1
|
Fajardo C, De Donato M, Macedo M, Charoonnart P, Saksmerprome V, Yang L, Purton S, Mancera JM, Costas B. RNA Interference Applied to Crustacean Aquaculture. Biomolecules 2024; 14:1358. [PMID: 39595535 PMCID: PMC11592254 DOI: 10.3390/biom14111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
RNA interference (RNAi) is a powerful tool that can be used to specifically knock-down gene expression using double-stranded RNA (dsRNA) effector molecules. This approach can be used in aquaculture as an investigation instrument and to improve the immune responses against viral pathogens, among other applications. Although this method was first described in shrimp in the mid-2000s, at present, no practical approach has been developed for the use of dsRNA in shrimp farms, as the limiting factor for farm-scale usage in the aquaculture sector is the lack of cost-effective and simple dsRNA synthesis and administration procedures. Despite these limitations, different RNAi-based approaches have been successfully tested at the laboratory level, with a particular focus on shrimp. The use of RNAi technology is particularly attractive for the shrimp industry because crustaceans do not have an adaptive immune system, making traditional vaccination methods unfeasible. This review summarizes recent studies and the state-of-the-art on the mechanism of action, design, use, and administration methods of dsRNA, as applied to shrimp. In addition, potential constraints that may hinder the deployment of RNAi-based methods in the crustacean aquaculture sector are considered.
Collapse
Affiliation(s)
- Carlos Fajardo
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cadiz (UCA), 11510 Puerto Real, Spain;
- Interdisciplinary Centre of Marine and Environmental Research, The University of Porto (CIIMAR), 4450-208 Matosinhos, Portugal; (M.M.); (B.C.)
| | - Marcos De Donato
- Center for Aquaculture Technologies (CAT), San Diego, CA 92121, USA;
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Querétaro 76130, Mexico
| | - Marta Macedo
- Interdisciplinary Centre of Marine and Environmental Research, The University of Porto (CIIMAR), 4450-208 Matosinhos, Portugal; (M.M.); (B.C.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), 4050-313 Porto, Portugal
| | - Patai Charoonnart
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.C.); (V.S.)
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok 12120, Thailand
| | - Vanvimon Saksmerprome
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.C.); (V.S.)
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok 12120, Thailand
| | - Luyao Yang
- Department of Structural and Molecular Biology, University College London (UCL), London WC1E 6BT, UK; (L.Y.); (S.P.)
| | - Saul Purton
- Department of Structural and Molecular Biology, University College London (UCL), London WC1E 6BT, UK; (L.Y.); (S.P.)
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cadiz (UCA), 11510 Puerto Real, Spain;
| | - Benjamin Costas
- Interdisciplinary Centre of Marine and Environmental Research, The University of Porto (CIIMAR), 4450-208 Matosinhos, Portugal; (M.M.); (B.C.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), 4050-313 Porto, Portugal
| |
Collapse
|
2
|
Berreiros-Hortala H, Vilchez-Pinto G, Diaz-Perales A, Garrido-Arandia M, Tome-Amat J. Virus-like Particles as Vaccines for Allergen-Specific Therapy: An Overview of Current Developments. Int J Mol Sci 2024; 25:7429. [PMID: 39000536 PMCID: PMC11242184 DOI: 10.3390/ijms25137429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Immune engineering and modulation are the basis of a novel but powerful tool to treat immune diseases using virus-like particles (VLPs). VLPs are formed by the viral capsid without genetic material making them non-infective. However, they offer a wide variety of possibilities as antigen-presenting platforms, resulting in high immunogenicity and high efficacy in immune modulation, with low allergenicity. Both animal and plant viruses are being studied for use in the treatment of food allergies. These formulations are combined with adjuvants, T-stimulatory epitopes, TLR ligands, and other immune modulators to modulate or enhance the immune response toward the presented allergen. Here, the authors present an overview of VLP production systems, their immune modulation capabilities, and the applicability of actual VLP-based formulations targeting allergic diseases.
Collapse
Affiliation(s)
- Helena Berreiros-Hortala
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Gonzalo Vilchez-Pinto
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Araceli Diaz-Perales
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Maria Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Jaime Tome-Amat
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| |
Collapse
|
3
|
Liu Z, Zhang Z, Yang L, Zhang Y, Li D, Zhang Q, Niu C, Zhang B, Zhai Y, Wang Z. Effect and mechanism of C-terminal cysteine on the properties of HEV p222 protein. Virology 2024; 595:110091. [PMID: 38718446 DOI: 10.1016/j.virol.2024.110091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Preliminary investigations have demonstrated that the cysteines located at the C-terminus of HEV ORF2 protein exhibits disulfide bonding capability during virus-like particles (VLPs) assembly. However, the effect and mechanism underlying the pairing of disulfide bonds formed by C627, C630, and C638 remains unclear. The p222 protein encompasses C-terminus and serves as a representative of HEV ORF2 to investigate the specific impacts of C627, C630, and C638. The three cysteines were subjected to site-directed mutagenesis and expressed in prokaryotes; Both the mutated proteins and p222 underwent polymerization except for p222A; Surprisingly, only p222 was observed as abundant spherical particles under transmission electron microscope (TEM); Stability and immunogenicity of the p222 exhibited higher than other mutated proteins; LC/MS/MS analysis identified four disulfide bonds in the p222. The novel findings suggest that the three cysteines contribute to structural and functional properties of ORF2 protein, highlighting the indispensability of each cysteine.
