1
|
Prabaharan C, Figiel M, Szczepanowski RH, Skowronek K, Zajko W, Thangaraj V, Chamera S, Nowak E, Nowotny M. Structural and biochemical characterization of cauliflower mosaic virus reverse transcriptase. J Biol Chem 2024; 300:107555. [PMID: 39002684 PMCID: PMC11363490 DOI: 10.1016/j.jbc.2024.107555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/19/2024] [Accepted: 06/30/2024] [Indexed: 07/15/2024] Open
Abstract
Reverse transcriptases (RTs) are enzymes with DNA polymerase and RNase H activities. They convert ssRNA into dsDNA and are key enzymes for the replication of retroviruses and retroelements. Caulimoviridae is a major family of plant-infecting viruses. Caulimoviruses have a circular dsDNA genome that is replicated by reverse transcription, but in contrast to retroviruses, they lack integrase. Caulimoviruses are related to Ty3 retroelements. Ty3 RT has been extensively studied structurally and biochemically, but corresponding information for caulimoviral RTs is unavailable. In the present study, we report the first crystal structure of cauliflower mosaic virus (CaMV) RT in complex with a duplex made of RNA and DNA strands (RNA/DNA hybrid). CaMV RT forms a monomeric complex with the hybrid, unlike Ty3 RT, which does so as a dimer. Results of the RNA-dependent DNA polymerase and DNA-dependent DNA polymerase activity assays showed that individual CaMV RT molecules are able to perform full polymerase functions. However, our analyses showed that an additional CaMV RT molecule needs to transiently associate with a polymerase-competent RT molecule to execute RNase H cuts of the RNA strand. Collectively, our results provide details into the structure and function of CaMV RT and describe how the enzyme compares to other related RTs.
Collapse
Affiliation(s)
- Chandrasekaran Prabaharan
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Małgorzata Figiel
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Roman H Szczepanowski
- Biophysics and Bioanalytics Facility, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Krzysztof Skowronek
- Biophysics and Bioanalytics Facility, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Weronika Zajko
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Vinuchakkaravarthy Thangaraj
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Sebastian Chamera
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Elżbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| |
Collapse
|
2
|
Moubset O, Filloux D, Fontes H, Julian C, Fernandez E, Galzi S, Blondin L, Chehida SB, Lett JM, Mesléard F, Kraberger S, Custer JM, Salywon A, Makings E, Marais A, Chiroleu F, Lefeuvre P, Martin DP, Candresse T, Varsani A, Ravigné V, Roumagnac P. Virome release of an invasive exotic plant species in southern France. Virus Evol 2024; 10:veae025. [PMID: 38566975 PMCID: PMC10986800 DOI: 10.1093/ve/veae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
The increase in human-mediated introduction of plant species to new regions has resulted in a rise of invasive exotic plant species (IEPS) that has had significant effects on biodiversity and ecosystem processes. One commonly accepted mechanism of invasions is that proposed by the enemy release hypothesis (ERH), which states that IEPS free from their native herbivores and natural enemies in new environments can outcompete indigenous species and become invasive. We here propose the virome release hypothesis (VRH) as a virus-centered variant of the conventional ERH that is only focused on enemies. The VRH predicts that vertically transmitted plant-associated viruses (PAV, encompassing phytoviruses and mycoviruses) should be co-introduced during the dissemination of the IEPS, while horizontally transmitted PAV of IEPS should be left behind or should not be locally transmitted in the introduced area due to a maladaptation of local vectors. To document the VRH, virome richness and composition as well as PAV prevalence, co-infection, host range, and transmission modes were compared between indigenous plant species and an invasive grass, cane bluestem (Bothriochloa barbinodis), in both its introduced range (southern France) and one area of its native range (Sonoran Desert, Arizona, USA). Contrary to the VRH, we show that invasive populations of B. barbinodis in France were not associated with a lower PAV prevalence or richness than native populations of B. barbinodis from the USA. However, comparison of virome compositions and network analyses further revealed more diverse and complex plant-virus interactions in the French ecosystem, with a significant richness of mycoviruses. Setting mycoviruses apart, only one putatively vertically transmitted phytovirus (belonging to the Amalgaviridae family) and one putatively horizontally transmitted phytovirus (belonging to the Geminiviridae family) were identified from B. barbinodis plants in the introduced area. Collectively, these characteristics of the B. barbinodis-associated PAV community in southern France suggest that a virome release phase may have immediately followed the introduction of B. barbinodis to France in the 1960s or 1970s, and that, since then, the invasive populations of this IEPS have already transitioned out of this virome release phase, and have started interacting with several local mycoviruses and a few local plant viruses.
