1
|
Palukaitis P, Akbarimotlagh M, Astaraki S, Shams-Bakhsh M, Yoon JY. The Forgotten Tobamovirus Genes Encoding the 54 kDa Protein and the 4-6 kDa Proteins. Viruses 2024; 16:1680. [PMID: 39599795 PMCID: PMC11599109 DOI: 10.3390/v16111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
This article reviews the literature concerning the largely forgotten tobamovirus gene products for which no functions have been ascribed. One of these gene products is the 54 kDa protein, representing the RNA-dependent RNA polymerase segment of the 183 kDa protein translated from the I1-subgenomic mRNA, but which has been found only by in vitro translation and not in plants. The other is a collection of small proteins, expressed from alternative reading frames (likely from internal ribosome entry sites) in either or both the movement protein gene or the capsid protein gene. Previously, two small proteins were referred to as the 4-6 kDa proteins, since only single proteins of such size had been characterized from tobacco mosaic virus and tomato mosaic virus genomes. Such putative proteins will be referred to here as P6 proteins, since many new proposed P6 open reading frames could be discerned, from an analysis of 45 of 47 tobamovirus genomes, with a coding capacity of >15 amino acids up to 94 amino acids, whereas other peptides with ≤15 amino acids were not considered here. The distribution of the putative P6 proteins among these tobamoviruses is described, as well as the various classes they fall into, based on their distribution with regard to the organization of other genes in the viral genomes. Models also are presented for possible functions of the 54 kDa protein and the P6 proteins, based on data in the literature.
Collapse
Affiliation(s)
- Peter Palukaitis
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Masoud Akbarimotlagh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-111, Iran; (M.A.); (S.A.); (M.S.-B.)
| | - Sajad Astaraki
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-111, Iran; (M.A.); (S.A.); (M.S.-B.)
| | - Masoud Shams-Bakhsh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-111, Iran; (M.A.); (S.A.); (M.S.-B.)
| | - Ju-Yeon Yoon
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
2
|
Kon T, Sato C, Fuji SI. Molecular characterization and host reaction to tomato mottle mosaic virus isolated from sweet pepper seeds in Japan. Arch Virol 2024; 169:113. [PMID: 38684570 DOI: 10.1007/s00705-024-06035-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/17/2024] [Indexed: 05/02/2024]
Abstract
Many countries have identified tomato mottle mosaic virus (ToMMV) as a serious threat to tomato production. Here, we constructed and characterized infectious clones of ToMMV isolated from Japanese sweet pepper seeds. The genome of the Japanese isolate is 6399 nucleotides in length and exhibits the highest identity with previously characterized isolates. For example, it is 99.7% identical to that of the Mauritius isolate, which occurs worldwide. Phylogenetic analysis based on complete genome sequences revealed that the Japanese isolates clustered in the same clade as those from other countries. When homozygous tomato cultivars with tobamovirus resistance genes were inoculated with an infectious cDNA clone of ToMMV, the virus systemically infected tomato plants with symptoms typical of Tm-1-carrying tomato cultivars. In contrast, tomato cultivars carrying Tm-2 or Tm-22 showed symptoms only on the inoculated leaves. Furthermore, when commercial cultivars of Tm-22 heterozygous tomato were inoculated with ToMMV, systemic infections were observed in all cultivars, with infection frequencies ranging from 25 to 100%. Inoculation of heterozygous sweet pepper cultivars with tobamovirus resistance genes (L1, L3, and L4) with ToMMV resulted in an infection frequency of about 70%, but most of the infected L1, L3, and L4 cultivars were symptomless, and 10-20% showed symptoms of necrosis and yellowing. Tomato mosaic virus strain L11A, an attenuated virus, did not provide cross-protection against ToMMV and led to systemic infection with typical symptoms. These results suggest that ToMMV might cause extensive damage to existing tomato and sweet pepper cultivars commonly grown in Japan.