Collapse
Affiliation(s)
- Zhenzhen Liu
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, Henan, China
| | - Zhenzhen Zhang
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, Henan, China
| | - Lanping Yang
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, Henan, China
| | - Yongwen Zhang
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, Henan, China
| | - Dong Li
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, Henan, China
| | - Qingling Zhang
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, Henan, China
| | - Chao Niu
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, Henan, China
| | - Baobao Zhang
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, Henan, China
| | - Yangyang Zhai
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, Henan, China
| | - Zhenhui Wang
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, Henan, China.
| |
Collapse
|
4
|
Worawittayatada J, Angsujinda K, Sinnuengnong R, Attasart P, Smith DR, Assavalapsakul W. Simultaneous Production of a Virus-Like Particle Linked to dsRNA to Enhance dsRNA Delivery for Yellow Head Virus Inhibition. Viruses 2022; 14:v14122594. [PMID: 36560598 PMCID: PMC9785521 DOI: 10.3390/v14122594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
A co-expressed Penaeus stylirostris densovirus (PstDNV) capsid and dsRNA specific to the yellow head virus (YHV) protease (CoEx cpPstDNV/dspro) has been shown to suppress YHV replication in the Pacific white-legged shrimp (Litopenaeus vannamei). However, maintaining two plasmids in a single bacterial cell is not desirable; therefore, a single plasmid harboring both the PstDNV capsid and the dsRNA-YHV-pro gene was constructed under the regulation of a single T7 promoter, designated pET28a-Linked cpPstDNV-dspro. Following induction, this novel construct expressed an approximately 37-kDa recombinant protein associated with a roughly 400-bp dsRNA (Linked cpPstDNV-dspro). Under a transmission electron microscope, the virus-like particles (VLP; Linked PstDNV VLPs-dspro) obtained were seen to be monodispersed, similar to the native PstDNV virion. A nuclease digestion assay indicated dsRNA molecules were both encapsulated and present outside the Linked PstDNV VLPs-dspro. In addition, the amount of dsRNA produced from this strategy was higher than that obtained with a co-expression strategy. In a YHV infection challenge, the Linked PstDNV VLPs-dspro was more effective in delaying and reducing mortality than other constructs tested. Lastly, the linked construct provides protection for the dsRNA cargo from nucleolytic enzymes present in the shrimp hemolymph. This is the first report of a VLP carrying virus-inhibiting dsRNA that could be produced without disassembly and reassembly to control virus infection in shrimp.
Collapse
Affiliation(s)
- Jaruwan Worawittayatada
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kitipong Angsujinda
- Aquatic Resources Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rapee Sinnuengnong
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Research and Development, Queen Saovabha Memorial Institute, The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Pongsopee Attasart
- Center of Applied Shrimp Research and Innovation, Institute of Molecular Biosciences, Mahidol University, Nakorn Pathom 73170, Thailand
| | - Duncan R. Smith
- Institute of Molecular Biosciences, Mahidol University, Nakorn Pathom 73170, Thailand
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-2218-5096
| |
Collapse
|
5
|
Suryakodi S, Nafeez Ahmed A, Badhusha A, Santhosh Kumar S, Sivakumar S, Abdul Majeed S, Taju G, Rahamathulla S, Sahul Hameed AS. First report on the occurrence of white spot syndrome virus, infectious myonecrosis virus and Enterocytozoon hepatopenaei in Penaeus vannamei reared in freshwater systems. JOURNAL OF FISH DISEASES 2022; 45:699-706. [PMID: 35184289 DOI: 10.1111/jfd.13595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Samples of white leg shrimp, Penaeus vannamei, were collected on a monthly basis from freshwater ponds with the salinity of 0 ppt located at Tiruvannamalai and Villupuram districts in Tamil Nadu, India for screening of viral and fungal pathogens. Totally, 130 shrimp samples were collected from 67 freshwater ponds and screened for white spot syndrome virus (WSSV), infectious myonecrosis virus (IMNV), infectious hypodermal and haematopoietic necrosis virus (IHHNV) and Enterocytozoon hepatopenaei (EHP) by PCR and RT-PCR using pathogen-specific primers. Among the samples screened, one sample was found to be positive to WSSV, two samples showed positive to IMNV and two samples positive for EHP. No sample showed positive to IHHNV. The WSSV detected in the sample was found to be a new strain of WSSV and highly virulent. The inoculum prepared from freshwater reared WSSV or IMNV-infected shrimp caused 100% mortality in experimental infection studies. The PCR and RT-PCR results revealed the presence of WSSV and IMNV in different organs of experimentally infected shrimp, respectively. No clinical signs were observed in experimentally EHP-injected shrimp, although the PCR results revealed the presence of EHP in experimentally infected shrimp.
Collapse
Affiliation(s)
- Selvam Suryakodi
- Aquatic Animal Health Laboratory, C. Abdul Hakeem College (Affiliated to Thiruvalluvar University), Ranipet District, Tamil Nadu, India
| | - Abdul Nafeez Ahmed
- Aquatic Animal Health Laboratory, C. Abdul Hakeem College (Affiliated to Thiruvalluvar University), Ranipet District, Tamil Nadu, India
| | - Allahbagash Badhusha
- Aquatic Animal Health Laboratory, C. Abdul Hakeem College (Affiliated to Thiruvalluvar University), Ranipet District, Tamil Nadu, India
| | - Shanmugam Santhosh Kumar
- Aquatic Animal Health Laboratory, C. Abdul Hakeem College (Affiliated to Thiruvalluvar University), Ranipet District, Tamil Nadu, India
| | - Selvam Sivakumar
- Aquatic Animal Health Laboratory, C. Abdul Hakeem College (Affiliated to Thiruvalluvar University), Ranipet District, Tamil Nadu, India
| | - Seepoo Abdul Majeed
- Aquatic Animal Health Laboratory, C. Abdul Hakeem College (Affiliated to Thiruvalluvar University), Ranipet District, Tamil Nadu, India
| | - Gani Taju
- Aquatic Animal Health Laboratory, C. Abdul Hakeem College (Affiliated to Thiruvalluvar University), Ranipet District, Tamil Nadu, India
| | - Syed Rahamathulla
- Pathgene Healthcare Private Limited, Tirupathi, Andhra Pradesh, India
| | - Azeez Sait Sahul Hameed
- Aquatic Animal Health Laboratory, C. Abdul Hakeem College (Affiliated to Thiruvalluvar University), Ranipet District, Tamil Nadu, India
| |
Collapse
|
6
|
Lee D, Yu YB, Choi JH, Jo AH, Hong SM, Kang JC, Kim JH. Viral Shrimp Diseases Listed by the OIE: A Review. Viruses 2022; 14:v14030585. [PMID: 35336992 PMCID: PMC8953307 DOI: 10.3390/v14030585] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Shrimp is one of the most valuable aquaculture species globally, and the most internationally traded seafood product. Consequently, shrimp aquaculture practices have received increasing attention due to their high value and levels of demand, and this has contributed to economic growth in many developing countries. The global production of shrimp reached approximately 6.5 million t in 2019 and the shrimp aquaculture industry has consequently become a large-scale operation. However, the expansion of shrimp aquaculture has also been accompanied by various disease outbreaks, leading to large losses in shrimp production. Among the diseases, there are various viral diseases which can cause serious damage when compared to bacterial and fungi-based illness. In addition, new viral diseases occur rapidly, and existing diseases can evolve into new types. To address this, the review presented here will provide information on the DNA and RNA of shrimp viral diseases that have been designated by the World Organization for Animal Health and identify the latest shrimp disease trends.
