; 43:319-340. [PMID: 40185524 DOI: 10.1016/j.ncl.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
A "disease-modifying" treatment is defined as an intervention capable of slowing the progressive worsening of clinical symptoms of a neurodegenerative disease. Over the last couple of decades, many efforts have been spent on disease-modifying compounds development in Parkinson's disease (PD). Herein, the authors present an overview of recent and ongoing clinical trials on PD disease-modifying therapies, stratified by mechanism of actions. Overall, several trials have been run to target alpha-synuclein in different ways, with disappointing results so far, despite preclinical positive findings. In the next few years, results on precision trials targeting genetic population or pathways (as β-glucocerebrosidase [GBA] or leucine-rich repeat kinase 2 mutations) are expected.
Collapse
Affiliation(s)
- Margherita Fabbri
- Department of Clinical Pharmacology and Neurosciences, Clinical Investigation Center CIC1436, Toulouse Parkinson Expert Centre, Toulouse NeuroToul Center of Excellence in Neurodegeneration (COEN), French NS-Park/F-CRIN Network, University of Toulouse, CHU of Toulouse, INSERM, Toulouse, France.
| | - Jean Christophe Corvol
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Department of Neurology, CIC Neurosciences, Hôpital Pitié-Salpêtrière, French NS-Park/F-CRIN Network, Paris, France
| | - Olivier Rascol
- Department of Clinical Pharmacology and Neurosciences, Clinical Investigation Center CIC1436, Toulouse Parkinson Expert Centre, Toulouse NeuroToul Center of Excellence in Neurodegeneration (COEN), French NS-Park/F-CRIN Network, University of Toulouse, CHU of Toulouse, INSERM, Toulouse, France
| |
Collapse
|
3
|
Wang X, Rong C, Niu P, Leng W, Wang G, He Z, Qi X, Zhao D, Li J. The neurotoxicity of iodoacetic acid, a byproduct of drinking water disinfection. FRONTIERS IN TOXICOLOGY 2025; 7:1543374. [PMID: 39931280 PMCID: PMC11808161 DOI: 10.3389/ftox.2025.1543374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025] Open
Abstract
IAA is a by-product of the water disinfection process and has been found to be neurotoxic. However, the role and mechanism of IAA neurotoxicity remain unclear. In this review, we comprehensively discuss the neurotoxic effects and mechanisms of IAA from the molecular level, cellular level and neurological manifestations. At the molecular level, IAA causes neurotoxicity by reducing mitochondrial membrane potential, aggravating oxidative stress and DNA damage. At the cellular level, IAA causes neurotoxicity by inducing BBB disruption, neuroinflammation, and apoptosis. In neurological manifestations, IAA can lead to neurotransmitter disorders, neurodevelopment dysfunction, and even neurodegenerative diseases. Taken together, our review provides insights into the mechanisms of IAA neurotoxicity that will contribute to future studies of IAA neurotoxicity and its protective strategies.
Collapse
Affiliation(s)
- Xu Wang
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
- School of Public Health, Jilin University, Changchun, Jilin, China
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Chunshu Rong
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Ping Niu
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Wei Leng
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Gaihua Wang
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Ziqiao He
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xin Qi
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Dexi Zhao
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Ioghen OC, Gaina G, Lambrescu I, Manole E, Pop S, Niculescu TM, Mosoia O, Ceafalan LC, Popescu BO. Bacterial products initiation of alpha-synuclein pathology: an in vitro study. Sci Rep 2024; 14:30306. [PMID: 39639092 PMCID: PMC11621565 DOI: 10.1038/s41598-024-81020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
Parkinson's Disease (PD) is a prevalent and escalating neurodegenerative disorder with significant societal implications. Despite being considered a proteinopathy, in which the aggregation of α-synuclein is the main pathological change, the intricacies of PD initiation remain elusive. Recent evidence suggests a potential link between gut microbiota and PD initiation, emphasizing the need to explore the effects of microbiota-derived molecules on neuronal cells. In this study, we exposed dopaminergic-differentiated SH-SY5Y cells to microbial molecules such as lipopolysaccharide (LPS), rhamnolipid, curli CsgA and phenol soluble modulin α-1 (PSMα1). We assessed cellular viability, cytotoxicity, growth curves and α-synuclein levels by performing MTS, LDH, real-time impedance readings, qRT-PCR and Western Blot assays respectively. Statistical analysis revealed that rhamnolipid exhibited concentration-dependent effects, reducing viability and inducing cytotoxicity at higher concentrations, increasing α-synuclein mRNA and protein levels with negative effects on cell morphology and adhesion. Furthermore, LPS exposure also increased α-synuclein levels. Curli CsgA and PSMα-1 showed minimal or no changes. Our findings suggest that microbiota-derived molecules, particularly rhamnolipid and LPS, impact dopaminergic neurons by increasing α-synuclein levels. This study highlights the potential involvement of gut microbiota in initiating the upregulation of α-synuclein that may further initiate PD, indicating the complex interplay between microbiota and neuronal cells.
Collapse
Grants
- 31PFE/30.12.2021 Ministry of Research, Innovation, and Digitalization in Romania
- 31PFE/30.12.2021 Ministry of Research, Innovation, and Digitalization in Romania
- 31PFE/30.12.2021 Ministry of Research, Innovation, and Digitalization in Romania
- 31PFE/30.12.2021 Ministry of Research, Innovation, and Digitalization in Romania
- 31PFE/30.12.2021 Ministry of Research, Innovation, and Digitalization in Romania
- 31PFE/30.12.2021 Ministry of Research, Innovation, and Digitalization in Romania
- 31PFE/30.12.2021 Ministry of Research, Innovation, and Digitalization in Romania
- 31PFE/30.12.2021 Ministry of Research, Innovation, and Digitalization in Romania
- 31PFE/30.12.2021 Ministry of Research, Innovation, and Digitalization in Romania
Collapse
Affiliation(s)
- Octavian Costin Ioghen
- "Victor Babeș" National Institute of Pathology, 050096, Bucharest, Romania
- "Carol Davila" University of Medicine and Pharmacy, 050474, Bucharest, Romania
| | - Gisela Gaina
- "Victor Babeș" National Institute of Pathology, 050096, Bucharest, Romania
- "Carol Davila" University of Medicine and Pharmacy, 050474, Bucharest, Romania
| | - Ioana Lambrescu
- "Victor Babeș" National Institute of Pathology, 050096, Bucharest, Romania
- "Carol Davila" University of Medicine and Pharmacy, 050474, Bucharest, Romania
| | - Emilia Manole
- "Victor Babeș" National Institute of Pathology, 050096, Bucharest, Romania
| | - Sevinci Pop
- "Victor Babeș" National Institute of Pathology, 050096, Bucharest, Romania
| | | | - Oana Mosoia
- "Victor Babeș" National Institute of Pathology, 050096, Bucharest, Romania
| | - Laura Cristina Ceafalan
- "Victor Babeș" National Institute of Pathology, 050096, Bucharest, Romania.
- "Carol Davila" University of Medicine and Pharmacy, 050474, Bucharest, Romania.
| | - Bogdan Ovidiu Popescu
- "Victor Babeș" National Institute of Pathology, 050096, Bucharest, Romania
- "Carol Davila" University of Medicine and Pharmacy, 050474, Bucharest, Romania
| |
Collapse
|
5
|
Domin H, Burnat G. mGlu4R, mGlu7R, and mGlu8R allosteric modulation for treating acute and chronic neurodegenerative disorders. Pharmacol Rep 2024; 76:1219-1241. [PMID: 39348087 PMCID: PMC11582148 DOI: 10.1007/s43440-024-00657-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
Neuroprotection, defined as safeguarding neurons from damage and death by inhibiting diverse pathological mechanisms, continues to be a promising approach for managing a range of central nervous system (CNS) disorders, including acute conditions such as ischemic stroke and traumatic brain injury (TBI) and chronic neurodegenerative diseases like Parkinson's disease (PD), Alzheimer's disease (AD), and multiple sclerosis (MS). These pathophysiological conditions involve excessive glutamatergic (Glu) transmission activity, which can lead to excitotoxicity. Inhibiting this excessive Glu transmission has been proposed as a potential therapeutic strategy for treating the CNS disorders mentioned. In particular, ligands of G protein-coupled receptors (GPCRs), including metabotropic glutamatergic receptors (mGluRs), have been recognized as promising options for inhibiting excessive Glu transmission. This review discusses the complex interactions of mGlu receptors with their subtypes, including the formation of homo- and heterodimers, which may vary in function and pharmacology depending on their protomer composition. Understanding these intricate details of mGlu receptor structure and function enhances researchers' ability to develop targeted pharmacological interventions, potentially offering new therapeutic avenues for neurological and psychiatric disorders. This review also summarizes the current knowledge of the neuroprotective potential of ligands targeting group III mGluRs in preclinical cellular (in vitro) and animal (in vivo) models of ischemic stroke, TBI, PD, AD, and MS. In recent years, experiments have shown that compounds, especially those activating mGlu4 or mGlu7 receptors, exhibit protective effects in experimental ischemia models. The discovery of allosteric ligands for specific mGluR subtypes has led to reports suggesting that group III mGluRs may be promising targets for neuroprotective therapy in PD (mGlu4R), TBI (mGlu7R), and MS (mGlu8R).