Collapse
Affiliation(s)
- Tatsuya Kon
- Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi, Nakano, Shimoshinjo, Akita, 010-0195, Japan.
| | - Chinami Sato
- Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi, Nakano, Shimoshinjo, Akita, 010-0195, Japan
| | - Shin-Ichi Fuji
- Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi, Nakano, Shimoshinjo, Akita, 010-0195, Japan
| |
Collapse
|
3
|
Pepper Mild Mottle Virus: An Infectious Pathogen in Pepper Production and a Potential Indicator of Domestic Water Quality. Viruses 2023; 15:v15020282. [PMID: 36851496 PMCID: PMC9962380 DOI: 10.3390/v15020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Pepper (Capsicum spp.; Family: Solanaceae; 2n = 24) is an important crop cultivated worldwide for the consumption of its fresh and dried processed fruits. Pepper fruits are used as raw materials in a wide variety of industrial processes. As a multipurpose vegetable crop, there is a need to increase the yield. However, yield productivity of pepper is severely constrained by infectious plant pathogens, including viruses, bacteria, fungi, and oomycetes. The pepper mild mottle virus (PMMoV) is currently one of the most damaging pathogens associated with yield losses in pepper production worldwide. In addition to impacts on pepper productivity, PMMoV has been detected in domestic and aquatic water resources, as well as in the excreta of animals, including humans. Therefore, PMMoV has been suggested as a potential indicator of domestic water quality. These findings present additional concerns and trigger the need to control the infectious pathogen in crop production. This review provides an overview of the distribution, economic impacts, management, and genome sequence variation of some isolates of PMMoV. We also describe genetic resources available for crop breeding against PMMoV.
Collapse
|
4
|
To Be Seen or Not to Be Seen: Latent Infection by Tobamoviruses. PLANTS 2022; 11:plants11162166. [PMID: 36015469 PMCID: PMC9415976 DOI: 10.3390/plants11162166] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022]
Abstract
Tobamoviruses are among the most well-studied plant viruses and yet there is still a lot to uncover about them. On one side of the spectrum, there are damage-causing members of this genus: such as the tobacco mosaic virus (TMV), tomato brown rugose fruit virus (ToBRFV) and cucumber green mottle mosaic virus (CGMMV), on the other side, there are members which cause latent infection in host plants. New technologies, such as high-throughput sequencing (HTS), have enabled us to discover viruses from asymptomatic plants, viruses in mixed infections where the disease etiology cannot be attributed to a single entity and more and more researchers a looking at non-crop plants to identify alternative virus reservoirs, leading to new virus discoveries. However, the diversity of these interactions in the virosphere and the involvement of multiple viruses in a single host is still relatively unclear. For such host–virus interactions in wild plants, symptoms are not always linked with the virus titer. In this review, we refer to latent infection as asymptomatic infection where plants do not suffer despite systemic infection. Molecular mechanisms related to latent behavior of tobamoviruses are unknown. We will review different studies which support different theories behind latency.
Collapse
|
5
|
Tóth T, Gyula P, Salamon P, Kis S, Sós-Hegedűs A, Szittya G. Molecular characterization and In Vitro synthesis of infectious RNA of a Turnip vein-clearing virus isolated from Alliaria petiolata in Hungary. PLoS One 2019; 14:e0224398. [PMID: 31648277 PMCID: PMC6812821 DOI: 10.1371/journal.pone.0224398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/11/2019] [Indexed: 11/18/2022] Open
Abstract
A tobamovirus was isolated from leaves of Alliaria petiolata plants, showing vein-clearing, interveinal chlorosis, and moderate deformation. Host range experiments revealed a high similarity of isolate ApH both to ribgrass mosaic viruses and turnip vein-clearing viruses. The complete nucleotide sequence of the viral genome was determined. The genomic RNA is composed of 6312 nucleotides and contains four open reading frames (ORF). ORF1 is 3324 nt-long and encodes a polypeptide of about 125.3 kDa. The ORF1 encoded putative replication protein contains an Alphavirus-like methyltransferase domain. ORF2 is 4806 nt-long and encodes a polypeptide of about 182 kDa. The ORF2 encoded putative replication protein contains an RNA-dependent RNA polymerase, catalytic domain. ORF3 encodes the putative cell-to-cell movement protein with a molecular weight of 30.1 kDa. ORF4 overlaps with ORF3 and encodes the coat protein with a size of 17.5 kDa. Sequence comparisons revealed that the ApH isolate has the highest similarity to turnip vein-clearing viruses and should be considered an isolate of Turnip vein-clearing virus (TVCV). This is the first report on the occurrence of TVCV in Hungary. In vitro transcripts prepared from the full-length cDNA clone of TVCV-ApH were highly infectious and induced typical symptoms characteristic to the original isolate of the virus. Since infectious clones of TVCV-ApH and crTMV (another isolate of TVCV) markedly differed in respect to recovery phenotype in Arabidopsis thaliana, it is feasible to carry out gene exchange or mutational studies to determine viral factors responsible for the symptom recovery phenotype.