Collapse
Affiliation(s)
- Dain Lee
- Fish Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje 53334, Korea;
| | - Young-Bin Yu
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Korea
- Correspondence: (Y.-B.Y.); (J.-H.C.); (J.-C.K.); (J.-H.K.); Tel.: +82-41-675-3773 (J.-H.K.)
| | - Jae-Ho Choi
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Korea
- Correspondence: (Y.-B.Y.); (J.-H.C.); (J.-C.K.); (J.-H.K.); Tel.: +82-41-675-3773 (J.-H.K.)
| | - A-Hyun Jo
- Department of Aquatic Life and Medical Science, Sun Moon University, Asan-si 31460, Korea; (A.-H.J.); (S.-M.H.)
| | - Su-Min Hong
- Department of Aquatic Life and Medical Science, Sun Moon University, Asan-si 31460, Korea; (A.-H.J.); (S.-M.H.)
| | - Ju-Chan Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Korea
- Correspondence: (Y.-B.Y.); (J.-H.C.); (J.-C.K.); (J.-H.K.); Tel.: +82-41-675-3773 (J.-H.K.)
| | - Jun-Hwan Kim
- Department of Aquatic Life and Medical Science, Sun Moon University, Asan-si 31460, Korea; (A.-H.J.); (S.-M.H.)
- Correspondence: (Y.-B.Y.); (J.-H.C.); (J.-C.K.); (J.-H.K.); Tel.: +82-41-675-3773 (J.-H.K.)
| |
Collapse
|
7
|
Zhu YP, Li C, Wan XY, Yang Q, Xie GS, Huang J. Delivery of plasmid DNA to shrimp hemocytes by Infectious hypodermal and hematopoietic necrosis virus (IHHNV) nanoparticles expressed from a baculovirus insect cell system. J Invertebr Pathol 2019; 166:107231. [PMID: 31425685 DOI: 10.1016/j.jip.2019.107231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 01/03/2023]
Abstract
Virus-like particles (VLPs) are potential containers for delivery of therapeutic agents at the nanoscale. In this study, the capsid protein of Infectious hypodermal and hematopoietic necrosis virus (IHHNV) was expressed in a baculovirus insect cell system. The 37-kDa recombinant protein containing the hexahistidine residues (His Tag) at N-terminal was purified using immobilized metal affinity chromatography (IMAC) and assembled into VLPs with a diameter of 23 ± 3 nm analyzed by transmission electron microscopy. We also verified that disassembly/reassembly of IHHNV-VLPs was controlled in the presence and absence of DTT. The efficiency of IHHNV-VLPs to encapsulate plasmid DNA was about 48.2%, and the VLPs encapsulating the pcDNA3.1(+)-EGFP plasmid DNA could recognize the primary shrimp hemocytes and deliver the loaded plasmid into cells by detection of expressed enhanced green fluorescent protein (EGFP). These results implied that the IHHNV-VLPs might be a good candidate for packaging and delivery of expressible plasmid DNA, and may produce an antiviral product in shrimp cells for gene therapy.
Collapse
Affiliation(s)
- Yan-Ping Zhu
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Chinese Academy of Fishery Sciences, Qingdao, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Precision Medicine Research Center, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Chen Li
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Chinese Academy of Fishery Sciences, Qingdao, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.
| | - Xiao-Yuan Wan
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Chinese Academy of Fishery Sciences, Qingdao, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.
| | - Qian Yang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Chinese Academy of Fishery Sciences, Qingdao, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Guo Si Xie
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Chinese Academy of Fishery Sciences, Qingdao, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.
| | - Jie Huang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Chinese Academy of Fishery Sciences, Qingdao, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.
| |
Collapse
|
8
|
Thamizhvanan S, Sivakumar S, Santhosh Kumar S, Vinoth Kumar D, Suryakodi S, Balaji K, Rajkumar T, Vimal S, Abdul Majeed S, Taju G, Sahul Hameed AS. Multiple infections caused by white spot syndrome virus and Enterocytozoon hepatopenaei in pond-reared Penaeus vannamei in India and multiplex PCR for their simultaneous detection. JOURNAL OF FISH DISEASES 2019; 42:447-454. [PMID: 30659620 DOI: 10.1111/jfd.12956] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
White leg shrimp, Penaeus vannamei, were collected on a monthly basis from grow-out ponds located at Tamil Nadu and Andhra Pradesh states along the east coast of India for screening of viral and other pathogens. Totally 240 shrimp samples randomly collected from 92 farms were screened for white spot syndrome virus (WSSV), infectious hypodermal and haematopoietic necrosis virus (IHHNV), infectious myonecrosis virus (IMNV) and Enterocytozoon hepatopenaei (EHP). The number of shrimp collected from shrimp farms ranged from 6 to 20 based on the body weight of the shrimp. All the shrimp collected from one farm were pooled together for screening for pathogens by PCR assay. Among the samples screened, 28 samples were WSSV-positive, one positive for IHHNV and 30 samples positive for EHP. Among the positive samples, four samples were found to be positive for both WSSV and EHP, which indicated that the shrimp had multiple infections with WSSV and EHP. This is the first report on the occurrence of multiple infections caused by WSSV and EHP. Multiplex PCR (m-PCR) protocol was standardized to detect both pathogens simultaneously in single reaction instead of carrying out separate PCR for both pathogens. Using m-PCR assay, naturally infected shrimp samples collected from field showed two prominent bands of 615 and 510 bp for WSSV and EHP, respectively.