Collapse
Affiliation(s)
- Oumaima Moubset
- UMR PHIM, CIRAD, Baillarguet TA A-54/K, Montpellier 34090, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Baillarguet TA A-54/K, Montpellier 34090, France
| | - Denis Filloux
- UMR PHIM, CIRAD, Baillarguet TA A-54/K, Montpellier 34090, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Baillarguet TA A-54/K, Montpellier 34090, France
| | - Hugo Fontes
- Tour du Valat, Institut de recherche pour la conservation des zones humides méditerranéennes, Le Sambuc, Arles 13200, France
- Institut Méditerranéen de Biodiversité et Ecologie, UMR CNRS-IRD, Avignon Université, Aix-Marseille Université, IUT d’Avignon, Avignon 84911, France
| | - Charlotte Julian
- UMR PHIM, CIRAD, Baillarguet TA A-54/K, Montpellier 34090, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Baillarguet TA A-54/K, Montpellier 34090, France
| | - Emmanuel Fernandez
- UMR PHIM, CIRAD, Baillarguet TA A-54/K, Montpellier 34090, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Baillarguet TA A-54/K, Montpellier 34090, France
| | - Serge Galzi
- UMR PHIM, CIRAD, Baillarguet TA A-54/K, Montpellier 34090, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Baillarguet TA A-54/K, Montpellier 34090, France
| | - Laurence Blondin
- UMR PHIM, CIRAD, Baillarguet TA A-54/K, Montpellier 34090, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Baillarguet TA A-54/K, Montpellier 34090, France
| | | | | | - François Mesléard
- Tour du Valat, Institut de recherche pour la conservation des zones humides méditerranéennes, Le Sambuc, Arles 13200, France
- Institut Méditerranéen de Biodiversité et Ecologie, UMR CNRS-IRD, Avignon Université, Aix-Marseille Université, IUT d’Avignon, Avignon 84911, France
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Joy M Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Andrew Salywon
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ 85008, USA
| | - Elizabeth Makings
- Vascular Plant Herbarium, School of Life Sciences, Arizona State University, 734 West Alameda Drive, Tempe Tempe, AZ 85282, USA
| | - Armelle Marais
- UMR BFP, University Bordeaux, INRAE, Villenave d’Ornon 33140, France
| | | | | | - Darren P Martin
- Division of Computational Biology, Department of Integrative Biomedical Sciences, Institute of infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Rd, Cape Town 7925, South Africa
| | - Thierry Candresse
- UMR BFP, University Bordeaux, INRAE, Villenave d’Ornon 33140, France
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town 7700, South Africa
| | - Virginie Ravigné
- UMR PHIM, CIRAD, Baillarguet TA A-54/K, Montpellier 34090, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Baillarguet TA A-54/K, Montpellier 34090, France
| | - Philippe Roumagnac
- UMR PHIM, CIRAD, Baillarguet TA A-54/K, Montpellier 34090, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Baillarguet TA A-54/K, Montpellier 34090, France
| |
Collapse
|
3
|
Vassilieff H, Geering ADW, Choisne N, Teycheney PY, Maumus F. Endogenous Caulimovirids: Fossils, Zombies, and Living in Plant Genomes. Biomolecules 2023; 13:1069. [PMID: 37509105 PMCID: PMC10377300 DOI: 10.3390/biom13071069] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The Caulimoviridae is a family of double-stranded DNA viruses that infect plants. The genomes of most vascular plants contain endogenous caulimovirids (ECVs), a class of repetitive DNA elements that is abundant in some plant genomes, resulting from the integration of viral DNA in the chromosomes of germline cells during episodes of infection that have sometimes occurred millions of years ago. In this review, we reflect on 25 years of research on ECVs that has shown that members of the Caulimoviridae have occupied an unprecedented range of ecological niches over time and shed light on their diversity and macroevolution. We highlight gaps in knowledge and prospects of future research fueled by increased access to plant genome sequence data and new tools for genome annotation for addressing the extent, impact, and role of ECVs on plant biology and the origin and evolutionary trajectories of the Caulimoviridae.
Collapse
Affiliation(s)
| | - Andrew D W Geering
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Pierre-Yves Teycheney
- CIRAD, UMR PVBMT, F-97410 Saint-Pierre de La Réunion, France
- UMR PVBMT, Université de la Réunion, F-97410 Saint-Pierre de La Réunion, France
| | - Florian Maumus
- INRAE, URGI, Université Paris-Saclay, 78026 Versailles, France
| |
Collapse
|
4
|
Maachi A, Hernando Y, Aranda MA, Donaire L. Complete genome sequence of malva-associated soymovirus 1: a novel virus infecting common mallow. Virus Genes 2022; 58:372-375. [PMID: 35471489 DOI: 10.1007/s11262-022-01900-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/01/2022] [Indexed: 11/26/2022]
Abstract
In this work, a novel viral genomic sequence with a gene organization typical of members of the genus Soymovirus was identified using high-throughput sequencing data from common mallow. This species is a vigorous wild weed native to the Mediterranean region, commonly found in borders and edges of cultivated fields, making it a suitable reservoir for plant pests and pathogens. Indeed, plant viruses belonging to different genera have been previously found infecting common malva. This new viral genome consists of a single molecule of circular double-stranded DNA of 8391 base pairs and contains eight open reading frames encoding polymerase, movement, coat, translational transactivator protein typical of caulimoviruses, and four hypothetical proteins. Phylogenetic and pairwise distance analyses showed its close relationship with soybean chlorotic mottle virus. Interestingly, a small intergenic region was detected between ORFs Ib and II. Based on the demarcation criteria of the genus Soymovirus, the new virus, provisionally named malva-associated soymovirus 1, could be a member of a new species Soymovirus masolus. To our knowledge, this is the first report of a soymovirus infecting common mallow.
Collapse
Affiliation(s)
- Ayoub Maachi
- Abiopep S.L., Parque Científico de Murcia, Ctra. de Madrid, Km 388, Complejo de Espinardo, 30100, Espinardo, Murcia, Spain
| | - Yolanda Hernando
- Abiopep S.L., Parque Científico de Murcia, Ctra. de Madrid, Km 388, Complejo de Espinardo, 30100, Espinardo, Murcia, Spain
| | - Miguel A Aranda
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, PO Box 164, 30100, Espinardo, Murcia, Spain
| | - Livia Donaire
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, PO Box 164, 30100, Espinardo, Murcia, Spain.
| |
Collapse
|
5
|
Bhat AI, Mohandas A, Sreenayana B, Archana TS, Jasna K. Piper DNA virus 1 and 2 are endogenous pararetroviruses integrated into chromosomes of black pepper ( Piper nigrum L). Virusdisease 2022; 33:114-118. [PMID: 35493754 PMCID: PMC9005556 DOI: 10.1007/s13337-021-00752-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/18/2021] [Indexed: 11/26/2022] Open
Abstract
A previous study named 7178 and 892 bp contigs obtained through high-throughput sequencing (HTS) of black pepper as Piper DNA virus 1 (PDV-1) and PDV-2 respectively. In the present study, HTS results were confirmed through polymerase chain reaction and Sanger sequencing. The sequenced region of both PDV-1 and PDV-2 contained partial genomes with motifs characteristic of pararetroviruses. BLAST analysis of PDV-1 and PDV-2 against the whole genome sequence of the black pepper showed integration of the PDV-1 at 22 loci in chromosome number 14, and PDV-2 at two loci in chromosome number 12 of black pepper. The integration was confirmed through amplification and sequencing of the junction regions. The present study suggests that both PDV-1 and PDV-2 occur as endogenous viruses in black pepper. Further studies are needed to determine whether these endogenous viruses occur in episomal forms, their complete genome sequence and whether they are activable under abiotic stress conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-021-00752-w.