Collapse
Affiliation(s)
- Tamás Tóth
- Department of Plant Biotechnology, Agricultural Biotechnology Institute, National Agricultural Research and Innovation Center, Gödöllő, Hungary
| | - Péter Gyula
- Department of Plant Biotechnology, Agricultural Biotechnology Institute, National Agricultural Research and Innovation Center, Gödöllő, Hungary
| | - Pál Salamon
- Department of Genetics, Agricultural Biotechnology Institute, National Agricultural Research and Innovation Center, Gödöllő, Hungary
| | - Szilvia Kis
- Department of Plant Biotechnology, Agricultural Biotechnology Institute, National Agricultural Research and Innovation Center, Gödöllő, Hungary
| | - Anita Sós-Hegedűs
- Department of Plant Biotechnology, Agricultural Biotechnology Institute, National Agricultural Research and Innovation Center, Gödöllő, Hungary
| | - György Szittya
- Department of Plant Biotechnology, Agricultural Biotechnology Institute, National Agricultural Research and Innovation Center, Gödöllő, Hungary
| |
Collapse
|
6
|
Erokhina TN, Lazareva EA, Richert-Pöggeler KR, Sheval EV, Solovyev AG, Morozov SY. Subcellular Localization and Detection of Tobacco mosaic virus ORF6 Protein by Immunoelectron Microscopy. BIOCHEMISTRY. BIOKHIMIIA 2017; 82:60-66. [PMID: 28320287 DOI: 10.1134/s0006297917010060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Members of the genus Tobamovirus represent one of the best-characterized groups of plant positive, single stranded RNA viruses. Previous studies have shown that genomes of some tobamoviruses contain not only genes coding for coat protein, movement protein, and the cistron coding for different domains of RNA-polymerase, but also a gene, named ORF6, coding for a poorly conserved small protein. The amino acid sequences of ORF6 proteins encoded by different tobamoviruses are highly divergent. The potential role of ORF6 proteins in replication of tobamoviruses still needs to be elucidated. In this study, using biochemical and immunological methods, we have shown that ORF6 peptide is accumulated after infection in case of two isolates of Tobacco mosaic virus strain U1 (TMV-U1 common and TMV-U1 isolate A15). Unlike virus particles accumulating in the cytoplasm, the product of the ORF6 gene is found mainly in nuclei, which correlates with previously published data about transient expression of ORF6 isolated from TMV-U1. Moreover, we present new data showing the presence of ORF6 genes in genomes of several tobamoviruses. For example, in the genomes of other members of the tobamovirus subgroup 1, including Rehmannia mosaic virus, Paprika mild mottle virus, Tobacco mild green mosaic virus, Tomato mosaic virus, Tomato mottle mosaic virus, and Nigerian tobacco latent virus, sequence comparisons revealed the existence of a similar open reading frame like ORF6 of TMV.