Collapse
Affiliation(s)
- Helena Domin
- Maj Institute of Pharmacology, Department of Neurobiology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland.
| | - Grzegorz Burnat
- Maj Institute of Pharmacology, Department of Neurobiology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| |
Collapse
|
6
|
Hedayatikatouli F, Kalyn M, Elsaid D, Mbesha HA, Ekker M. Neuroprotective Effects of Ascorbic Acid, Vanillic Acid, and Ferulic Acid in Dopaminergic Neurons of Zebrafish. Biomedicines 2024; 12:2497. [PMID: 39595063 PMCID: PMC11592154 DOI: 10.3390/biomedicines12112497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Parkinson's disease (PD) is a debilitating neurodegenerative disease that targets the nigrostriatal dopaminergic (DAnergic) system residing in the human midbrain and is currently incurable. The aim of this study is to investigate the neuroprotective effects of ascorbic acid, vanillic acid, and ferulic acid in a zebrafish model of PD induced by MPTP by assessing the impact of these compounds on DAnergic neurons, focusing on gene expression, mitochondrial dynamics, and cellular stress responses. Methods/Results: Following exposure and qPCR and immunohistochemical analyses, ascorbic acid enhanced DAnergic function, indicated by an upregulation of the dopamine transporter (dat) gene and increased eGFP+ DAnergic cells, suggesting improved dopamine reuptake and neuroprotection. Ascorbic acid also positively affected mitochondrial dynamics and stress response pathways, countering MPTP-induced dysregulation. Vanillic acid only had modest, if any, neuroprotective effects on DAnergic neurons following MPTP administration. Ferulic acid exhibited the largest neuroprotective effects through the modulation of gene expression related to DAnergic neurons and mitochondrial dynamics. Conclusions: These findings suggest that ascorbic acid and ferulic acid can act as potential protective interventions for DAnergic neuron health, demonstrating various beneficial effects at the molecular and cellular levels. However, further investigation is needed to translate these results into clinical applications. This study enhances the understanding of neuroprotective strategies in neurodegenerative diseases, emphasizing the importance of considering interactions between physiological systems.
Collapse
Affiliation(s)
| | | | | | | | - Marc Ekker
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
7
|
Bicknell B, Liebert A, Herkes G. Parkinson's Disease and Photobiomodulation: Potential for Treatment. J Pers Med 2024; 14:112. [PMID: 38276234 PMCID: PMC10819946 DOI: 10.3390/jpm14010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Parkinson's disease is the second most common neurodegenerative disease and is increasing in incidence. The combination of motor and non-motor symptoms makes this a devastating disease for people with Parkinson's disease and their care givers. Parkinson's disease is characterised by mitochondrial dysfunction and neuronal death in the substantia nigra, a reduction in dopamine, accumulation of α-synuclein aggregates and neuroinflammation. The microbiome-gut-brain axis is also important in Parkinson's disease, involved in the spread of inflammation and aggregated α-synuclein. The mainstay of Parkinson's disease treatment is dopamine replacement therapy, which can reduce some of the motor signs. There is a need for additional treatment options to supplement available medications. Photobiomodulation (PBM) is a form of light therapy that has been shown to have multiple clinical benefits due to its enhancement of the mitochondrial electron transport chain and the subsequent increase in mitochondrial membrane potential and ATP production. PBM also modulates cellular signalling and has been shown to reduce inflammation. Clinically, PBM has been used for decades to improve wound healing, treat pain, reduce swelling and heal deep tissues. Pre-clinical experiments have indicated that PBM has the potential to improve the clinical signs of Parkinson's disease and to provide neuroprotection. This effect is seen whether the PBM is directed to the head of the animal or to other parts of the body (remotely). A small number of clinical trials has given weight to the possibility that using PBM can improve both motor and non-motor clinical signs and symptoms of Parkinson's disease and may potentially slow its progression.
Collapse
Affiliation(s)
- Brian Bicknell
- NICM Health Research Institute, University of Western Sydney, Westmead 2145, Australia;
| | - Ann Liebert
- NICM Health Research Institute, University of Western Sydney, Westmead 2145, Australia;
- Sydney Adventist Hospital, Wahroonga 2076, Australia
- Faculty of medicine and Health, Sydney University, Camperdown 2050, Australia
| | - Geoffrey Herkes
- Neurologist, Sydney Adventist Hospital, Wahroonga 2076, Australia;
- College of Health and Medicine, Australian National University, Canberra 2600, Australia
| |
Collapse
|
8
|
Su HC, Sun YT, Yang MY, Wu CY, Hsu CM. Dihydroisotanshinone I and BMAL-SIRT1 Pathway in an In Vitro 6-OHDA-Induced Model of Parkinson's Disease. Int J Mol Sci 2023; 24:11088. [PMID: 37446264 DOI: 10.3390/ijms241311088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Danshen has been widely used for the treatment of central nervous system diseases. We investigated the effect of dihydroisotanshinone I (DT), a compound extracted from Danshen, as well as the corresponding mechanisms in an in vitro-based 6-OHDA-induced Parkinson's disease (PD) model. SH-SY5Y human neuroblastoma cell lines were pretreated with 6-hydroxydopamine (6-OHDA) and challenged with DT. Subsequently, the cell viability and levels of reactive oxygen species (ROS) and caspase-3 were analyzed. The effect of DT on the 6-OHDA-treated SH-SY5Y cells and the expression of the core circadian clock genes were measured using a real-time quantitative polymerase chain reaction. Our results indicated that DT attenuated the 6-OHDA-induced cell death in the SH-SY5Y cells and suppressed ROS and caspase-3. Moreover, DT reversed both the RNA and protein levels of BMAL1 and SIRT1 in the 6-OHDA-treated SH-SY5Y cells. Additionally, the SIRT1 inhibitor attenuated the effect of DT on BMAL1 and reduced the cell viability. The DT and SIRT1 activators activated SIRT1 and BMAL1, and then reduced the death of the SH-SY5Y cells damaged by 6-OHDA. SIRT1 silencing was enhanced by DT and resulted in a BMAL1 downregulation and a reduction in cell viability. In conclusion, our investigation suggested that DT reduces cell apoptosis, including an antioxidative effect due to a reduction in ROS, and regulates the circadian genes by enhancing SIRT1 and suppressing BMAL1. DT may possess novel therapeutic potential for PD in the future, but further in vivo studies are still needed.