Collapse
Affiliation(s)
- A. I. Bhat
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala 673012 India
| | - A. Mohandas
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala 673012 India
| | - B. Sreenayana
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala 673012 India
| | - T. S. Archana
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala 673012 India
| | - K. Jasna
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala 673012 India
| |
Collapse
|
6
|
Schmidt N, Seibt KM, Weber B, Schwarzacher T, Schmidt T, Heitkam T. Broken, silent, and in hiding: tamed endogenous pararetroviruses escape elimination from the genome of sugar beet (Beta vulgaris). ANNALS OF BOTANY 2021; 128:281-299. [PMID: 33729490 PMCID: PMC8389469 DOI: 10.1093/aob/mcab042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIMS Endogenous pararetroviruses (EPRVs) are widespread components of plant genomes that originated from episomal DNA viruses of the Caulimoviridae family. Due to fragmentation and rearrangements, most EPRVs have lost their ability to replicate through reverse transcription and to initiate viral infection. Similar to the closely related retrotransposons, extant EPRVs were retained and often amplified in plant genomes for several million years. Here, we characterize the complete genomic EPRV fraction of the crop sugar beet (Beta vulgaris, Amaranthaceae) to understand how they shaped the beet genome and to suggest explanations for their absent virulence. METHODS Using next- and third-generation sequencing data and genome assembly, we reconstructed full-length in silico representatives for the three host-specific EPRVs (beetEPRVs) in the B. vulgaris genome. Focusing on the endogenous caulimovirid beetEPRV3, we investigated its chromosomal localization, abundance and distribution by fluorescent in situ and Southern hybridization. KEY RESULTS Full-length beetEPRVs range between 7.5 and 10.7 kb in size, are heterogeneous in structure and sequence, and occupy about 0.3 % of the beet genome. Although all three beetEPRVs were assigned to the florendoviruses, they showed variably arranged protein-coding domains, different fragmentation, and preferences for diverse sequence contexts. We observed small RNAs that specifically target the individual beetEPRVs, indicating stringent epigenetic suppression. BeetEPRV3 sequences occur along all sugar beet chromosomes, preferentially in the vicinity of each other and are associated with heterochromatic, centromeric and intercalary satellite DNAs. BeetEPRV3 members also exist in genomes of related wild species, indicating an initial beetEPRV3 integration 13.4-7.2 million years ago. CONCLUSIONS Our study in beet illustrates the variability of EPRV structure and sequence in a single host genome. Evidence of sequence fragmentation and epigenetic silencing implies possible plant strategies to cope with long-term persistence of EPRVs, including amplification, fixation in the heterochromatin, and containment of EPRV virulence.
Collapse
Affiliation(s)
- Nicola Schmidt
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Kathrin M Seibt
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Beatrice Weber
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, PR China
| | - Thomas Schmidt
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Tony Heitkam
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
7
|
Identification and distribution of novel badnaviral sequences integrated in the genome of cacao (Theobroma cacao). Sci Rep 2021; 11:8270. [PMID: 33859254 PMCID: PMC8050207 DOI: 10.1038/s41598-021-87690-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/22/2021] [Indexed: 12/03/2022] Open
Abstract
Theobroma cacao is one of the most economically important tropical trees, being the source of chocolate. As part of an ongoing study to understand the diversity of the badnavirus complex, responsible for the cacao swollen shoot virus disease in West Africa, evidence was found recently of virus-like sequences in asymptomatic cacao plants. The present study exploited the wealth of genomic resources in this crop, and combined bioinformatic, molecular, and genetic approaches to report for the first time the presence of integrated badnaviral sequences in most of the cacao genetic groups. These sequences, which we propose to name eTcBV for endogenous T. cacao bacilliform virus, varied in type with each predominating in a specific genetic group. A diagnostic multiplex PCR method was developed to identify the homozygous or hemizygous condition of one specific insert, which was inherited as a single Mendelian trait. These data suggest that these integration events occurred before or during the species diversification in Central and South America, and prior to its cultivation in other regions. Such evidence of integrated sequences is relevant to the management of cacao quarantine facilities and may also aid novel methods to reduce the impact of such viruses in this crop.
Collapse
|
8
|
Teycheney PY, Geering ADW, Dasgupta I, Hull R, Kreuze JF, Lockhart B, Muller E, Olszewski N, Pappu H, Pooggin MM, Richert-Pöggeler KR, Schoelz JE, Seal S, Stavolone L, Umber M, Report Consortium ICTV. ICTV Virus Taxonomy Profile: Caulimoviridae. J Gen Virol 2020; 101:1025-1026. [PMID: 32940596 PMCID: PMC7660458 DOI: 10.1099/jgv.0.001497] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/04/2020] [Indexed: 11/29/2022] Open
Abstract
Caulimoviridae is a family of non-enveloped reverse-transcribing plant viruses with non-covalently closed circular dsDNA genomes of 7.1-9.8 kbp in the order Ortervirales. They infect a wide range of monocots and dicots. Some viruses cause economically important diseases of tropical and subtropical crops. Transmission occurs through insect vectors (aphids, mealybugs, leafhoppers, lace bugs) and grafting. Activation of infectious endogenous viral elements occurs in Musa balbisiana, Petunia hybrida and Nicotiana edwardsonii. However, most endogenous caulimovirids are not infectious. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Caulimoviridae, which is available at ictv.global/report/caulimoviridae.