Collapse
Affiliation(s)
- T N Erokhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | | | | | | | | | | |
Collapse
|
7
|
Chavan RR, Pearson MN. Molecular characterisation of a novel recombinant Ribgrass mosaic virus strain FSHS. Virol J 2016; 13:29. [PMID: 26891841 PMCID: PMC4758180 DOI: 10.1186/s12985-016-0487-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 02/10/2016] [Indexed: 11/21/2022] Open
Abstract
Background The genus Tobamovirus (Virgaviridae) comprises 33 accepted species with the recent addition of eight new viruses and is divided in to three subgroups based on the origin of assembly of the virion and host range. Within the subgroup 1 tobamoviruses the orchid-associated tobamovirus was hypothesized to be a chimeric derivative of recombinations between genome fragments from subgroup 3 and 1. Recombination events involving RdRp, movement and coat protein genes are recorded within subgroup 1 and 2. However natural recombinations have not previously been reported between subgroup 3 tobamoviruses. Findings The organization and phylogenetic analyses of the complete genome and the different ORFs placed the new isolate within the Ribgrass mosaic virus clade of subgroup 3 tobamoviruses. Recombination detection analyses indicated that the isolate was a chimeric genome with fragments of high similarity to Ribgrass mosaic virus (RMV) strains NZ-439 (HQ667978) and Actinidia-AC (GQ401365.1) infecting herbaceous Plantago sp. and woody Actinidia spp., respectively. The recombinant differed across the whole genome by 3-8 % from other published RMV genomes. Conclusion In this investigation we report an intra-specific recombination between RMV strains NZ-439 (HQ667978) and Actinidia-AC (GQ401365.1), in the replicase component between viral-methyltransferase and viral-helicase regions, resulting in a novel RMV strain FSHS (JQ319720.1) that represents the first described natural recombinant within the RMV cluster of subgroup 3 tobamoviruses. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0487-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ramesh R Chavan
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Michael N Pearson
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
8
|
Turina M, Geraats B, Ciuffo M. First report of
Tomato mottle mosaic virus
in tomato crops in Israel. ACTA ACUST UNITED AC 2016. [DOI: 10.5197/j.2044-0588.2016.033.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- M. Turina
- Institute for Sustainable Plant Protection, CNR10135TorinoItaly
| | - B.P.J. Geraats
- Bayer Crop Science Vegetable SeedsPO Box 40056080AAHaelenThe Netherlands
| | - M. Ciuffo
- Institute for Sustainable Plant Protection, CNR10135TorinoItaly
| |
Collapse
|
9
|
Characterization of the complete genome of ribgrass mosaic virus isolated from Plantago major L. from New Zealand and Actinidia spp. from China. Arch Virol 2012; 157:1253-60. [PMID: 22456910 DOI: 10.1007/s00705-012-1292-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/26/2012] [Indexed: 10/28/2022]
Abstract
The complete genomes of tobamovirus isolates from Plantago major L. from New Zealand (NZ-439), Plantago sp. from Germany (Kons 1105), Actinidia chinensis (Actinidia-AC) and A. deliciosa (Actinidia-AD) from China were sequenced and compared to previously published tobamovirus genomes. Their genome organization and phylogenetic analysis of the putative replicase component, replicase readthrough component, movement protein, coat protein and complete genome placed all four isolates in subgroup 3 of the tobamoviruses. The complete genomes differed from each other by <8.5% and from published sequences of turnip vein clearing virus and youcai mosaic virus by about 12-13% and 19-20%, respectively. The aa sequences of the individual ORFs of the Plantago and Actinidia isolates differed from each other by <4% and were most similar to published (partial) sequences of ribgrass mosaic virus (RMV). We propose that these sequences constitute the first complete published sequences for RMV.