Collapse
Affiliation(s)
- Hui-Chen Su
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yuan-Ting Sun
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ming-Yu Yang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Ching-Yuan Wu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Cheng-Ming Hsu
- Department of Otolaryngology-Head and Neck Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Cancer Center, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| |
Collapse
|
9
|
Seger A, Ophey A, Heitzmann W, Doppler CEJ, Lindner MS, Brune C, Kickartz J, Dafsari HS, Oertel WH, Fink GR, Jost ST, Sommerauer M. Evaluation of a Structured Screening Assessment to Detect Isolated Rapid Eye Movement Sleep Behavior Disorder. Mov Disord 2023. [PMID: 37071758 DOI: 10.1002/mds.29389] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Isolated rapid eye movement (REM) sleep behavior disorder (iRBD) cohorts have provided insights into the earliest neurodegenerative processes in α-synucleinopathies. Even though polysomnography (PSG) remains the gold standard for diagnosis, an accurate questionnaire-based algorithm to identify eligible subjects could facilitate efficient recruitment in research. OBJECTIVE This study aimed to optimize the identification of subjects with iRBD from the general population. METHODS Between June 2020 and July 2021, we placed newspaper advertisements, including the single-question screen for RBD (RBD1Q). Participants' evaluations included a structured telephone screening consisting of the RBD screening questionnaire (RBDSQ) and additional sleep-related questionnaires. We examined anamnestic information predicting PSG-proven iRBD using logistic regressions and receiver operating characteristic curves. RESULTS Five hundred forty-three participants answered the advertisements, and 185 subjects fulfilling inclusion and exclusion criteria were screened. Of these, 124 received PSG after expert selection, and 78 (62.9%) were diagnosed with iRBD. Selected items of the RBDSQ, the Pittsburgh Sleep Quality Index, the STOP-Bang questionnaire, and age predicted iRBD with high accuracy in a multiple logistic regression model (area under the curve >80%). When comparing the algorithm to the sleep expert decision, 77 instead of 124 polysomnographies (62.1%) would have been carried out, and 63 (80.8%) iRBD patients would have been identified; 32 of 46 (69.6%) unnecessary PSG examinations could have been avoided. CONCLUSIONS Our proposed algorithm displayed high diagnostic accuracy for PSG-proven iRBD cost-effectively and may be a convenient tool for research and clinical settings. External validation sets are warranted to prove reliability. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Aline Seger
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Anja Ophey
- Faculty of Medicine and University Hospital Cologne, Medical Psychology, Neuropsychology and Gender Studies and Center for Neuropsychological Diagnostics and Interventions (CeNDI), University of Cologne, Cologne, Germany
| | - Wiebke Heitzmann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christopher E J Doppler
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Marie-Sophie Lindner
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Corinna Brune
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Johanna Kickartz
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Haidar S Dafsari
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wolfgang H Oertel
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Stefanie T Jost
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael Sommerauer
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
10
|
ElGamal RZ, Tadros MG, Menze ET. Linagliptin counteracts rotenone's toxicity in non-diabetic rat model of Parkinson's disease: Insights into the neuroprotective roles of DJ-1, SIRT-1/Nrf-2 and implications of HIF1-α. Eur J Pharmacol 2023; 941:175498. [PMID: 36623635 DOI: 10.1016/j.ejphar.2023.175498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/04/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
While all current therapies' main focus is enhancing dopaminergic effects and remission of symptoms, delaying Parkinson's disease (PD) progression remains a challenging mission. Linagliptin, a Dipeptidyl Peptidase-4 (DPP-4) Inhibitor, exhibited neuroprotection in various neurodegenerative diseases. This study aims to evaluate the neuroprotective effects of Linagliptin in a rotenone-induced rat model of PD and investigate the possible underlying mechanisms of Linagliptin's actions. The effects of two doses of Linagliptin (5 and 10 mg/kg) on spontaneous locomotion, catalepsy, coordination and balance, and histology were assessed. Then, after Linagliptin showed promising results, it was further tested for its potential anti-inflammatory, antiapoptotic effects, and different pathways for oxidative stress. Linagliptin prevented rotenone-induced motor deficits and histological damage. Besides, it significantly inhibited the rotenone-induced increase in pro-inflammatory cytokines: Tumor Necrosis Factor-α (TNF-α) and Interleukin-6 (IL-6) and decrease in caspase 3 levels. These effects were associated with induction in the levels of Protein deglycase also known as DJ-1, Hypoxia-inducible factor 1-alpha (HIF-1α), potentiation in the Sirtuin 1 (SIRT-1)/Nuclear factor erythroid-2-related factor 2 (Nrf-2)/Heme oxygenase-1 (HO-1) pathway, and an increase in the antioxidant activity of catalase which provided neuroprotection to the neurons from rotenone-induced PD. Collectively, these results suggest that Linagliptin might be a suitable candidate for the management of PD.
Collapse
Affiliation(s)
- Rania Z ElGamal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University - Kantara Branch, Ismailia, 41636, Egypt.
| | - Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Esther T Menze
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
11
|
Brahadeeswaran S, Lateef M, Calivarathan L. An Insight into the Molecular Mechanism of Mitochondrial Toxicant-induced Neuronal Apoptosis in Parkinson's Disease. Curr Mol Med 2023; 23:63-75. [PMID: 35125081 DOI: 10.2174/1566524022666220203163631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is one of the most common progressive neurodegenerative disorders affecting approximately 1% of the world's population at the age of 50 and above. Majority of PD cases are sporadic and show symptoms after the age of 60 and above. At that time, most of the dopaminergic neurons in the region of substantia nigra pars compacta have been degenerated. Although in past decades, discoveries of genetic mutations linked to PD have significantly impacted our current understanding of the pathogenesis of this devastating disorder, it is likely that the environment also plays a critical role in the etiology of sporadic PD. Recent epidemiological and experimental studies indicate that exposure to environmental agents, including a number of agricultural and industrial chemicals, may contribute to the pathogenesis of several neurodegenerative disorders, including PD. Furthermore, there is a strong correlation between mitochondrial dysfunction and several forms of neurodegenerative disorders, including Alzheimer's disease (AD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS) and PD. Interestingly, substantia nigra of patients with PD has been shown to have a mild deficiency in mitochondrial respiratory electron transport chain NADH dehydrogenase (Complex I) activity. This review discusses the role of mitochondrial toxicants in the selective degeneration of dopaminergic neurons targeting the electron transport system that leads to Parkinsonism.
Collapse
Affiliation(s)
- Subhashini Brahadeeswaran
- Molecular Pharmacology & Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur - 610005, India
| | - Mohammad Lateef
- Department of Animal Sciences, School of Life Sciences, Central University of Kashmir, Nunar Campus, Ganderbal - 191201, Jammu & Kashmir, India
| | - Latchoumycandane Calivarathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur - 610005, India
| |
Collapse
|
12
|
Troshev D, Blokhin V, Ukrainskaya V, Kolacheva A, Ugrumov M. Isolation of living dopaminergic neurons labeled with a fluorescent ligand of the dopamine transporter from mouse substantia nigra as a new tool for basic and applied research. Front Mol Neurosci 2022; 15:1020070. [PMID: 36568278 PMCID: PMC9780273 DOI: 10.3389/fnmol.2022.1020070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Dopaminergic neurons (DNs) of the nigrostriatal system control the motor function, and their degeneration leads to the development of Parkinson's disease (PD). A stumbling block in the study of DNs in the whole substantia nigra (SN) is the lack of tools to analyze the expression of most of the genes involved in neurotransmission, neurodegeneration, and neuroplasticity, since they are also expressed in other cells of the SN. Therefore, this study aimed to develop a fluorescence-activated cell sorting method for isolating living DNs from the SN of wild-type mice using two fluorescent dyes, DRAQ5 (nuclear stain) and a dopamine uptake inhibitor GBR 12909 coupled to a fluorophore (DN stain). We have developed a method for selecting a population of DNs from the SN of mice, as evidenced by: (i) immunopositivity of 95% of the sorted cells for tyrosine hydroxylase, the first enzyme of dopamine synthesis; (ii) the sorted cells expressing the genes for specific proteins of the dopaminergic phenotype, tyrosine hydroxylase, the dopamine transporter, and vesicular monoamine transporter 2 and non-specific proteins, such as aromatic L-amino acid decarboxylase, non-specific enzyme of dopamine synthesis. We then compared the changes in gene expression found in the sorted DNs and in the SN homogenate in a PD model we developed, reproduced in mice by treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Using quantitative PCR, we obtained evidence of the same changes in the expression of specific genes in the sorted DNs of SN and in the SN homogenate of a MPTP mouse model of PD, compared with the control. The undoubted advantage of our approach is the possibility of obtaining a large amount of readily available and relatively cheap primary material (SN) from wild-type mice, which can be used to solve both research and applied problems. In addition, this method can be easily adapted to the isolation of DNs from the SN in other animal species, including non-human primates.