Collapse
Affiliation(s)
- S Thamizhvanan
- Aquatic Animal Health Laboratory, C. Abdul Hakeem College, Melvisharam, Vellore, Tamil Nadu, India
| | - S Sivakumar
- Aquatic Animal Health Laboratory, C. Abdul Hakeem College, Melvisharam, Vellore, Tamil Nadu, India
| | - S Santhosh Kumar
- Aquatic Animal Health Laboratory, C. Abdul Hakeem College, Melvisharam, Vellore, Tamil Nadu, India
| | - D Vinoth Kumar
- Aquatic Animal Health Laboratory, C. Abdul Hakeem College, Melvisharam, Vellore, Tamil Nadu, India
| | - S Suryakodi
- Aquatic Animal Health Laboratory, C. Abdul Hakeem College, Melvisharam, Vellore, Tamil Nadu, India
| | - K Balaji
- Aquatic Animal Health Laboratory, C. Abdul Hakeem College, Melvisharam, Vellore, Tamil Nadu, India
| | - T Rajkumar
- Aquatic Animal Health Laboratory, C. Abdul Hakeem College, Melvisharam, Vellore, Tamil Nadu, India
| | - S Vimal
- Aquatic Animal Health Laboratory, C. Abdul Hakeem College, Melvisharam, Vellore, Tamil Nadu, India
| | - S Abdul Majeed
- Aquatic Animal Health Laboratory, C. Abdul Hakeem College, Melvisharam, Vellore, Tamil Nadu, India
| | - G Taju
- Aquatic Animal Health Laboratory, C. Abdul Hakeem College, Melvisharam, Vellore, Tamil Nadu, India
| | - A S Sahul Hameed
- Aquatic Animal Health Laboratory, C. Abdul Hakeem College, Melvisharam, Vellore, Tamil Nadu, India
| |
Collapse
|
9
|
Kiatmetha P, Chotwiwatthanakun C, Jariyapong P, Santimanawong W, Ounjai P, Weerachatyanukul W. Nanocontainer designed from an infectious hypodermal and hematopoietic necrosis virus (IHHNV) has excellent physical stability and ability to deliver shrimp tissues. PeerJ 2018; 6:e6079. [PMID: 30588400 PMCID: PMC6302783 DOI: 10.7717/peerj.6079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/06/2018] [Indexed: 12/20/2022] Open
Abstract
Background A virus-like particle (VLP) is an excellent tool for a compound delivery system due to its simple composition, symmetrical structure and self-assembly. Its surface modification both chemically and genetically is established, leading to the target-specific delivery and improved encapsulation efficiency. However, its physical stabilities against many harsh conditions that guarantee long term storage and oral administration have been much less studied. Methods IHHNV-VLPs were reconstructed from recombinant IHHNV capsid protein in E. coli. Their physical properties against three strong physical conditions including long term storage (0–30 days) in 4 °C, physical stabilities against broad ranged pH (4–9) and against three types of digestive enzymes were tested. Disassembly and reassembly of VLPs for encapsidating an enhanced green fluorescent protein tagged plasmid DNA (EGFP-VLPs) were controlled by the use of reducing agent (DTT) and calcium specific chelating agent (EGTA). Lastly, delivering ability of EGFP-VLPs was performed in vivo by intramuscular injection and traced the expression of GFP in the shrimp tissues 24 hr post-injection. Results Upon its purification, IHHNV-VLPs were able to be kept at 4 °C up to 30 days with only slight degradation. They were very stable in basic condition (pH 8–9) and to a lesser extent in acidic condition (pH 4–6) while they could stand digestions of trypsin and chymotrypsin better than pepsin. As similar with many other non-enveloped viruses, the assembly of IHHNV-VLPs was dependent on both disulfide bridging and calcium ions which allowed us to control disassembly and reassembly of these VLPs to pack EGFP plasmid DNA. IHHNV-VLPs could deliver EGFP plasmids into shrimp muscles and gills as evident by RT-PCR and confocal microscopy demonstrating the expression of GFP in the targeted tissues. Discussion There are extensive data in which capsid proteins of the non-enveloped viruses in the form of VLPs are constructed and used as nano-containers for therapeutic compound delivery. However, the bottleneck of its application as an excellent delivery container for oral administration would rely solely on physical stability and interacting ability of VLPs to the host cells. These properties are retained for IHHNV-VLPs reported herein. Thus, IHHNV-VLPs would stand as a good applicable nanocontainer to carry therapeutic agents towards the targeting tissues against ionic and digestive conditions via oral administration in aquaculture field.