Collapse
Affiliation(s)
- Pierre-Yves Teycheney
- CIRAD, UMR AGAP, F-97130 Capesterre-Belle-Eau, Guadeloupe, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - Andrew D. W. Geering
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, GPO Box 267, Brisbane, Queensland 4001, Australia
| | - Idranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Roger Hull
- Child Okeford, Blandford Forum, Dorset, UK
| | - Jan F. Kreuze
- International Potato Center (CIP), Apartado 1558, Lima 12, Peru
| | - Ben Lockhart
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Emmanuelle Muller
- CIRAD, UMR BGPI, F-34398 Montpellier, France
- BGPI, Univ Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - Neil Olszewski
- Department of Plant Biology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hanu Pappu
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA
| | | | | | - James E. Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, USA
| | - Susan Seal
- Natural Resources Institute, University of Greenwich, Chatham, Kent ME4 4TB, UK
| | - Livia Stavolone
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Bari, Italy
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Marie Umber
- INRAE, UR ASTRO, F-97170, Petit-Bourg, Guadeloupe, France
| | - ICTV Report Consortium
- CIRAD, UMR AGAP, F-97130 Capesterre-Belle-Eau, Guadeloupe, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, GPO Box 267, Brisbane, Queensland 4001, Australia
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
- Child Okeford, Blandford Forum, Dorset, UK
- International Potato Center (CIP), Apartado 1558, Lima 12, Peru
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
- CIRAD, UMR BGPI, F-34398 Montpellier, France
- BGPI, Univ Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
- Department of Plant Biology, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA
- INRA, UMR BGPI, F-34398 Montpellier, France
- Julius Kühn-Institut, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, USA
- Natural Resources Institute, University of Greenwich, Chatham, Kent ME4 4TB, UK
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Bari, Italy
- International Institute of Tropical Agriculture, Ibadan, Nigeria
- INRAE, UR ASTRO, F-97170, Petit-Bourg, Guadeloupe, France
| |
Collapse
|
9
|
Saad N, Alcalá-Briseño RI, Polston JE, Olmstead JW, Varsani A, Harmon PF. Blueberry red ringspot virus genomes from Florida inferred through analysis of blueberry root transcriptomes. Sci Rep 2020; 10:12043. [PMID: 32694553 PMCID: PMC7374169 DOI: 10.1038/s41598-020-68654-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 06/29/2020] [Indexed: 12/04/2022] Open
Abstract
A growing number of metagenomics-based approaches have been used for the discovery of viruses in insects, cultivated plants, and water in agricultural production systems. In this study, sixteen blueberry root transcriptomes from eight clonally propagated blueberry plants of cultivar 'Emerald' (interspecific hybrid of Vaccinium corymbosum and V. darrowi) generated as part of a separate study on varietal tolerance to soil salinity were analyzed for plant viral sequences. The objective was to determine if the asymptomatic plants harbored the latent blueberry red ringspot virus (BRRV) in their roots. The only currently known mechanism of transmission of BRRV is through vegetative propagation; however, the virus can remain latent for years with some plants of 'Emerald' never developing red ringspot symptoms. Bioinformatic analyses of 'Emerald' transcriptomes using de novo assembly and reference-based mapping approaches yielded eight complete viral genomes of BRRV (genus Soymovirus, family Caulimoviridae). Validation in vitro by PCR confirmed the presence of BRRV in 100% of the 'Emerald' root samples. Sequence and phylogenetic analyses showed 94% to 97% nucleotide identity between BRRV genomes from Florida and sequences from Czech Republic, Japan, Poland, Slovenia, and the United States. Taken together, this study documented the first detection of a complete BRRV genome from roots of asymptomatic blueberry plants and in Florida through in silico analysis of plant transcriptomes.
Collapse
Affiliation(s)
- N Saad
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - R I Alcalá-Briseño
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - J E Polston
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - J W Olmstead
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - A Varsani
- The Biodesign Center of Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ, 85287-5001, USA
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - P F Harmon
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
10
|
Takahashi H, Fukuhara T, Kitazawa H, Kormelink R. Virus Latency and the Impact on Plants. Front Microbiol 2019; 10:2764. [PMID: 31866963 PMCID: PMC6908805 DOI: 10.3389/fmicb.2019.02764] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/12/2019] [Indexed: 11/15/2022] Open
Abstract
Plant viruses are thought to be essentially harmful to the lives of their cultivated crop hosts. In most cases studied, the interaction between viruses and cultivated crop plants negatively affects host morphology and physiology, thereby resulting in disease. Native wild/non-cultivated plants are often latently infected with viruses without any clear symptoms. Although seemingly non-harmful, these viruses pose a threat to cultivated crops because they can be transmitted by vectors and cause disease. Reports are accumulating on infections with latent plant viruses that do not cause disease but rather seem to be beneficial to the lives of wild host plants. In a few cases, viral latency involves the integration of full-length genome copies into the host genome that, in response to environmental stress or during certain developmental stages of host plants, can become activated to generate and replicate episomal copies, a transition from latency to reactivation and causation of disease development. The interaction between viruses and host plants may also lead to the integration of partial-length segments of viral DNA genomes or copy DNA of viral RNA genome sequences into the host genome. Transcripts derived from such integrated viral elements (EVEs) may be beneficial to host plants, for example, by conferring levels of virus resistance and/or causing persistence/latency of viral infections. Studies on viral latency in wild host plants might help us to understand and elucidate the underlying mechanisms of latency and provide insights into the raison d’être for viruses in the lives of plants.