Collapse
Affiliation(s)
- Dmitry Troshev
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Victor Blokhin
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Valeria Ukrainskaya
- Laboratory of Biocatalysis, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna Kolacheva
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Michael Ugrumov
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia,*Correspondence: Michael Ugrumov,
| |
Collapse
|
13
|
Lopez GJ, Lichtenberg J, Tayebi N, Ryan E, Lecker AL, Sidransky E. Longitudinal evaluation of olfactory function in individuals with Gaucher disease and GBA1 mutation carriers with and without Parkinson's disease. Front Neurol 2022; 13:1039214. [PMID: 36330429 PMCID: PMC9622935 DOI: 10.3389/fneur.2022.1039214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2023] Open
Abstract
OBJECTIVE Biallelic mutations in GBA1, which encodes the lysosomal enzyme glucocerebrosidase, cause the lysosomal storage disorder Gaucher disease (GD). In addition, mutations in GBA1 are the most common genetic risk factor for future development of Parkinson's disease (PD). However, most mutation carriers will never develop parkinsonism. Olfactory dysfunction is often a prodromal symptom in patients with PD, appearing many years prior to motor dysfunction. The purpose of this study was to assess olfactory function longitudinally in individuals with and without parkinsonism who carry at least one GBA1 mutation. METHODS One hundred seventeen individuals who participated in a natural history study of GD at the National Institutes of Health were evaluated using the University of Pennsylvania Smell Identification Test (UPSIT) during a 16-year period. Seventy patients with GD (13 with PD) and 47 GBA1 carriers (9 with PD) were included. Fifty-six of the total (47.9%) were seen over multiple visits, and had UPSIT screening performed two to six times, with time intervals between testing ranging from 2 to 6 years. Comparative and control data were obtained from the Parkinson's Progression Markers Initiative (PPMI) database (519 individuals, including 340 with idiopathic PD and 179 healthy controls). Statistical analysis was performed using R. RESULTS Severe hyposmia and anosmia was evident in both GBA1 heterozygotes and homozygotes with PD. 84% without parkinsonism had UPSIT scores >30, and those who underwent repeated testing maintained olfactory function over time. No statistically significant difference in UPSIT scores was found between mutation carriers with and without a family history of parkinsonism. A small group of individuals without PD scored in the moderate-severe microsmia range. No significant differences in olfaction were found among our GBA1-PD cohort and idiopathic PD cohort obtained from PPMI.
Collapse
Affiliation(s)
| | | | | | | | | | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
14
|
The potential use of tetracyclines in neurodegenerative diseases and the role of nano-based drug delivery systems. Eur J Pharm Sci 2022; 175:106237. [PMID: 35710076 DOI: 10.1016/j.ejps.2022.106237] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/07/2022] [Accepted: 06/12/2022] [Indexed: 11/21/2022]
Abstract
Neurodegenerative diseases are still a challenge for effective treatments. The high cost of approved drugs, severity of side effects, injection site pain, and restrictions on drug delivery to the Central Nervous System (CNS) can overshadow the management of these diseases. Due to the chronic and progressive evolution of neurodegenerative disorders and since there is still no cure for them, new therapeutic strategies such as the combination of several drugs or the use of existing drugs with new therapeutic applications are valuable strategies. Tetracyclines are traditionally classified as antibiotics. However, in this class of drugs, doxycycline and minocycline exhibit also anti-inflammatory effects by inhibiting microglia/macrophages. Hence, they have been studied as potential agents for the treatment of neurodegenerative diseases. The results of in vitro and in vivo studies confirm the effective role of these two drugs as anti-inflammatory agents in experimentally induced models of neurodegenerative diseases. In clinical studies, satisfactory results have been obtained in Multiple sclerosis (MS) but not yet in other disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), or Amyotrophic lateral sclerosis (ALS). In recent years, researchers have developed and evaluated nanoparticulate drug delivery systems to improve the clinical efficacy of these two tetracyclines for their potential application in neurodegenerative diseases. This study reviews the neuroprotective roles of minocycline and doxycycline in four of the main neurodegenerative disorders: AD, PD, ALS and MS. Moreover, the potential applications of nanoparticulate delivery systems developed for both tetracyclines are also reviewed.
Collapse
|
15
|
Apiraksattayakul S, Pingaew R, Prachayasittikul V, Ruankham W, Jongwachirachai P, Songtawee N, Suwanjang W, Tantimongcolwat T, Prachayasittikul S, Prachayasittikul V, Phopin K. Neuroprotective Properties of Bis-Sulfonamide Derivatives Against 6-OHDA-Induced Parkinson's Model via Sirtuin 1 Activity and in silico Pharmacokinetic Properties. Front Mol Neurosci 2022; 15:890838. [PMID: 35935335 PMCID: PMC9354714 DOI: 10.3389/fnmol.2022.890838] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is considered one of the health problems in the aging society. Due to the limitations of currently available drugs in preventing disease progression, the discovery of novel neuroprotective agents has been challenged. Sulfonamide and its derivatives were reported for several biological activities. Herein, a series of 17 bis-sulfonamide derivatives were initially tested for their neuroprotective potential and cytotoxicity against the 6-hydroxydopamine (6-OHDA)-induced neuronal death in SH-SY5Y cells. Subsequently, six compounds (i.e., 2, 4, 11, 14, 15, and 17) were selected for investigations on underlying mechanisms. The data demonstrated that the pretreatment of selected compounds (5 μM) can significantly restore the level of cell viability, protect against mitochondrial membrane dysfunction, decrease the activity of lactate dehydrogenase (LDH), decrease the intracellular oxidative stress, and enhance the activity of NAD-dependent deacetylase sirtuin-1 (SIRT1). Molecular docking was also performed to support that these compounds could act as SIRT1 activators. In addition, in silico pharmacokinetic and toxicity profile prediction was also conducted for guiding the potential development. Thus, the six neuroprotective bis-sulfonamides were highlighted as potential agents to be further developed for PD management.
Collapse
Affiliation(s)
- Setthawut Apiraksattayakul
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Ratchanok Pingaew
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
- Ratchanok Pingaew
| | - Veda Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Waralee Ruankham
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Papitcha Jongwachirachai
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Napat Songtawee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Wilasinee Suwanjang
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Tanawut Tantimongcolwat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Kamonrat Phopin
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
- *Correspondence: Kamonrat Phopin
| |
Collapse
|
16
|
Closing the loop for patients with Parkinson disease: where are we? Nat Rev Neurol 2022; 18:497-507. [PMID: 35681103 DOI: 10.1038/s41582-022-00674-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 02/07/2023]
Abstract
Although levodopa remains the most efficacious symptomatic therapy for Parkinson disease (PD), management of levodopa treatment during the advanced stages of the disease is extremely challenging. This difficulty is a result of levodopa's short half-life, a progressive narrowing of the therapeutic window, and major inter-patient and intra-patient variations in the dose-response relationship. Therefore, a suitable alternative to repeated oral administration of levodopa is being sought. Recent research efforts have focused on the development of novel levodopa delivery strategies and wearable physical sensors that track symptoms and disease progression. However, the need for methods to monitor the levels of levodopa present in the body in real time has been overlooked. Advances in chemical sensor technology mean that the development of wearable and mobile biosensors for continuous or frequent levodopa measurements is now possible. Such levodopa monitoring could help to deliver personalized and timely medication dosing to alleviate treatment-related fluctuations in the symptoms of PD. Therefore, with the aim of optimizing therapeutic management of PD and improving the quality of life of patients, we share our vision of a future closed-loop autonomous wearable 'sense-and-act' system. This system consists of a network of physical and chemical sensors coupled with a levodopa delivery device and is guided by effective big data fusion algorithms and machine learning methods.