Collapse
|
10
|
Brief report: genome sequence and construction of an infectious cDNA clone of Ribgrass mosaic virus from Chinese cabbage in Korea. Virus Genes 2011; 44:345-8. [PMID: 22143325 DOI: 10.1007/s11262-011-0694-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 11/21/2011] [Indexed: 11/27/2022]
Abstract
Ribgrass mosaic virus (RMV) has severely decreased the production and lowered quality of Chinese cabbage co-infected with Turnip mosaic virus (63.4%) in Korea. The complete genome sequence of RMV isolated from Brassica rapa ssp. pekinensis was determined. The full genome consisted of 6,304 nucleotides and showed sequence identities of 91.5-94.2% with the corresponding genome of other RMV strains. Full-length cDNA of RMV-Br was amplified by RT-PCR with a 5'-end primer harboring a T7 promoter sequence and a 3'-end RMV specific primer. Subsequently, the full-length cDNA was cloned into plasmid vectors. Capped transcripts synthesized from the cDNA clone were highly infectious and caused characteristic symptoms in B. rapa ssp. pekinensis and several indicator plants, similar to wild type RMV. Since there has not been found RMV resistant Chinese cabbage yet and the virus has been prevalent already throughout the natural fields of Korea, the identification of full sequence and development of infectious clone would help developing breeding program for RMV resistant crops.
Collapse
|
11
|
Körbelin J, Willingmann P, Adam G, Heinze C. The complete sequence of tobacco mosaic virus isolate Ohio V reveals a high accumulation of silent mutations in all open reading frames. Arch Virol 2011; 157:387-9. [PMID: 22086158 DOI: 10.1007/s00705-011-1171-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 11/02/2011] [Indexed: 11/28/2022]
Abstract
TMVOhioV was first described 1969 by [1] because it did break resistance of tomato breeding lines containing Tm-1- and Tm-2 resistance genes. It was obtained 1987 from Wetter (Saarbrücken, Germany) and transferred into the DSMZ-Plant Virus Collection (Braunschweig, Germany). A partial sequence of TMVOhioV, the CP gene, has been reported [11] and its comparison with a TMV type isolates (TMVtype), e.g. EMBL: V01409, revealed 50 point mutations in a total of 477 nucleotides (nts) leading to the replacement of only 7 amino acids (aa). In order to investigate the mutations in the non-translated regions and the number of silent mutation in the three other open reading frames (ORF), we sequenced the complete genome of isolate TMVOhioV and compared it to those of other Tobamoviruses.
Collapse
Affiliation(s)
- Jakob Körbelin
- Biocenter Klein Flottbek, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | | | | | | |
Collapse
|
12
|
Stobbe AH, Melcher U, Palmer MW, Roossinck MJ, Shen G. Co-divergence and host-switching in the evolution of tobamoviruses. J Gen Virol 2011; 93:408-418. [PMID: 22049092 DOI: 10.1099/vir.0.034280-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The proposed phylogenetic structure of the genus Tobamovirus supports the idea that these viruses have codiverged with their hosts since radiation of the hosts from a common ancestor. The determinations of genome sequence for two strains of Passion fruit mosaic virus (PafMV), a tobamovirus from plants of the family Passifloraceae (order Malpighiales) from which only one other tobamovirus (Maracuja mosaic virus; MarMV) has been characterized, combined with the development of Bayesian analysis methods for phylogenetic inference, provided an opportunity to reassess the co-divergence hypothesis. The sequence of one PafMV strain, PfaMV-TGP, was discovered during a survey of plants of the Tallgrass Prairie Preserve for their virus content. Its nucleotides are only 73 % identical to those of MarMV. A conserved ORF not found in other tobamovirus genomes, and encoding a cysteine-rich protein, was found in MarMV and both PafMV strains. Phylogenetic tree construction, using an alignment of the nucleotide sequences of PafMV-TGP and other tobamoviruses resulted in a major clade containing isolates exclusively from rosid plants. Asterid-derived viruses were exclusively found in a second major clade that also contained an orchid-derived tobamovirus and tobamoviruses infecting plants of the order Brassicales. With a few exceptions, calibrating the virus tree with dates of host divergence at two points resulted in predictions of divergence times of family specific tobamovirus clades that were consistent with the times of divergence of the host plant orders.