Collapse
Affiliation(s)
- Hideki Takahashi
- Laboratory of Plant Pathology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Plant Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Toshiyuki Fukuhara
- Department of Applied Biological Sciences and Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Richard Kormelink
- Laboratory of Virology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
11
|
Zhang F, Yang Z, Hong N, Wang G, Wang A, Wang L. Identification and characterization of water chestnut Soymovirus-1 (WCSV-1), a novel Soymovirus in water chestnuts (Eleocharis dulcis). BMC PLANT BIOLOGY 2019; 19:159. [PMID: 31023231 PMCID: PMC6482551 DOI: 10.1186/s12870-019-1761-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND A disease of unknown etiology in water chestnut plants (Eleocharis dulcis) was reported in China between 2012 and 2014. High throughput sequencing of small RNA (sRNA) combined with bioinformatics, and molecular identification based on PCR detection with virus-specific primers and DNA sequencing is a desirable approach to identify an unknown infectious agent. In this study, we employed this approach to identify viral sequences in water chestnut plants and to explore the molecular interaction of the identified viral pathogen and its natural plant host. RESULTS Based on high throughput sequencing of virus-derived small RNAs (vsRNA), we identified the sequence a new-to-science double-strand DNA virus isolated from water chestnut cv. 'Tuanfeng' samples, a widely grown cultivar in Hubei province, China, and analyzed its genomic organization. The complete genomic sequence is 7535 base-pairs in length, and shares 42-52% nucleotide sequence identity with viruses in the Caulimoviridae family. The virus contains nine predicated open reading frames (ORFs) encoding nine hypothetical proteins, with conserved domains characteristic of caulimoviruses. Phylogenetic analyses at the nucleotide and amino acid levels indicated that the virus belongs to the genus Soymovirus. The virus is tentatively named Water chestnut soymovirus-1 (WCSV-1). Phylogenetic analysis of the putative viral polymerase protein suggested that WCSV-1 is distinct to other well established species in the Soymovirus genus. This conclusion was supported by phylogenetic analyses of the amino acid sequences encoded by ORFs I, IV, VI, or VII. The sRNA bioinformatics showed that the majority of the vsRNAs are 22-nt in length with a preference for U at the 5'-terminal nucleotide. The vsRNAs are unevenly distributed over both strands of the entire WCSV-1 circular genome, and are clustered into small defined regions. In addition, we detected WCSV-1 in asymptomatic and symptomatic water chestnut samples collected from different regions of China by using PCR. RNA-seq assays further confirmed the presence of WCSV-1-derived viral RNA in infected plants. CONCLUSIONS This is the first discovery of a dsDNA virus in the genus Soymovirus infecting water chestnuts. Data presented also add new information towards a better understanding of the co-evolutionary mechanisms between the virus and its natural plant host.
Collapse
Affiliation(s)
- Fangpeng Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei People’s Republic of China
- Lab of Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei People’s Republic of China
| | - Zuokun Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei People’s Republic of China
- Lab of Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei People’s Republic of China
| | - Ni Hong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei People’s Republic of China
- Lab of Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei People’s Republic of China
| | - Guoping Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei People’s Republic of China
- Lab of Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei People’s Republic of China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3 Canada
| | - Liping Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei People’s Republic of China
- Lab of Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei People’s Republic of China
| |
Collapse
|
12
|
Bömer M, Rathnayake AI, Visendi P, Sewe SO, Sicat JPA, Silva G, Kumar PL, Seal SE. Tissue culture and next-generation sequencing: A combined approach for detecting yam ( Dioscorea spp.) viruses. PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY 2019; 105:54-66. [PMID: 31007374 PMCID: PMC6472605 DOI: 10.1016/j.pmpp.2018.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/04/2018] [Accepted: 06/16/2018] [Indexed: 06/09/2023]
Abstract
In vitro culture offers many advantages for yam germplasm conservation, propagation and international distribution. However, low virus titres in the generated tissues pose a challenge for reliable virus detection, which makes it difficult to ensure that planting material is virus-free. In this study, we evaluated next-generation sequencing (NGS) for virus detection following yam propagation using a robust tissue culture methodology. We detected and assembled the genomes of novel isolates of already characterised viral species of the genera Badnavirus and Potyvirus, confirming the utility of NGS in diagnosing yam viruses and contributing towards the safe distribution of germplasm.
Collapse
Affiliation(s)
- Moritz Bömer
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - Ajith I. Rathnayake
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - Paul Visendi
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - Steven O. Sewe
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - Juan Paolo A. Sicat
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - Gonçalo Silva
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - P. Lava Kumar
- International Institute of Tropical Agriculture (IITA), Oyo Road, PMB 5320, Ibadan, Nigeria
| | - Susan E. Seal
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| |
Collapse
|
13
|
Sukal AC, Kidanemariam DB, Dale JL, Harding RM, James AP. Characterization of a novel member of the family Caulimoviridae infecting Dioscorea nummularia in the Pacific, which may represent a new genus of dsDNA plant viruses. PLoS One 2018; 13:e0203038. [PMID: 30208072 PMCID: PMC6135502 DOI: 10.1371/journal.pone.0203038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/14/2018] [Indexed: 12/17/2022] Open
Abstract
We have characterized the complete genome of a novel circular double-stranded DNA virus, tentatively named Dioscorea nummularia-associated virus (DNUaV), infecting Dioscorea nummularia originating from Samoa. The genome of DNUaV comprised 8139 bp and contained four putative open reading frames (ORFs). ORFs 1 and 2 had no identifiable conserved domains, while ORF 3 had conserved motifs typical of viruses within the family Caulimoviridae including coat protein, movement protein, aspartic protease, reverse transcriptase and ribonuclease H. A transactivator domain, similar to that present in members of several caulimoviridae genera, was also identified in the putative ORF 4. The genome size, organization, and presence of conserved amino acid domains are similar to other viruses in the family Caulimoviridae. However, based on nucleotide sequence similarity and phylogenetic analysis, DNUaV appears to be a distinct novel member of the family and may represent a new genus.
Collapse
Affiliation(s)
- Amit C. Sukal
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Queensland, Australia
- Centre for Pacific Crops and Trees, Pacific Community, Suva, Fiji
| | - Dawit B. Kidanemariam
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Queensland, Australia
| | - James L. Dale
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Robert M. Harding
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Anthony P. James
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Kidanemariam DB, Sukal AC, Abraham AD, Stomeo F, Dale JL, James AP, Harding RM. Identification and molecular characterization of Taro bacilliform virus and Taro bacilliform CH virus from East Africa. PLANT PATHOLOGY 2018; 67:1977-1986. [PMID: 32406408 PMCID: PMC7198128 DOI: 10.1111/ppa.12921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/28/2018] [Indexed: 06/11/2023]
Abstract
Taro (Colocasia esculenta) and tannia (Xanthosoma sp.) are important root crops cultivated mainly by small-scale farmers in sub-Saharan Africa and the South Pacific. Viruses are known to be one of the most important constraints to production, with infections resulting in severe yield reduction. In 2014 and 2015, surveys were conducted in Ethiopia, Kenya, Tanzania and Uganda to determine the identity of viruses infecting taro in East Africa. Screening of 392 samples collected from the region using degenerate badnavirus primers revealed an incidence of 58-74% among the four countries surveyed, with sequence analysis identifying both Taro bacilliform virus (TaBV) and Taro bacilliform CH virus (TaBCHV). TaBCHV was identified from all four countries while TaBV was identified in all except Ethiopia. Full-length sequences from representative TaBV and TaBCHV isolates showed that the genome organization of TaBV isolates from East Africa was consistent with previous reports while TaBCHV isolates from East Africa were found to encode only four ORFs, distinct from a previous report from China. Phylogenetic analysis showed that all East African TaBV isolates form a single subgroup within known TaBV isolates, while TaBCHV isolates form at least two distinct subgroups. To the authors' knowledge, this is the first report describing the occurrence and genome organization of TaBV and TaBCHV isolates from East Africa and the first full-length sequence of the two viruses from tannia.