Collapse
|
17
|
Anastassova N, Aluani D, Hristova-Avakumova N, Tzankova V, Kondeva-Burdina M, Rangelov M, Todorova N, Yancheva D. Study on the Neuroprotective, Radical-Scavenging and MAO-B Inhibiting Properties of New Benzimidazole Arylhydrazones as Potential Multi-Target Drugs for the Treatment of Parkinson's Disease. Antioxidants (Basel) 2022; 11:884. [PMID: 35624746 PMCID: PMC9138090 DOI: 10.3390/antiox11050884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress is a key contributing factor in the complex degenerating cascade in Parkinson's disease. The inhibition of MAO-B affords higher dopamine bioavailability and stops ROS formation. The incorporation of hydroxy and methoxy groups in the arylhydrazone moiety of a new series of 1,3-disubstituted benzimidazole-2-thiones could increase the neuroprotective activity. In vitro safety evaluation on SH-SY5Y cells and rat brain synaptosomes showed a strong safety profile. Antioxidant and neuroprotective effects were evaluated in H2O2-induced oxidative stress on SH-SY5Y cells and in a model of 6-OHDA-induced neurotoxicity in rat brain synaptosomes, where the dihydroxy compounds 3h and 3i demonstrated the most robust neuroprotective and antioxidant activity, more pronounced than the reference melatonin and rasagiline. Statistically significant MAO-B inhibitory effects were exerted by some of the compounds where again the catecholic compound 3h was the most potent inhibitor similar to selegiline and rasagiline. The most potent antioxidant effect in the ferrous iron induced lipid peroxidation assay was observed for the three catechols-3h and 3j, 3q. The catecholic compound 3h showed scavenging capability against superoxide radicals and antioxidant effect in the iron/deoxyribose system. The study outlines a perspective multifunctional compound with the best safety profile, neuroprotective, antioxidant and MAO-B inhibiting properties.
Collapse
Affiliation(s)
- Neda Anastassova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Building 9, 1113 Sofia, Bulgaria; (M.R.); (D.Y.)
| | - Denitsa Aluani
- Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (D.A.); (V.T.); (M.K.-B.)
| | - Nadya Hristova-Avakumova
- Department of Medical Physics and Biophysics, Faculty of Medicine, Medical University of Sofia, 2 Zdrave Str., 1431 Sofia, Bulgaria;
| | - Virginia Tzankova
- Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (D.A.); (V.T.); (M.K.-B.)
| | - Magdalena Kondeva-Burdina
- Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (D.A.); (V.T.); (M.K.-B.)
| | - Miroslav Rangelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Building 9, 1113 Sofia, Bulgaria; (M.R.); (D.Y.)
| | - Nadezhda Todorova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str., 1113 Sofia, Bulgaria;
| | - Denitsa Yancheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Building 9, 1113 Sofia, Bulgaria; (M.R.); (D.Y.)
| |
Collapse
|
18
|
From the tyrosine hydroxylase hypothesis of Parkinson's disease to modern strategies: a short historical overview. J Neural Transm (Vienna) 2022; 129:487-495. [PMID: 35460433 PMCID: PMC9188506 DOI: 10.1007/s00702-022-02488-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022]
Abstract
A time span of 60 years covers the detection of catecholamines in the brain, their function in movement and correlation to Parkinson’s disease (PD). The clinical findings that orally given l-DOPA can alleviate or even prevent akinesia gave great hope for the treatment of PD. Attention focused on the role of tyrosine hydroxylase (TH) as the rate-limiting enzyme in the formation of catecholamines. It became evident that the enzyme driven formation is lowered in PD. Such results could only be obtained from studying human brain samples demonstrating the necessity for human brain banks. Originally, a TH enzyme deficiency was suspected in PD. Studies were conducted on the enzyme properties: its induction and turnover, the complex regulation starting with cofactor requirements as tetrahydrobiopterin and ferrous iron, and the necessity for phosphorylation for activity as well as inhibition by toxins or regulatory feedback inhibition by catecholamines. In the course of time, it became evident that neurodegeneration and cell death of dopaminergic neurons is the actual pathological process and the decrease of TH a cophenomenon. Nevertheless, TH immunochemistry has ever since been a valuable tool to study neuronal pathways, neurodegeneration in various animal models of neurotoxicity and cell cultures, which have been used as well to test potential neuroprotective strategies.
Collapse
|
19
|
Mallet D, Dufourd T, Decourt M, Carcenac C, Bossù P, Verlin L, Fernagut PO, Benoit-Marand M, Spalletta G, Barbier EL, Carnicella S, Sgambato V, Fauvelle F, Boulet S. A metabolic biomarker predicts Parkinson's disease at the early stages in patients and animal models. J Clin Invest 2022; 132:e146400. [PMID: 34914634 PMCID: PMC8843749 DOI: 10.1172/jci146400] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/15/2021] [Indexed: 11/30/2022] Open
Abstract
BackgroundCare management of Parkinson's disease (PD) patients currently remains symptomatic, mainly because diagnosis relying on the expression of the cardinal motor symptoms is made too late. Earlier detection of PD therefore represents a key step for developing therapies able to delay or slow down its progression.MethodsWe investigated metabolic markers in 3 different animal models of PD, mimicking different phases of the disease assessed by behavioral and histological evaluation, and in 3 cohorts of de novo PD patients and matched controls (n = 129). Serum and brain tissue samples were analyzed by nuclear magnetic resonance spectroscopy and data submitted to advanced multivariate statistics.ResultsOur translational strategy reveals common metabolic dysregulations in serum of the different animal models and PD patients. Some of them were mirrored in the tissue samples, possibly reflecting pathophysiological mechanisms associated with PD development. Interestingly, some metabolic dysregulations appeared before motor symptom emergence and could represent early biomarkers of PD. Finally, we built a composite biomarker with a combination of 6 metabolites. This biomarker discriminated animals mimicking PD from controls, even from the first, nonmotor signs and, very interestingly, also discriminated PD patients from healthy subjects.ConclusionFrom our translational study, which included 3 animal models and 3 de novo PD patient cohorts, we propose a promising biomarker exhibiting a high accuracy for de novo PD diagnosis that may possibly predict early PD development, before motor symptoms appear.FundingFrench National Research Agency (ANR), DOPALCOMP, Institut National de la Santé et de la Recherche Médicale, Université Grenoble Alpes, Association France Parkinson.
Collapse
Affiliation(s)
- David Mallet
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Thibault Dufourd
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Mélina Decourt
- Université de Poitiers, INSERM U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Carole Carcenac
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Paola Bossù
- Dipartimento di Neurologia Clinica e Comportamentale, Laboratorio di Neuropsicobiologia Sperimentale, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Laure Verlin
- University Grenoble Alpes, INSERM, US17, CNRS, UMS 3552, CHU Grenoble Alpes, IRMaGe, Grenoble, France
| | - Pierre-Olivier Fernagut
- Université de Poitiers, INSERM U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Marianne Benoit-Marand
- Université de Poitiers, INSERM U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | | | - Emmanuel L. Barbier
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
- University Grenoble Alpes, INSERM, US17, CNRS, UMS 3552, CHU Grenoble Alpes, IRMaGe, Grenoble, France
| | - Sebastien Carnicella
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Véronique Sgambato
- Université de Lyon, CNRS UMR5229, Institut des Sciences Cognitives Marc Jeannerod, Bron, France
| | - Florence Fauvelle
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
- University Grenoble Alpes, INSERM, US17, CNRS, UMS 3552, CHU Grenoble Alpes, IRMaGe, Grenoble, France
| | - Sabrina Boulet
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| |
Collapse
|
20
|
Ferreira AFF, Singulani MP, Ulrich H, Feng ZP, Sun HS, Britto LR. Inhibition of TRPM2 by AG490 Is Neuroprotective in a Parkinson's Disease Animal Model. Mol Neurobiol 2022; 59:1543-1559. [PMID: 35000153 DOI: 10.1007/s12035-022-02723-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is characterized by motor impairment and dopaminergic neuronal loss. There is no cure for the disease, and treatments have several limitations. The transient receptor potential melastatin 2 (TRPM2), a calcium-permeable non-selective cation channel, has been reported to be upregulated in neuronal death. However, there are no in vivo studies evaluating TRPM2's role and neuroprotective effects in PD. Here, we test the hypothesis that TRPM2 is upregulated in the 6-hydroxydopamine (6-OHDA) mouse model of PD and that its inhibition, by the AG490, is neuroprotective. For that, AG490 or vehicle were intraperitoneally administered into C57BL/6 mice. Mice then received 6-OHDA into the right striatum. Motor behavior assessments were evaluated 6, 13, and 20 days after surgery using the cylinder and apomorphine-induced rotational testes, and 7, 14, and 21 days after surgery using rotarod test. Brain samples of substantia nigra (SNc) and striatum (CPu) were collected for immunohistochemistry and immunoblotting on days 7 and 21. We showed that TRPM2 protein expression was upregulated in 6-OHDA-treated animals. In addition, AG490 prevented dopaminergic neuron loss, microglial activation, and astrocyte reactivity in 6-OHDA-treated animals. The compound improved motor behaviors and Akt/GSK-3β/caspase-3 signaling. We conclude that TRPM2 inhibition by AG490 is neuroprotective in the 6-OHDA model and that the TRPM2 channel may represent a potential therapeutic target for PD.