Collapse
Affiliation(s)
- Anthony H Stobbe
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ulrich Melcher
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Michael W Palmer
- Department of Botany, Oklahoma State University, Stillwater, OK 74078, USA
| | - Marilyn J Roossinck
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Guoan Shen
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| |
Collapse
|
13
|
Lim MA, Hong JS, Song YS, Ryu KH. The complete genome sequence and genome structure of frangipani mosaic virus. Arch Virol 2010; 155:1543-6. [PMID: 20668892 DOI: 10.1007/s00705-010-0766-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 07/19/2010] [Indexed: 10/19/2022]
Abstract
In this study, the complete sequence of the genomic RNA of frangipani mosaic virus (FrMV) has been determined and compared to those of other known tobamoviruses. The complete genome sequence of FrMV consisted of 6,643 nucleotides. The FrMV genomic RNA encoded four open reading frames (ORFs), for proteins of M(r) 128 kDa (1,147 aa), 186 kDa (1,651 aa), 30 kDa (257 aa) and 18 kDa (175 aa) from the 5' to the 3' end. Overall similarities for the four ORFs of FrMV-P ranged from 26.8 to 53.0% at the amino acid level when compared to those of 24 other tobamoviruses. Phylogenetic analysis of the FrMV replicase (186 kDa) and MP revealed that FrMV is closely related to SHMV and CMMoV, while the FrMV replicase (128 kDa) is more closely related to cucurbit-infecting and malvaceous-infecting tobamoviruses, and the FrMV CP is closely related to that of CMMoV and solanaceous-infecting tobamoviruses.
Collapse
Affiliation(s)
- M A Lim
- Plant Virus GenBank, Department of Horticultural and Landscape Architecture, Division of Environmental and Life Sciences, Seoul Women's University, Seoul, Korea
| | | | | | | |
Collapse
|
14
|
Min BE, Song YS, Ryu KH. Complete sequence and genome structure of cactus mild mottle virus. Arch Virol 2009; 154:1371-4. [PMID: 19562252 DOI: 10.1007/s00705-009-0435-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Accepted: 06/16/2009] [Indexed: 11/30/2022]
Abstract
We have completed the genomic sequence of a tobamovirus, cactus mild mottle virus (CMMoV), and compared it to those of other known tobamoviruses. The complete genome sequence of CMMoV consists of 6,449 nucleotides. The genome RNA of the virus contains four open reading frames, encoding, from the 5' to the 3' end, the 120-kDa viral replicase, the 186-kDa viral polymerase, the 33-kDa movement protein and the 18-kDa coat protein. Overall amino acid similarities for the four viral proteins of CMMoV ranged from 16.3 to 44.4% compared to those of 20 other tobamoviruses. Phylogenetic analysis of the viral replicases and MP revealed that CMMoV is closely related to cucurbit-infecting tobamoviruses, while the CMMoV CP is more closely related to brassica- and solanaceous-infecting tobamoviruses.
Collapse
Affiliation(s)
- B E Min
- Plant Virus GenBank, Division of Environmental and Life Sciences, Seoul Women's University, Seoul 139-774, Korea
| | | | | |
Collapse
|
15
|
Biological and molecular characterization of a crucifer Tobamovirus infecting oilseed rape. Biochem Genet 2009; 47:451-61. [PMID: 19449162 DOI: 10.1007/s10528-009-9244-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 04/24/2009] [Indexed: 10/20/2022]
Abstract
In China, the tobamovirus that infects oilseed rape has been misdiagnosed as Tobacco mosaic virus (TMV) based on its morphological similarity and serological relatedness. Recently, a tobamovirus has been isolated from oilseed rape in China, which we named Youcai mosaic virus Br (YoMV-Br), according to its biological and molecular characteristics. It had strong infectivity to Cruciferae but less to Solanaceae, Leguminosae, and Cucurbitaceae, and its virion morphology was consistent with that of the tobamoviruses. At high concentrations, it serologically cross reacted with TMV antiserum. The 3' terminal sequence (2,283 nucleotides) of YoMV-Br was determined, including the 3' noncoding region, the CP and MP genes, and the C-terminal part of the replicase gene. Between the MP and CP genes, 77 nucleotides overlapped. Compared with homologous regions of 21 recognized species of Tobamovirus, YoMV-Br had a much higher identity to crucifer species than to other tobamoviruses. Phylogenetic analysis demonstrated that YoMV-Br was closely related to the YoMV cluster of tobamoviruses and distantly to TMV, so that they likely belong to different strains of the same species.