Collapse
Affiliation(s)
- D. B. Kidanemariam
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane 4001, Australia
- National Agricultural Biotechnology Research Centre, Ethiopian Institute of Agricultural Research, PO Box 2003
| | - A. C. Sukal
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane 4001, Australia
| | - A. D. Abraham
- Department of Biotechnology, Addis Ababa Science and Technology University, PO Box 16417, Addis Ababa, Ethiopia
| | - F. Stomeo
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, PO Box 30709, Nairobi, Kenya
| | - J. L. Dale
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane 4001, Australia
| | - A. P. James
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane 4001, Australia
| | - R. M. Harding
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane 4001, Australia
| |
Collapse
|
15
|
Pooggin MM, Ryabova LA. Ribosome Shunting, Polycistronic Translation, and Evasion of Antiviral Defenses in Plant Pararetroviruses and Beyond. Front Microbiol 2018; 9:644. [PMID: 29692761 PMCID: PMC5902531 DOI: 10.3389/fmicb.2018.00644] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/19/2018] [Indexed: 12/15/2022] Open
Abstract
Viruses have compact genomes and usually translate more than one protein from polycistronic RNAs using leaky scanning, frameshifting, stop codon suppression or reinitiation mechanisms. Viral (pre-)genomic RNAs often contain long 5′-leader sequences with short upstream open reading frames (uORFs) and secondary structure elements, which control both translation initiation and replication. In plants, viral RNA and DNA are targeted by RNA interference (RNAi) generating small RNAs that silence viral gene expression, while viral proteins are recognized by innate immunity and autophagy that restrict viral infection. In this review we focus on plant pararetroviruses of the family Caulimoviridae and describe the mechanisms of uORF- and secondary structure-driven ribosome shunting, leaky scanning and reinitiation after translation of short and long uORFs. We discuss conservation of these mechanisms in different genera of Caulimoviridae, including host genome-integrated endogenous viral elements, as well as in other viral families, and highlight a multipurpose use of the highly-structured leader sequence of plant pararetroviruses in regulation of translation, splicing, packaging, and reverse transcription of pregenomic RNA (pgRNA), and in evasion of RNAi. Furthermore, we illustrate how targeting of several host factors by a pararetroviral effector protein can lead to transactivation of viral polycistronic translation and concomitant suppression of antiviral defenses. Thus, activation of the plant protein kinase target of rapamycin (TOR) by the Cauliflower mosaic virus transactivator/viroplasmin (TAV) promotes reinitiation of translation after long ORFs on viral pgRNA and blocks antiviral autophagy and innate immunity responses, while interaction of TAV with the plant RNAi machinery interferes with antiviral silencing.
Collapse
Affiliation(s)
- Mikhail M Pooggin
- INRA, UMR Biologie et Génétique des Interactions Plante-Parasite, Montpellier, France
| | - Lyubov A Ryabova
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
16
|
Diop SI, Geering ADW, Alfama-Depauw F, Loaec M, Teycheney PY, Maumus F. Tracheophyte genomes keep track of the deep evolution of the Caulimoviridae. Sci Rep 2018; 8:572. [PMID: 29330451 PMCID: PMC5766536 DOI: 10.1038/s41598-017-16399-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/12/2017] [Indexed: 01/24/2023] Open
Abstract
Endogenous viral elements (EVEs) are viral sequences that are integrated in the nuclear genomes of their hosts and are signatures of viral infections that may have occurred millions of years ago. The study of EVEs, coined paleovirology, provides important insights into virus evolution. The Caulimoviridae is the most common group of EVEs in plants, although their presence has often been overlooked in plant genome studies. We have refined methods for the identification of caulimovirid EVEs and interrogated the genomes of a broad diversity of plant taxa, from algae to advanced flowering plants. Evidence is provided that almost every vascular plant (tracheophyte), including the most primitive taxa (clubmosses, ferns and gymnosperms) contains caulimovirid EVEs, many of which represent previously unrecognized evolutionary branches. In angiosperms, EVEs from at least one and as many as five different caulimovirid genera were frequently detected, and florendoviruses were the most widely distributed, followed by petuviruses. From the analysis of the distribution of different caulimovirid genera within different plant species, we propose a working evolutionary scenario in which this family of viruses emerged at latest during Devonian era (approx. 320 million years ago) followed by vertical transmission and by several cross-division host swaps.