Collapse
Affiliation(s)
- Ana Flávia Fernandes Ferreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Monique Patricio Singulani
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Neurosciences - LIM27, Department & Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Hong-Shuo Sun
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.,Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Luiz Roberto Britto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Okuda S, Uemura N, Sawamura M, Taguchi T, Ikuno M, Uemura MT, Yamakado H, Takahashi R. Rapid Induction of Dopaminergic Neuron Loss Accompanied by Lewy Body-Like Inclusions in A53T BAC-SNCA Transgenic Mice. Neurotherapeutics 2022; 19:289-304. [PMID: 34935120 PMCID: PMC9130450 DOI: 10.1007/s13311-021-01169-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2021] [Indexed: 01/03/2023] Open
Abstract
Parkinson's disease (PD), the most common neurodegenerative movement disorder, is characterized by dopaminergic neuron loss in the substantia nigra pars compacta (SNpc) and intraneuronal α-synuclein (α-syn) inclusions. It is highly needed to establish a rodent model that recapitulates the clinicopathological features of PD within a short period to efficiently investigate the pathological mechanisms and test disease-modifying therapies. To this end, we analyzed three mouse lines, i.e., wild-type mice, wild-type human α-syn bacterial artificial chromosome (BAC) transgenic (BAC-SNCA Tg) mice, and A53T human α-syn BAC transgenic (A53T BAC-SNCA Tg) mice, receiving dorsal striatum injections of human and mouse α-syn preformed fibrils (hPFFs and mPFFs, respectively). mPFF injections induced more severe α-syn pathology in most brain regions, including the ipsilateral SNpc, than hPFF injections in all genotypes at 1-month post-injection. Although these Tg mouse lines expressed a comparable amount of α-syn in the brains, the mPFF-injected A53T BAC-SNCA Tg mice exhibited the most severe α-syn pathology as early as 0.5-month post-injection. The mPFF-injected A53T BAC-SNCA Tg mice showed a 38% reduction in tyrosine hydroxylase (TH)-positive neurons in the ipsilateral SNpc, apomorphine-induced rotational behavior, and motor dysfunction at 2 months post-injection. These data indicate that the extent of α-syn pathology induced by α-syn PFF injection depends on the types of α-syn PFFs and exogenously expressed α-syn in Tg mice. The mPFF-injected A53T BAC-SNCA Tg mice recapitulate the key features of PD more rapidly than previously reported mouse models, suggesting their usefulness for testing disease-modifying therapies as well as analyzing the pathological mechanisms.
Collapse
Affiliation(s)
- Shinya Okuda
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyoku, Kyoto, 606-8507, Japan
| | - Norihito Uemura
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyoku, Kyoto, 606-8507, Japan.
- Department of Pathology and Laboratory Medicine, Institute On Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104-2676, USA.
| | - Masanori Sawamura
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyoku, Kyoto, 606-8507, Japan
| | - Tomoyuki Taguchi
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyoku, Kyoto, 606-8507, Japan
| | - Masashi Ikuno
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyoku, Kyoto, 606-8507, Japan
| | - Maiko T Uemura
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyoku, Kyoto, 606-8507, Japan
- Department of Pathology and Laboratory Medicine, Institute On Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104-2676, USA
| | - Hodaka Yamakado
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyoku, Kyoto, 606-8507, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyoku, Kyoto, 606-8507, Japan.
| |
Collapse
|
22
|
Birla H, Keswani C, Singh SS, Zahra W, Dilnashin H, Rathore AS, Singh R, Rajput M, Keshri P, Singh SP. Unraveling the Neuroprotective Effect of Tinospora cordifolia in a Parkinsonian Mouse Model through the Proteomics Approach. ACS Chem Neurosci 2021; 12:4319-4335. [PMID: 34747594 DOI: 10.1021/acschemneuro.1c00481] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Stress-induced dopaminergic (DAergic) neuronal death in the midbrain region is the primary cause of Parkinson's disease (PD). Following the discovery of l-dopa, multiple drugs have been developed to improve the lifestyle of PD patients; however, none have been suitable for clinical use due to their multiple side effects. Tinospora cordifolia has been used in traditional medicines to treat neurodegenerative diseases. Previously, we reported the neuroprotective role of Tc via inhibition of NF-κB-associated proinflammatory cytokines against MPTP-intoxicated Parkinsonian mice. In the present study, we investigated the neuroprotective molecular mechanism of Tc in a rotenone (ROT)-intoxicated mouse model, using a proteomics approach. Mice were pretreated with Tc extract by oral administration, followed by ROT intoxication. Behavioral tests were performed to check motor functions of mice. Protein was isolated, and label-free quantification (LFQ) was carried out to identify differentially expressed protein (DEP) in control vs PD and PD vs treatment groups. Results were validated by qRT-PCR with the expression of target genes correlating with the proteomics data. In this study, we report 800 DEPs in control vs PD and 133 in PD vs treatment groups. In silico tools demonstrate significant enrichment of biochemical and molecular pathways with DEPs, which are known to be important for PD progression including mitochondrial gene expression, PD pathways, TGF-β signaling, and Alzheimer's disease. This study provides novel insights into the PD progression as well as new therapeutic targets. More importantly, it demonstrates that Tc can exert therapeutic effects by regulating multiple pathways, resulting in neuroprotection.
Collapse
Affiliation(s)
- Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Chetan Keswani
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Richa Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Monika Rajput
- Department of Bioinformatics, Mahila Maha Vidhyalaya, Banaras Hindu University, Varanasi 221005, India
| | - Priyanka Keshri
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
23
|
Arituluk ZC, Horne J, Adhikari B, Steltzner J, Mansur S, Ahirwar P, Velu SE, Gray NE, Ciesla LM, Bao Y. Identification of TrkB Binders from Complex Matrices Using a Magnetic Drug Screening Nanoplatform. ACS APPLIED BIO MATERIALS 2021; 4:6244-6255. [PMID: 35006910 DOI: 10.1021/acsabm.1c00552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) and its receptor tyrosine receptor kinase B (TrkB) have been shown to play an important role in numerous neurological disorders, such as Alzheimer's disease. The identification of biologically active compounds interacting with TrkB serves as a drug discovery strategy to identify drug leads for neurological disorders. Here, we report effective immobilization of functional TrkB on magnetic iron oxide nanoclusters, where TrkB receptors behave as "smart baits" to bind compounds from mixtures and magnetic nanoclusters enable rapid isolation through magnetic separation. The presence of the immobilized TrkB was confirmed by specific antibody labeling. Subsequently, the activity of the TrkB on iron oxide nanoclusters was evaluated with ATP/ADP conversion experiments using a known TrkB agonist. The immobilized TrkB receptors can effectively identify binders from mixtures containing known binders, synthetic small molecule mixtures, and Gotu Kola (Centella asiatica) plant extracts. The identified compounds were analyzed by an ultrahigh-performance liquid chromatography system coupled with a quadrupole time-of-flight mass spectrometer. Importantly, some of the identified TrkB binders from Gotu Kola plant extracts matched with compounds previously linked to neuroprotective effects observed for a Gotu Kola extract approved for use in a clinical trial. Our studies suggest that the possible therapeutic effects of the Gotu Kola plant extract in dementia treatment, at least partially, might be associated with compounds interacting with TrkB. The unique feature of this approach is its ability to fast screen potential drug leads using less explored transmembrane targets. This platform works as a drug-screening funnel at early stages of the drug discovery pipeline. Therefore, our approach will not only greatly benefit drug discovery processes using transmembrane proteins as targets but also allow for evaluation and validation of cellular pathways targeted by drug leads.