Collapse
|
16
|
Lockhart BE, Swenson AS, Olszewski NE, Voth P. Characterization of a Strain of Turnip vein-clearing virus Causing Red Ringspot of Penstemon. PLANT DISEASE 2008; 92:725-729. [PMID: 30769585 DOI: 10.1094/pdis-92-5-0725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A disease of penstemon (Penstemon digitalis) occurring in commercial nurseries in Minnesota in 2004 to 2006 and characterized by red foliar ringspots, leaf deformation, and plant stunting was found to be caused by a strain of Turnip vein-clearing virus (TVCV) that was named Penstemon ringspot virus (PenRSV). This is the first report of a viral disease of penstemon. The genome organization of PenRSV was similar to that of the crucifer-infecting tobamoviruses. The nucleotide sequence of PenRSV was almost identical (99%) to that of TVCV, but the two viruses differed importantly in host range and symptoms induced. The only sequence difference between PenRSV and TVCV occurred at the 3' end of open reading frame I, where the amino acid sequence FRDSNL in TVCV is replaced by FRGQQL in PenRSV. The experimental host range of PenRSV included species in the families Brassicaceae (Cruciferae), Cactaceae, Cucurbitaceae, Leguminosae, Malvaceae, and Solanaceae. This virus poses a potential threat to commercial nursery and bedding plant production because of its wide host range and because it will escape detection by immunoenzymatic screening procedures for tobamoviruses based on use of antibodies to Tobacco mosaic virus (TMV).
Collapse
Affiliation(s)
| | | | | | - Peter Voth
- Plant Biological Sciences Graduate Group, University of Minnesota, St. Paul 55108
| |
Collapse
|
17
|
Rhie MJ, Min BE, Hong JS, Song YS, Ryu KH. Complete genome sequence supports bell pepper mottle virus as a species of the genus Tobamovirus. Arch Virol 2007; 152:1401-7. [PMID: 17334946 DOI: 10.1007/s00705-007-0950-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 01/26/2007] [Indexed: 10/23/2022]
Abstract
Biological properties and the complete genome sequence of bell pepper mottle virus (BPeMV) were determined. The full genome of BPeMV consists of 6375 nucleotides. The BPeMV genomic RNA has four open reading frames (ORFs) encoding proteins of M(r) 126, 181, 30 and 18 kDa from the 5' to the 3' end, respectively. The lengths of the 5' nontranslated region (NTR) and the 3' NTR are 71 and 198 nucleotides, respectively. Overall identities for the four ORFs of BpeMV, at the nucleotide and amino acid levels, respectively, ranged from 36.0 to 80.6% and from 32.1 to 90.9%, compared to those of 22 other tobamoviruses. The CP gene of BPeMV displayed 43.5-73.5% and 32.1-82.4% identity to those of 22 other tobamoviruses at the nucleotide and amino acid levels, respectively. Phylogenetic analyses of four viral proteins clearly supported the conclusion that BPeMV-encoded proteins were related to those of members of the Solanaceae-infecting tobamoviruses. BPeMV was closely related to tomato mosaic virus, and tobacco mosaic virus and different from other tobamoviruses. Western blot analysis showed that BPeMV cross-reacted strongly with antibodies against members of Solanaceae-infecting tobamoviruses. These data represent the first molecular evidence supporting BPeMV as a separate species of the genus Tobamovirus.
Collapse
Affiliation(s)
- M J Rhie
- Plant Virus GenBank, Division of Environmental and Life Sciences, Seoul Women's University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|