Collapse
Affiliation(s)
| | - Andrew D W Geering
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, GPO Box 267, Brisbane, Queensland, 4001, Australia
| | | | - Mikaël Loaec
- URGI, INRA, Université Paris-Saclay, 78026, Versailles, France
| | | | - Florian Maumus
- URGI, INRA, Université Paris-Saclay, 78026, Versailles, France.
| |
Collapse
|
17
|
PCR-DGGE Analysis: Unravelling Complex Mixtures of Badnavirus Sequences Present in Yam Germplasm. Viruses 2017; 9:v9070181. [PMID: 28696406 PMCID: PMC5537673 DOI: 10.3390/v9070181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/29/2017] [Accepted: 07/04/2017] [Indexed: 12/19/2022] Open
Abstract
Badnaviruses (family Caulimoviridae, genus Badnavirus) have emerged as serious pathogens especially affecting the cultivation of tropical crops. Badnavirus sequences can be integrated in host genomes, complicating the detection of episomal infections and the assessment of viral genetic diversity in samples containing a complex mixture of sequences. Yam (Dioscorea spp.) plants are hosts to a diverse range of badnavirus species, and recent findings have suggested that mixed infections occur frequently in West African yam germplasm. Historically, the determination of the diversity of badnaviruses present in yam breeding lines has been achieved by cloning and sequencing of polymerase chain reaction (PCR) products. In this study, the molecular diversity of partial reverse transcriptase (RT)-ribonuclease H (RNaseH) sequences from yam badnaviruses was analysed using PCR-dependent denaturing gradient gel electrophoresis (PCR-DGGE). This resulted in the identification of complex ‘fingerprints’ composed of multiple sequences of Dioscorea bacilliform viruses (DBVs). Many of these sequences show high nucleotide identities to endogenous DBV (eDBV) sequences deposited in GenBank, and fall into six monophyletic species groups. Our findings highlight PCR-DGGE as a powerful tool in badnavirus diversity studies enabling a rapid indication of sequence diversity as well as potential candidate integrated sequences revealed by their conserved nature across germplasm.
Collapse
|
18
|
Yee SF, Chu CH, Poili E, Sum MSH. Expression and the antigenicity of recombinant coat proteins of tungro viruses expressed in Escherichia coli. J Virol Methods 2016; 240:69-72. [PMID: 27923590 DOI: 10.1016/j.jviromet.2016.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 09/02/2016] [Accepted: 12/02/2016] [Indexed: 11/29/2022]
Abstract
Rice tungro disease (RTD) is a recurring disease affecting rice farming especially in the South and Southeast Asia. The disease is commonly diagnosed by visual observation of the symptoms on diseased plants in paddy fields and by polymerase chain reaction (PCR). However, visual observation is unreliable and PCR can be costly. High-throughput as well as relatively cheap detection methods are important for RTD management for screening large number of samples. Due to this, detection by serological assays such as immunoblotting assays and enzyme-linked immunosorbent assay are preferred. However, these serological assays are limited by lack of continuous supply of antibodies as reagents due to the difficulty in preparing sufficient purified virions as antigens. This study aimed to generate and evaluate the reactivity of the recombinant coat proteins of Rice tungro bacilliform virus (RTBV) and Rice tungro spherical virus (RTSV) as alternative antigens to generate antibodies. The genes encoding the coat proteins of both viruses, RTBV (CP), and RTSV (CP1, CP2 and CP3) were cloned and expressed as recombinant fusion proteins in Escherichia coli. All of the recombinant fusion proteins, with the exception of the recombinant fusion protein of the CP2 of RTSV, were reactive against our in-house anti-tungro rabbit serum. In conclusion, our study showed the potential use of the recombinant fusion coat proteins of the tungro viruses as alternative antigens for production of antibodies for diagnostic purposes.
Collapse
Affiliation(s)
- Siew Fung Yee
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia; Agriculture Research Centre Semongok, Department of Agriculture, Sarawak, Jalan Puncak Borneo, 93720 Kuching, Sarawak, Malaysia
| | - Chia Huay Chu
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Evenni Poili
- Agriculture Research Centre Tuaran, Department of Agriculture, Sabah, P.O. Box No. 3, 89207 Tuaran, Sabah, Malaysia
| | - Magdline Sia Henry Sum
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia.
| |
Collapse
|
19
|
Chen S, Kishima Y. Endogenous pararetroviruses in rice genomes as a fossil record useful for the emerging field of palaeovirology. MOLECULAR PLANT PATHOLOGY 2016; 17:1317-1320. [PMID: 27870389 PMCID: PMC6638417 DOI: 10.1111/mpp.12490] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 07/03/2016] [Accepted: 08/03/2016] [Indexed: 05/26/2023]
Affiliation(s)
- Sunlu Chen
- Laboratory of Plant Breeding, Research Faculty of AgricultureHokkaido UniversitySapporo060‐8589Japan
| | - Yuji Kishima
- Laboratory of Plant Breeding, Research Faculty of AgricultureHokkaido UniversitySapporo060‐8589Japan
| |
Collapse
|
20
|
Balique F, Lecoq H, Raoult D, Colson P. Can plant viruses cross the kingdom border and be pathogenic to humans? Viruses 2015; 7:2074-98. [PMID: 25903834 PMCID: PMC4411691 DOI: 10.3390/v7042074] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/20/2015] [Accepted: 04/06/2015] [Indexed: 12/30/2022] Open
Abstract
Phytoviruses are highly prevalent in plants worldwide, including vegetables and fruits. Humans, and more generally animals, are exposed daily to these viruses, among which several are extremely stable. It is currently accepted that a strict separation exists between plant and vertebrate viruses regarding their host range and pathogenicity, and plant viruses are believed to infect only plants. Accordingly, plant viruses are not considered to present potential pathogenicity to humans and other vertebrates. Notwithstanding these beliefs, there are many examples where phytoviruses circulate and propagate in insect vectors. Several issues are raised here that question if plant viruses might further cross the kingdom barrier to cause diseases in humans. Indeed, there is close relatedness between some plant and animal viruses, and almost identical gene repertoires. Moreover, plant viruses can be detected in non-human mammals and humans samples, and there are evidence of immune responses to plant viruses in invertebrates, non-human vertebrates and humans, and of the entry of plant viruses or their genomes into non-human mammal cells and bodies after experimental exposure. Overall, the question raised here is unresolved, and several data prompt the additional extensive study of the interactions between phytoviruses and non-human mammals and humans, and the potential of these viruses to cause diseases in humans.
Collapse
Affiliation(s)
- Fanny Balique
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, Facultés de Médecine et de Pharmacie, 27 boulevard Jean Moulin, 13385 Marseille cedex 05, France.