Collapse
Affiliation(s)
- Zekiye Ceren Arituluk
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States.,Department of Pharmaceutical Botany, Hacettepe University, Ankara 06100, Turkey
| | - Jesse Horne
- Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Bishnu Adhikari
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Jeffrey Steltzner
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Shomit Mansur
- Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Parmanand Ahirwar
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| | - Sadanandan E Velu
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| | - Nora E Gray
- Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Lukasz M Ciesla
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Yuping Bao
- Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
24
|
Kamenova S, Aralbayeva A, Kondybayeva A, Akimniyazova A, Pyrkova A, Ivashchenko A. Evolutionary Changes in the Interaction of miRNA With mRNA of Candidate Genes for Parkinson's Disease. Front Genet 2021; 12:647288. [PMID: 33859673 PMCID: PMC8042338 DOI: 10.3389/fgene.2021.647288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) exhibits the second-highest rate of mortality among neurodegenerative diseases. PD is difficult to diagnose and treat due to its polygenic nature. In recent years, numerous studies have established a correlation between this disease and miRNA expression; however, it remains necessary to determine the quantitative characteristics of the interactions between miRNAs and their target genes. In this study, using novel bioinformatics approaches, the quantitative characteristics of the interactions between miRNAs and the mRNAs of candidate PD genes were established. Of the 6,756 miRNAs studied, more than one hundred efficiently bound to mRNA of 61 candidate PD genes. The miRNA binding sites (BS) were located in the 5′-untranslated region (5′UTR), coding sequence (CDS) and 3′-untranslated region (3′UTR) of the mRNAs. In the mRNAs of many genes, the locations of miRNA BS with overlapping nucleotide sequences (clusters) were identified. Such clusters substantially reduced the proportion of nucleotide sequences of miRNA BS in the 5′UTRs, CDSs, and 3′UTRs. The organization of miRNA BS into clusters leads to competition among miRNAs to bind mRNAs. Differences in the binding characteristics of miRNAs to the mRNAs of genes expressed at different rates were identified. Single miRNA BS, polysites for the binding for one miRNA, and multiple BS for two or more miRNAs in one mRNA were identified. Evolutionary changes in the BS of miRNAs and their clusters in 5′UTRs, CDSs and 3′UTRs of mRNA of orthologous candidate PD genes were established. Based on the quantitative characteristics of the interactions between miRNAs and mRNAs candidate PD genes, several associations recommended as markers for the diagnosis of PD.
Collapse
Affiliation(s)
- Saltanat Kamenova
- Faculty of Medicine and Health Care, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Assel Aralbayeva
- Department of Neurology, Kazakh Medical University, Almaty, Kazakhstan
| | - Aida Kondybayeva
- Faculty of Medicine and Health Care, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Aigul Akimniyazova
- Faculty of Medicine and Health Care, Al-Farabi Kazakh National University, Almaty, Kazakhstan.,Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Anna Pyrkova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Anatoliy Ivashchenko
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| |
Collapse
|
25
|
Silva J, Alves C, Martins A, Susano P, Simões M, Guedes M, Rehfeldt S, Pinteus S, Gaspar H, Rodrigues A, Goettert MI, Alfonso A, Pedrosa R. Loliolide, a New Therapeutic Option for Neurological Diseases? In Vitro Neuroprotective and Anti-Inflammatory Activities of a Monoterpenoid Lactone Isolated from Codium tomentosum. Int J Mol Sci 2021; 22:1888. [PMID: 33672866 PMCID: PMC7918146 DOI: 10.3390/ijms22041888] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 02/08/2023] Open
Abstract
Parkinsons Disease (PD) is the second most common neurodegenerative disease worldwide, and is characterized by a progressive degeneration of dopaminergic neurons. Without an effective treatment, it is crucial to find new therapeutic options to fight the neurodegenerative process, which may arise from marine resources. Accordingly, the goal of the present work was to evaluate the ability of the monoterpenoid lactone Loliolide, isolated from the green seaweed Codium tomentosum, to prevent neurological cell death mediated by the neurotoxin 6-hydroxydopamine (6-OHDA) on SH-SY5Y cells and their anti-inflammatory effects in RAW 264.7 macrophages. Loliolide was obtained from the diethyl ether extract, purified through column chromatography and identified by NMR spectroscopy. The neuroprotective effects were evaluated by the MTT method. Cells' exposure to 6-OHDA in the presence of Loliolide led to an increase of cells' viability in 40%, and this effect was mediated by mitochondrial protection, reduction of oxidative stress condition and apoptosis, and inhibition of the NF-kB pathway. Additionally, Loliolide also suppressed nitric oxide production and inhibited the production of TNF-α and IL-6 pro-inflammatory cytokines. The results suggest that Loliolide can inspire the development of new neuroprotective therapeutic agents and thus, more detailed studies should be considered to validate its pharmacological potential.
Collapse
Affiliation(s)
- Joana Silva
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (A.M.); (P.S.); (M.S.); (M.G.); (S.P.); (A.R.)
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain;
| | - Celso Alves
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (A.M.); (P.S.); (M.S.); (M.G.); (S.P.); (A.R.)
| | - Alice Martins
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (A.M.); (P.S.); (M.S.); (M.G.); (S.P.); (A.R.)
| | - Patrícia Susano
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (A.M.); (P.S.); (M.S.); (M.G.); (S.P.); (A.R.)
| | - Marco Simões
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (A.M.); (P.S.); (M.S.); (M.G.); (S.P.); (A.R.)
| | - Miguel Guedes
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (A.M.); (P.S.); (M.S.); (M.G.); (S.P.); (A.R.)
| | - Stephanie Rehfeldt
- Cell Culture Laboratory, Graduate Program in Biotechnology, University of Vale do Taquari (Univates), Lajeado, RS 95914-014, Brazil; (S.R.); (M.I.G.)
| | - Susete Pinteus
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (A.M.); (P.S.); (M.S.); (M.G.); (S.P.); (A.R.)
| | - Helena Gaspar
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal;
| | - Américo Rodrigues
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (A.M.); (P.S.); (M.S.); (M.G.); (S.P.); (A.R.)
| | - Márcia Ines Goettert
- Cell Culture Laboratory, Graduate Program in Biotechnology, University of Vale do Taquari (Univates), Lajeado, RS 95914-014, Brazil; (S.R.); (M.I.G.)
| | - Amparo Alfonso
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain;
| | - Rui Pedrosa
- MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-614 Peniche, Portugal
| |
Collapse
|
26
|
Behl T, Kaur G, Sehgal A, Bhardwaj S, Singh S, Buhas C, Judea-Pusta C, Uivarosan D, Munteanu MA, Bungau S. Multifaceted Role of Matrix Metalloproteinases in Neurodegenerative Diseases: Pathophysiological and Therapeutic Perspectives. Int J Mol Sci 2021; 22:ijms22031413. [PMID: 33573368 PMCID: PMC7866808 DOI: 10.3390/ijms22031413] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Neurodegeneration is the pathological condition, in which the nervous system or neuron loses its structure, function, or both, leading to progressive degeneration or the death of neurons, and well-defined associations of tissue system, resulting in clinical manifestations. Neuroinflammation has been shown to precede neurodegeneration in several neurodegenerative diseases (NDs). No drug is yet known to delay or treat neurodegeneration. Although the etiology and potential causes of NDs remain widely indefinable, matrix metalloproteinases (MMPs) evidently have a crucial role in the progression of NDs. MMPs, a protein family of zinc (Zn2+)-containing endopeptidases, are pivotal agents that are involved in various biological and pathological processes in the central nervous system (CNS). The current review delineates the several emerging evidence demonstrating the effects of MMPs in the progression of NDs, wherein they regulate several processes, such as (neuro)inflammation, microglial activation, amyloid peptide degradation, blood brain barrier (BBB) disruption, dopaminergic apoptosis, and α-synuclein modulation, leading to neurotoxicity and neuron death. Published papers to date were searched via PubMed, MEDLINE, etc., while using selective keywords highlighted in our manuscript. We also aim to shed a light on pathophysiological effect of MMPs in the CNS and focus our attention on its detrimental and beneficial effects in NDs, with a special focus on Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), multiple sclerosis (MS), and Huntington's disease (HD), and discussed various therapeutic strategies targeting MMPs, which could serve as potential modulators in NDs. Over time, several agents have been developed in order to overcome challenges and open up the possibilities for making selective modulators of MMPs to decipher the multifaceted functions of MMPs in NDs. There is still a greater need to explore them in clinics.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India; (G.K.); (A.S.); (S.S.)