Collapse
Affiliation(s)
- Pauline Kiatmetha
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
| | | | - Pitchanee Jariyapong
- School of Medicine, Walailak University, Thasala District, Nakhonsrithammarat, Thailand
| | - Wanida Santimanawong
- Centex Shrimp, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
| | | |
Collapse
|
10
|
Sinnuengnong R, Attasart P, Smith DR, Panyim S, Assavalapsakul W. Administration of co-expressed Penaeus stylirostris densovirus-like particles and dsRNA-YHV-Pro provide protection against yellow head virus in shrimp. J Biotechnol 2018; 267:63-70. [PMID: 29307838 DOI: 10.1016/j.jbiotec.2018.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/03/2018] [Indexed: 12/17/2022]
Abstract
The activation of the innate RNA interference pathway through double-stranded RNAs (dsRNAs) is one of the approaches to protecting shrimp from viruses. Previous studies have shown that injection of specific dsRNAs can successfully inhibit viral infection in shrimp. However, inhibition requires high levels of dsRNA and dsRNA stability in shrimp is limited. Virus-like particles (VLPs) have been applied to deliver nucleic acids into host cells because of the protection of dsRNAs from host endonucleases as well as the target specificity provided by VLPs. Therefore, this study aimed to develop Penaeus stylirostris densovirus (PstDNV) VLPs for dsRNA deliver to shrimp. The PstDNV capsid protein was expressed and can be self-assembled to form PstDNV VLPs. Co-expression of dsRNA-YHV-Pro and PstDNV capsid protein was achieved in the same bacterial cells, whose structure was displayed as the aggregation of VLPs by TEM. Tested for their inhibiting yellow head virus (YHV) from infecting shrimp, the dsRNA-YHV-Pro-PstDNV VLPs gave higher levels of YHV suppression and a greater reduction in shrimp mortality than the delivery of naked dsRNA-YHV-Pro. Therefore, PstDNV-VLPs are a promising vehicle for dsRNA delivery that maintains the anti-virus activity of dsRNA in shrimp over a longer period of time as compared to native dsRNAs.
Collapse
Affiliation(s)
- Rapee Sinnuengnong
- Department of Microbiology, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Bangkok, 10330, Thailand
| | - Pongsopee Attasart
- Institute of Molecular Biosciences, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Sakol Panyim
- Institute of Molecular Biosciences, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom 73170, Thailand; Department of Biochemistry, Faculty of Science, 272 Rama VI Road, Bangkok, 10400, Thailand
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Bangkok, 10330, Thailand.
| |
Collapse
|
11
|
Huang R, Zhu G, Zhang J, Lai Y, Xu Y, He J, Xie J. Betanodavirus-like particles enter host cells via clathrin-mediated endocytosis in a cholesterol-, pH- and cytoskeleton-dependent manner. Vet Res 2017; 48:8. [PMID: 28179028 PMCID: PMC5299686 DOI: 10.1186/s13567-017-0412-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/15/2016] [Indexed: 11/10/2022] Open
Abstract
Betanodavirus, also referred to nervous necrosis virus (NNV), is the causative agent of the fatal disease, viral nervous necrosis and has brought significant economic losses in marine and freshwater cultured fish, especially larvae and juveniles. Here, we used an established invasion model with virus-like particle (VLP)-cells, mimicking orange-spotted grouper nervous necrosis virus (OGNNV), to investigate the crucial events of virus entry. VLP were observed in the perinuclear regions of Asian sea bass (SB) cells within 1.5 h after attachment. VLP uptake was strongly inhibited when cells were pretreated with biochemical inhibitors (chlorpromazine and dynasore) blocking clathrin-mediated endocytosis (CME) or transfected with siRNA against clathrin heavy and light chains. Inhibitors against key regulators of caveolae/raft-dependent endocytosis and macropinocytosis had no effect on VLP uptake. In contrast, disruption of cellular cholesterol by methyl-β-cyclodextrin or reduction of cholesterol fluidity by Cholera toxin B subunit significantly decreased VLP entry. Furthermore, VLP entry is dependent on low pH and cytoskeleton, demonstrated by inhibitor (chloroquine, ammonia chloride, cytochalasin D, wiskostatin, and nocodazole) perturbation. Therefore, OGNNV VLP enter SB cells via CME depending on dynamin-2, cholesterol and its fluidity, low pH, and cytoskeleton. In addition, ten more cell lines were screened for VLP entry and VLP can only enter NNV-sensitive cells, GB and SSN-1, via CME, indicating that CME is the common endocytosis pathway for VLP. These results may provide the data for NNV entry without the influence of the viral genome, an ideal model for exploring the behaviour of betanodavirus in cells, and valuable references to vaccine development.
Collapse
Affiliation(s)
- Runqing Huang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guohua Zhu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jing Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuxiong Lai
- Department of Nephrology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, China
| | - Yu Xu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China.,School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Junfeng Xie
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Abstract
Although viruses are simple biological systems, they are capable of evolving highly efficient techniques for infecting cells, expressing their genomes, and generating new copies of themselves. It is possible to genetically manipulate most of the different classes of known viruses in order to produce recombinant viruses that express foreign proteins. Recombinant viruses have been used in gene therapy to deliver selected genes into higher organisms, in vaccinology and immunotherapy, and as important research tools to study the structure and function of these proteins. Virus-like particles (VLPs) are multiprotein structures that mimic the organization and conformation of authentic native viruses but lack the viral genome. They have been applied not only as prophylactic and therapeutic vaccines but also as vehicles in drug and gene delivery and, more recently, as tools in nanobiotechnology. In this chapter, basic and advanced features of viruses and VLPs are presented and their major applications are discussed. The different production platforms based on animal cell technology are explained, and their main challenges and future perspectives are explored. The implications of large-scale production of viruses and VLPs are discussed in the context of process control, monitoring, and optimization. The main upstream and downstream technical challenges are identified and discussed accordingly.
Collapse
|
13
|
Itsathitphaisarn O, Thitamadee S, Weerachatyanukul W, Sritunyalucksana K. Potential of RNAi applications to control viral diseases of farmed shrimp. J Invertebr Pathol 2016; 147:76-85. [PMID: 27867019 DOI: 10.1016/j.jip.2016.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 01/08/2023]
Abstract
Viral pathogens pose a primary threat to global shrimp aquaculture. Despite the urgent industry need for them, practical anti-viral control methods are unavailable due, in part, to lack of an adaptive immune response in crustaceans that renders conventional vaccination methods ineffective. One currently studied method of high interest for protecting shrimp against viral infection relies on the post-transcriptional gene silencing mechanism called RNA interference (RNAi) that is induced by gene-specific constructs of double stranded RNA (dsRNA). Although this approach was first described for successful protection of shrimp against white spot disease (WSD) by injecting dsRNA specific to genes of white spot syndrome virus (WSSV) into shrimp in the laboratory in 2005 no practical method for use of dsRNA in shrimp farms has been developed to date. The apparent bottleneck for farm-scale applications of RNAi-mediated viral control in shrimp aquaculture is the lack of simple and cost-effective delivery methods. This review summarizes recent studies on use and delivery of dsRNA to shrimp via injection and oral routes in hatcheries and on farms and it discusses the research directions that might lead to development of practical methods for applications with farmed shrimp. Oral delivery methods tested so far include use of dsRNA-expressing bacteria as a component of dry feed pellets or use of living brine shrimp (Artemia) pre-fed with dsRNA before they are fed to shrimp. Also tested have been dsRNA enclosed in nanocontainers including chitosan, liposomes and viral-like particles (VLP) before direct injection or use as components of feed pellets for hatchery or pond-reared shrimp.
Collapse
Affiliation(s)
- Ornchuma Itsathitphaisarn
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Siripong Thitamadee
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Wattana Weerachatyanukul
- Department of Anatomy and Structural Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kallaya Sritunyalucksana
- Shrimp-Pathogen Interaction (SPI) Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi Office, Rama VI Rd., Bangkok 10400, Thailand.
| |
Collapse
|
14
|
Shirbaghaee Z, Bolhassani A. Different applications of virus-like particles in biology and medicine: Vaccination and delivery systems. Biopolymers 2016; 105:113-32. [PMID: 26509554 PMCID: PMC7161881 DOI: 10.1002/bip.22759] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/25/2015] [Accepted: 10/25/2015] [Indexed: 12/17/2022]
Abstract
Virus-like particles (VLPs) mimic the whole construct of virus particles devoid of viral genome as used in subunit vaccine design. VLPs can elicit efficient protective immunity as direct immunogens compared to soluble antigens co-administered with adjuvants in several booster injections. Up to now, several prokaryotic and eukaryotic systems such as insect, yeast, plant, and E. coli were used to express recombinant proteins, especially for VLP production. Recent studies are also generating VLPs in plants using different transient expression vectors for edible vaccines. VLPs and viral particles have been applied for different functions such as gene therapy, vaccination, nanotechnology, and diagnostics. Herein, we describe VLP production in different systems as well as its applications in biology and medicine.
Collapse
Affiliation(s)
- Zeinab Shirbaghaee
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
- Department of Immunology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Azam Bolhassani
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
| |
Collapse
|
15
|
Marine viruses: the beneficial side of a threat. Appl Biochem Biotechnol 2014; 174:2368-79. [PMID: 25245677 DOI: 10.1007/s12010-014-1194-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 08/21/2014] [Indexed: 10/24/2022]
Abstract
Marine viruses are ubiquitous, extremely diverse, and outnumber any form of life in the sea. Despite their ecological importance, viruses in marine environments have been largely ignored by the academic community, and only those that have caused substantial economic losses have received more attention. Fortunately, our current understanding on marine viruses has advanced considerably during the last decades. These advances have opened new and exciting research opportunities as several unique structural and genetic characteristics of marine viruses have shown to possess an immense potential for various biotechnological applications. Here, a condensed overview of the possibilities of using the enormous potential offered by marine viruses to develop innovative products in industries as pharmaceuticals, environmental remediation, cosmetics, material sciences, and several others, is presented. The importance of marine viruses to biotechnology should not be underestimated.
Collapse
|
16
|
Abstract
Over the past decade, aquaculture has grown at an average annual growth rate of approximately 6 % worldwide despite many challenges. Viral diseases are one of the major challenges that are threatening a sustainable growth of finfish farming globally. Vaccination of farmed fish plays an important role in commercial fish farming to mitigate viral diseases. In this review, we summarized the major viral diseases that have caused serious economic losses, and emerging diseases that pose a potential threat to aquaculture. The current status of viral vaccines in farmed fish are discussed, particularly the different types of vaccines that were licensed in recent years and are now commercially available, and the routes of delivery of those vaccines including the merits and demerits of each of these delivery method. Furthermore, the article provides an overview of different experimental vaccines that have been reported in the literatures in recent years besides highlighting the future need for developing cost-effective, oral vaccines that can be easily applicable at farm level.
Collapse
|
17
|
Jariyapong P, Chotwiwatthanakun C, Somrit M, Jitrapakdee S, Xing L, Cheng HR, Weerachatyanukul W. Encapsulation and delivery of plasmid DNA by virus-like nanoparticles engineered from Macrobrachium rosenbergii nodavirus. Virus Res 2013; 179:140-6. [PMID: 24184445 DOI: 10.1016/j.virusres.2013.10.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/29/2013] [Accepted: 10/24/2013] [Indexed: 12/29/2022]
Abstract
Virus-like particles (VLPs) are potential candidates in developing biological containers for packaging therapeutic or biologically active agents. Here, we expressed Macrobrachium rosenbergii nodavirus (MrNv) capsid protein (encoding amino acids M1-N371 with 6 histidine residuals) in an Escherichia coli BL21(DE3). These easily purified capsid protein self-assembled into VLPs, and disassembly/reassembly could be controlled in a calcium-dependent manner. Physically, MrNv VLPs resisted to digestive enzymes, a property that should be advantageous for protection of active compounds against harsh conditions. We also proved that MrNv VLPs were capable of encapsulating plasmid DNA in the range of 0.035-0.042 mol ratio (DNA/protein) or 2-3 plasmids/VLP (assuming that MrNV VLPs is T=1, i made up of 60 capsid monomers). These VLPs interacted with cultured insect cells and delivered loaded plasmid DNA into the cells as shown by green fluorescent protein (GFP) reporter. With many advantageous properties including self-encapsulation, MrNv VLPs are good candidates for delivery of therapeutic agents.