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| | - Gagandeep Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India; (G.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India; (G.K.); (A.S.); (S.S.)
| | - Shaveta Bhardwaj
- Department of Pharmacology, GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana 141104, Punjab, India;
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India; (G.K.); (A.S.); (S.S.)
| | - Camelia Buhas
- Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (C.J.-P.)
| | - Claudia Judea-Pusta
- Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (C.J.-P.)
| | - Diana Uivarosan
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| |
Collapse
|
27
|
Okechukwu C. Deciphering and manipulating the epigenome for the treatment of Parkinson’s and Alzheimer’s disease. MGM JOURNAL OF MEDICAL SCIENCES 2021. [DOI: 10.4103/mgmj.mgmj_90_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
28
|
An integrative model of Parkinson's disease treatment including levodopa pharmacokinetics, dopamine kinetics, basal ganglia neurotransmission and motor action throughout disease progression. J Pharmacokinet Pharmacodyn 2020; 48:133-148. [PMID: 33084988 DOI: 10.1007/s10928-020-09723-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023]
Abstract
Levodopa is considered the gold standard treatment of Parkinson's disease. Although very effective in alleviating symptoms at their onset, its chronic use with the progressive neuronal denervation in the basal ganglia leads to a decrease in levodopa's effect duration and to the appearance of motor complications. This evolution challenges the establishment of optimal regimens to manage the symptoms as the disease progresses. Based on up-to-date pathophysiological and pharmacological knowledge, we developed an integrative model for Parkinson's disease to evaluate motor function in response to levodopa treatment as the disease progresses. We combined a pharmacokinetic model of levodopa to a model of dopamine's kinetics and a neurocomputational model of basal ganglia. The parameter values were either measured directly or estimated from human and animal data. The concentrations and behaviors predicted by our model were compared to available information and data. Using this model, we were able to predict levodopa plasma concentration, its related dopamine concentration in the brain and the response performance of a motor task for different stages of disease.
Collapse
|
29
|
Mallah K, Couch C, Borucki DM, Toutonji A, Alshareef M, Tomlinson S. Anti-inflammatory and Neuroprotective Agents in Clinical Trials for CNS Disease and Injury: Where Do We Go From Here? Front Immunol 2020; 11:2021. [PMID: 33013859 PMCID: PMC7513624 DOI: 10.3389/fimmu.2020.02021] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Neurological disorders are major contributors to death and disability worldwide. The pathology of injuries and disease processes includes a cascade of events that often involve molecular and cellular components of the immune system and their interaction with cells and structures within the central nervous system. Because of this, there has been great interest in developing neuroprotective therapeutic approaches that target neuroinflammatory pathways. Several neuroprotective anti-inflammatory agents have been investigated in clinical trials for a variety of neurological diseases and injuries, but to date the results from the great majority of these trials has been disappointing. There nevertheless remains great interest in the development of neuroprotective strategies in this arena. With this in mind, the complement system is being increasingly discussed as an attractive therapeutic target for treating brain injury and neurodegenerative conditions, due to emerging data supporting a pivotal role for complement in promoting multiple downstream activities that promote neuroinflammation and degeneration. As we move forward in testing additional neuroprotective and immune-modulating agents, we believe it will be useful to review past trials and discuss potential factors that may have contributed to failure, which will assist with future agent selection and trial design, including for complement inhibitors. In this context, we also discuss inhibition of the complement system as a potential neuroprotective strategy for neuropathologies of the central nervous system.
Collapse
Affiliation(s)
- Khalil Mallah
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Christine Couch
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Davis M. Borucki
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, United States
| | - Amer Toutonji
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, United States
| | - Mohammed Alshareef
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Neurological Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Ralph Johnson VA Medical Center, Charleston, SC, United States
| |
Collapse
|
30
|
Salamon A, Zádori D, Szpisjak L, Klivényi P, Vécsei L. Fixed-dose combination therapy for Parkinson’s disease with a spotlight on entacapone in the past 20 years: a reduced pill burden and a simplified dosing regime. Expert Opin Pharmacother 2020; 21:2265-2278. [DOI: 10.1080/14656566.2020.1806237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- András Salamon
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Dénes Zádori
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - László Szpisjak
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Péter Klivényi
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
- Department of Neurology and Interdisciplinary Excellence Centre, Faculty of Medicine, MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| |
Collapse
|
31
|
Sportelli C, Urso D, Jenner P, Chaudhuri KR. Metformin as a Potential Neuroprotective Agent in Prodromal Parkinson's Disease-Viewpoint. Front Neurol 2020; 11:556. [PMID: 32595595 PMCID: PMC7304367 DOI: 10.3389/fneur.2020.00556] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/15/2020] [Indexed: 12/15/2022] Open
Abstract
To date, there are no clinically effective neuroprotective or disease-modifying treatments that can halt Parkinson's disease (PD) progression. The current clinical approach focuses on symptomatic management. This failure may relate to the complex neurobiology underpinning the development of PD and the absence of true translational animal models. In addition, clinical diagnosis of PD relies on presentation of motor symptoms which occur when the neuropathology is already established. These multiple factors could contribute to the unsuccessful development of neuroprotective treatments for PD. Prodromal symptoms develop years prior to formal diagnosis and may provide an excellent tool for early diagnosis and better trial design. Patients with idiopathic rapid eye movement behavior disorder (iRBD) have the highest risk of developing PD and could represent an excellent group to include in neuroprotective trials for PD. In addition, repurposing drugs with excellent safety profiles is an appealing strategy to accelerate drug discovery. The anti-diabetic drug metformin has been shown to target diverse cellular pathways implicated in PD progression. Multiple studies have, additionally, observed the benefits of metformin to counteract other age-related diseases. The purpose of this viewpoint is to discuss metformin's neuroprotective potential by outlining relevant mechanisms of action and the selection of iRBD patients for future clinical trials in PD.
Collapse
Affiliation(s)
- Carolina Sportelli
- National Parkinson Foundation International Centre of Excellence, King's College Hospital, London, United Kingdom
| | - Daniele Urso
- National Parkinson Foundation International Centre of Excellence, King's College Hospital, London, United Kingdom.,Institute of Psychiatry, Psychology & Neuroscience, King's College, London, United Kingdom
| | - Peter Jenner
- Institute of Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College, London, United Kingdom
| | - K Ray Chaudhuri
- National Parkinson Foundation International Centre of Excellence, King's College Hospital, London, United Kingdom.,Institute of Psychiatry, Psychology & Neuroscience, King's College, London, United Kingdom
| |
Collapse
|
32
|
Wang H, Liu X, Tan C, Zhou W, Jiang J, Peng W, Zhou X, Mo L, Chen L. Bacterial, viral, and fungal infection-related risk of Parkinson's disease: Meta-analysis of cohort and case-control studies. Brain Behav 2020; 10:e01549. [PMID: 32017453 PMCID: PMC7066372 DOI: 10.1002/brb3.1549] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/24/2022] Open
Abstract
AIMS Recent studies showed that patients with various bacterial, viral, and fungal infections might be at increased risk of Parkinson's disease (PD). However, the risk of PD in patients with each specific infection varied. This meta-analysis estimated the association between various infections and PD risk. METHODS Literature published from January 1965 to October 2019 in PubMed and EMBASE databases was searched. Data were extracted and pooled using random/fixed effects model. Sensitivity analysis and meta-regression were also performed to analyze the source of heterogeneity. Publication bias was estimated by the trim and fill. RESULTS Twenty-three out of 6,609 studies were included. Helicobacter pylori (HP; pooled OR = 1.653, 1.426-1.915, p < .001), hepatitis C virus (HCV; pooled OR = 1.195, 1.012-1.410, p = .035), Malassezia (pooled OR = 1.694, 1.367-2.100, p < .001), and pneumoniae (pooled OR = 1.595, 1.020-2.493, p = .041) infection were associated with increased PD risk. Influenza virus, herpes virus, hepatitis B virus, scarlet fever, mumps virus, chicken pox, pertussis, German measles, and measles were not associated with PD risk. After antiviral treatment against HCV reduced the risk of PD in patients with HCV infection (OR = 0.672, 0.571-0.791, p < .001). Significant heterogeneity exists among the included studies. CONCLUSION Patients with infection of HP, HCV, Malassezia, pneumoniae might be an increased risk of PD. Antiviral treatment of HCV could reduce the risk of PD.
Collapse
Affiliation(s)
- Hui Wang
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xi Liu
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Changhong Tan
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Wen Zhou
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jin Jiang
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Wuxue Peng
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xuan Zhou
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Lijuan Mo
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Lifen Chen
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|