Collapse
Affiliation(s)
- Pitchanee Jariyapong
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6 Road, Phyathai, Bangkok 10400, Thailand; School of Medicine, Walailak University, Thasala District, Nakhonsrithammarat, Thailand
| | | | - Monsicha Somrit
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6 Road, Phyathai, Bangkok 10400, Thailand
| | - Sarawut Jitrapakdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama 6 Road, Phyathai, Bangkok 10400, Thailand
| | - Li Xing
- Department of Molecular and Cell Biology, University of California, Davis, CA 95616, United States
| | - Holland R Cheng
- Department of Molecular and Cell Biology, University of California, Davis, CA 95616, United States
| | - Wattana Weerachatyanukul
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6 Road, Phyathai, Bangkok 10400, Thailand.
| |
Collapse
|
18
|
Abstract
Over the last three decades, virus-like particles (VLPs) have evolved to become a widely accepted technology, especially in the field of vaccinology. In fact, some VLP-based vaccines are currently used as commercial medical products, and other VLP-based products are at different stages of clinical study. Several remarkable advantages have been achieved in the development of VLPs as gene therapy tools and new nanomaterials. The analysis of published data reveals that at least 110 VLPs have been constructed from viruses belonging to 35 different families. This review therefore discusses the main principles in the cloning of viral structural genes, the relevant host systems and the purification procedures that have been developed. In addition, the methods that are used to characterize the structural integrity, stability, and components, including the encapsidated nucleic acids, of newly synthesized VLPs are analyzed. Moreover, some of the modifications that are required to construct VLP-based carriers of viral origin with defined properties are discussed, and examples are provided.
Collapse
Affiliation(s)
- Andris Zeltins
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga 1067, Latvia.
| |
Collapse
|
19
|
Pushko P, Pumpens P, Grens E. Development of Virus-Like Particle Technology from Small Highly Symmetric to Large Complex Virus-Like Particle Structures. Intervirology 2013; 56:141-65. [DOI: 10.1159/000346773] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
20
|
Genomics, Molecular Epidemiology and Diagnostics of Infectious hypodermal and hematopoietic necrosis virus. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2012; 23:203-14. [PMID: 23997444 DOI: 10.1007/s13337-012-0083-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 06/26/2012] [Indexed: 12/14/2022]
Abstract
Infectious hypodermal and hematopoietic necrosis virus (IHHNV) is one of the major viral pathogens of penaeid shrimps worldwide, which has resulted in severe mortalities of up to 90 % in cultured Penaeus (Litopenaeus) stylirostris from Hawaii and hence designated Penaeus stylirostris densovirus (PstDNV). IHHNV is distributed in shrimp culture facilities worldwide. It causes large economic loss to the shrimp farming industry. Our knowledge about the natural reservoirs of IHHNV is still scarce. Recent studies suggest that there is sufficient sequence variation among the isolates from different locations in Asia, suggesting multiple geographical strains of the virus. Four complete genomes and several partial sequences of the virus are available in the GenBank. Complete genome information would be useful for assessing the specificity of diagnostics for viruses from different geographical areas. Comparisons of complete genome sequences will help us gain insights into point mutations that can affect virulence of the virus. In addition, because of unavailability of shrimp cell lines for culturing IHHNV in vitro, quantification of virus is difficult. The recent progress in research regarding clinical signs, geographical distribution, complete genome sequence and genetic variation, transmission has made it possible to obtain information on IHHNV. A comprehensive understanding of IHHNV infection process, pathogenesis, structural proteins and replication is essential for developing prevention measures. To date, no effective prophylactic measure for IHHNV infection is available for shrimp to reduce its impact. This review provides an overview of key issues regarding IHHNV infection and disease in commercially important shrimp species.
Collapse
|
21
|
Coimbra EC, Gomes FB, Campos JF, D'arc M, Carvalho JC, Mariz FC, Jesus ALS, Stocco RC, Beçak W, Freitas AC. Production of L1 protein from different types of HPV in Pichia pastoris using an integrative vector. Braz J Med Biol Res 2011; 44:1209-14. [PMID: 22030867 DOI: 10.1590/s0100-879x2011007500141] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 10/10/2011] [Indexed: 11/22/2022] Open
Abstract
Human papillomavirus (HPV) infection is the most common sexually transmitted disease in the world and is related to the etiology of cervical cancer. The most common high-risk HPV types are 16 and 18; however, the second most prevalent type in the Midwestern region of Brazil is HPV-33. New vaccine strategies against HPV have shown that virus-like particles (VLP) of the major capsid protein (L1) induce efficient production of antibodies, which confer protection against the same viral type. The methylotrophic yeast Pichia pastoris is an efficient and inexpensive expression system for the production of high levels of heterologous proteins stably using a wild-type gene in combination with an integrative vector. It was recently demonstrated that P. pastoris can produce the HPV-16 L1 protein by using an episomal vector associated with the optimized L1 gene. However, the use of an episomal vector is not appropriate for protein production on an industrial scale. In the present study, the vectors were integrated into the Pichia genome and the results were positive for L1 gene transcription and protein production, both intracellularly and in the extracellular environment. Despite the great potential for expression by the P. pastoris system, our results suggest a low yield of L1 recombinant protein, which, however, does not make this system unworkable. The achievement of stable clones containing the expression cassettes integrated in the genome may permit optimizations that could enable the establishment of a platform for the production of VLP-based vaccines.
Collapse
Affiliation(s)
- E C Coimbra
- Laboratório de Estudos Moleculares e Terapia Experimental, Departamento de Genética, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Vega-Heredia S, Mendoza-Cano F, Sánchez-Paz A. The infectious hypodermal and haematopoietic necrosis virus: a brief review of what we do and do not know. Transbound Emerg Dis 2011; 59:95-105. [PMID: 22390574 DOI: 10.1111/j.1865-1682.2011.01249.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Given its high prevalence, its wide distribution and its remarkable capacity to cause severe mortality in shrimp, the infectious hypodermal and haematopoietic necrosis virus (IHHNV) may deserve far more attention than it has received, as it remains considered as one of the most serious problems plaguing the global shrimp farming industry. Furthermore, its real measurable impact over wild shrimp populations remains unknown. Undeniably, the progress that we have reached today on the knowledge of its geographical distribution, clinical signs, genetic diversity, transmission and virulence may help to identify and understand important aspects of its biology and pathogenesis. However, the information regarding the molecular events that occur during the infection process is scarce. Thus, it may not be surprising to find that there are no therapeutic options available for the prophylaxis or treatments to reduce the deleterious impact of this viral pathogen to date. The aim of this review is to integrate and discuss the current state of knowledge concerning several aspects of the biology of IHHNV and to highlight potential future directions for this area of research.
Collapse
Affiliation(s)
- S Vega-Heredia
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| | | | | |
Collapse
|
23
|
Roldão A, Mellado MCM, Castilho LR, Carrondo MJT, Alves PM. Virus-like particles in vaccine development. Expert Rev Vaccines 2011; 9:1149-76. [PMID: 20923267 DOI: 10.1586/erv.10.115] [Citation(s) in RCA: 591] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Virus-like particles (VLPs) are multiprotein structures that mimic the organization and conformation of authentic native viruses but lack the viral genome, potentially yielding safer and cheaper vaccine candidates. A handful of prophylactic VLP-based vaccines is currently commercialized worldwide: GlaxoSmithKline's Engerix (hepatitis B virus) and Cervarix (human papillomavirus), and Merck and Co., Inc.'s Recombivax HB (hepatitis B virus) and Gardasil (human papillomavirus) are some examples. Other VLP-based vaccine candidates are in clinical trials or undergoing preclinical evaluation, such as, influenza virus, parvovirus, Norwalk and various chimeric VLPs. Many others are still restricted to small-scale fundamental research, despite their success in preclinical tests. This article focuses on the essential role of VLP technology in new-generation vaccines against prevalent and emergent diseases. The implications of large-scale VLP production are discussed in the context of process control, monitorization and optimization. The main up- and down-stream technical challenges are identified and discussed accordingly. Successful VLP-based vaccine blockbusters are briefly presented concomitantly with the latest results from clinical trials and the recent developments in chimeric VLP-based technology for either therapeutic or prophylactic vaccination.
Collapse
Affiliation(s)
- António Roldão
- Instituto de Tecnologia Química e Biológica/Universidade Nova de Lisboa, Apartado 127, P-2781-901, Oeiras, Portugal
| | | | | | | | | |
Collapse
|
24
|
Roldão A, Silva A, Mellado M, Alves P, Carrondo M. Viruses and Virus-Like Particles in Biotechnology. COMPREHENSIVE BIOTECHNOLOGY 2011. [PMCID: PMC7151966 DOI: 10.1016/b978-0-08-088504-9.00072-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although viruses are simple biological systems, they are capable of evolving highly efficient techniques for infecting cells, expressing their genomes, and generating new copies of themselves. It is possible to genetically manipulate most of the different classes of known viruses in order to produce recombinant viruses that express foreign proteins. Recombinant viruses have been used in gene therapy to deliver selected genes into higher organisms, in vaccinology and immunotherapy, and as important research tools to study the structure and function of these proteins. Virus-like particles (VLPs) are multiprotein structures that mimic the organization and conformation of authentic native viruses but lack the viral genome. They have been applied not only as prophylactic and therapeutic vaccines but also as vehicles in drug and gene delivery and, more recently, as tools in nanobiotechnology. In this article, basic and advanced features of viruses and VLPs are presented and their major applications are discussed. The different production platforms based on animal cell technology are explained, and their main challenges and future perspectives are explored. The implications of large-scale production of viruses and VLPs are discussed in the context of process control, monitorization, and optimization. The main upstream and downstream technical challenges are identified and discussed accordingly.
Collapse
|
25
|
Abstract
Penaeus stylirostris densovirus (PstDNV), a pathogen of penaeid shrimp, causes significant damage to farmed and wild shrimp populations. In contrast to other parvoviruses, PstDNV probably has only one type of capsid protein that lacks the phospholipase A2 activity that has been implicated as a requirement during parvoviral host cell infection. The structure of recombinant virus-like particles, composed of 60 copies of the 37.5-kDa coat protein, the smallest parvoviral capsid protein reported thus far, was determined to 2.5-Å resolution by X-ray crystallography. The structure represents the first near-atomic resolution structure within the genus Brevidensovirus. The capsid protein has a β-barrel "jelly roll" motif similar to that found in many icosahedral viruses, including other parvoviruses. The N-terminal portion of the PstDNV coat protein adopts a "domain-swapped" conformation relative to its twofold-related neighbor similar to the insect parvovirus Galleria mellonella densovirus (GmDNV) but in stark contrast to vertebrate parvoviruses. However, most of the surface loops have little structural resemblance to any of the known parvoviral capsid proteins.
Collapse
|
26
|
Dhar AK, Bowers RM, Rowe CG, Allnutt FT. Expression of a foreign epitope on infectious pancreatic necrosis virus VP2 capsid protein subviral particle (SVP) and immunogenicity in rainbow trout. Antiviral Res 2010; 85:525-31. [DOI: 10.1016/j.antiviral.2009.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 12/30/2009] [Indexed: 12/31/2022]
|