- Institut National de la Recherche Agronomique (INRA), UR 407, Pathologie Végétale, 84140 Montfavet, France.
| | - Hervé Lecoq
- Institut National de la Recherche Agronomique (INRA), UR 407, Pathologie Végétale, 84140 Montfavet, France.
| | - Didier Raoult
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, Facultés de Médecine et de Pharmacie, 27 boulevard Jean Moulin, 13385 Marseille cedex 05, France.
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance publique - hôpitaux de Marseille, 264 rue Saint-Pierre, 13385 Marseille cedex 05, France.
| | - Philippe Colson
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, Facultés de Médecine et de Pharmacie, 27 boulevard Jean Moulin, 13385 Marseille cedex 05, France.
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance publique - hôpitaux de Marseille, 264 rue Saint-Pierre, 13385 Marseille cedex 05, France.
| |
Collapse
|
21
|
Virus world as an evolutionary network of viruses and capsidless selfish elements. Microbiol Mol Biol Rev 2015; 78:278-303. [PMID: 24847023 DOI: 10.1128/mmbr.00049-13] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Viruses were defined as one of the two principal types of organisms in the biosphere, namely, as capsid-encoding organisms in contrast to ribosome-encoding organisms, i.e., all cellular life forms. Structurally similar, apparently homologous capsids are present in a huge variety of icosahedral viruses that infect bacteria, archaea, and eukaryotes. These findings prompted the concept of the capsid as the virus "self" that defines the identity of deep, ancient viral lineages. However, several other widespread viral "hallmark genes" encode key components of the viral replication apparatus (such as polymerases and helicases) and combine with different capsid proteins, given the inherently modular character of viral evolution. Furthermore, diverse, widespread, capsidless selfish genetic elements, such as plasmids and various types of transposons, share hallmark genes with viruses. Viruses appear to have evolved from capsidless selfish elements, and vice versa, on multiple occasions during evolution. At the earliest, precellular stage of life's evolution, capsidless genetic parasites most likely emerged first and subsequently gave rise to different classes of viruses. In this review, we develop the concept of a greater virus world which forms an evolutionary network that is held together by shared conserved genes and includes both bona fide capsid-encoding viruses and different classes of capsidless replicons. Theoretical studies indicate that selfish replicons (genetic parasites) inevitably emerge in any sufficiently complex evolving ensemble of replicators. Therefore, the key signature of the greater virus world is not the presence of a capsid but rather genetic, informational parasitism itself, i.e., various degrees of reliance on the information processing systems of the host.
Collapse
|
22
|
Maliogka VI, Olmos A, Pappi PG, Lotos L, Efthimiou K, Grammatikaki G, Candresse T, Katis NI, Avgelis AD. A novel grapevine badnavirus is associated with the Roditis leaf discoloration disease. Virus Res 2015; 203:47-55. [PMID: 25791736 DOI: 10.1016/j.virusres.2015.03.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 03/04/2015] [Accepted: 03/08/2015] [Indexed: 01/15/2023]
Abstract
Roditis leaf discoloration (RLD), a graft-transmissible disease of grapevine, was first reported in Greece in the 1980s. Even though various native grapevine viruses were identified in the affected vines, the etiology of the disease remained unknown. In the present study, we used an NGS platform for sequencing siRNAs from a twenty-year old Roditis vine showing typical RLD symptoms. Analysis of the NGS data revealed the presence of various known grapevine viruses and viroids as well as a hitherto uncharacterized DNA virus. The circular genome of the new virus was fully reassembled. It is 6988 nts long and includes 4 open reading frames (ORFs). ORF1, ORF2 and ORF4 code for proteins with unknown functions while ORF3 encodes a polyprotein with motifs related to the replication, encapsidation and movement of the virus. Phylogenetic analysis classified the novel virus within the genus Badnavirus, with closest relationship to Fig badnavirus 1. Further studies showed that the new badnavirus is closely related with the RLD disease and the provisional name grapevine Roditis leaf discoloration-associated virus (GRLDaV) is proposed. Our findings extend the number of DNA viruses identified in grapevine, further drawing attention to the potential importance of this virus group on grapevine pathology.
Collapse
Affiliation(s)
- Varvara I Maliogka
- Lab of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124 Thessaloniki, Greece.
| | - Antonio Olmos
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Plant Protection and Biotechnology Center, 46113 Moncada, Valencia, Spain
| | - Polyxeni G Pappi
- Lab of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124 Thessaloniki, Greece
| | - Leonidas Lotos
- Lab of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124 Thessaloniki, Greece
| | - Konstantinos Efthimiou
- Lab of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124 Thessaloniki, Greece
| | - Garyfalia Grammatikaki
- Faculty of Agriculture & Food Technology, Technological Education Institute of Crete, 71 004 Heraklion, Crete, Greece
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, INRA, CS20032, F-33882 Villenave d'Ornon cedex, France; UMR 1332 Biologie du Fruit et Pathologie, Université de Bordeaux, CS20032, F-33882 Villenave d'Ornon cedex, France
| | - Nikolaos I Katis
- Lab of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124 Thessaloniki, Greece
| | - Apostolos D Avgelis
- Institute of Viticulture of Heraklion, Hellenic Agricultural Organization-Demeter, 71 307 Heraklion, Crete, Greece
| |
Collapse
|
23
|
Endogenous florendoviruses are major components of plant genomes and hallmarks of virus evolution. Nat Commun 2014; 5:5269. [PMID: 25381880 PMCID: PMC4241990 DOI: 10.1038/ncomms6269] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/15/2014] [Indexed: 12/03/2022] Open
Abstract
The extent and importance of endogenous viral elements have been extensively described in animals but are much less well understood in plants. Here we describe a new genus of Caulimoviridae called ‘Florendovirus’, members of which have colonized the genomes of a large diversity of flowering plants, sometimes at very high copy numbers (>0.5% total genome content). The genome invasion of Oryza is dated to over 1.8 million years ago (MYA) but phylogeographic evidence points to an even older age of 20–34 MYA for this virus group. Some appear to have had a bipartite genome organization, a unique characteristic among viral retroelements. In Vitis vinifera, 9% of the endogenous florendovirus loci are located within introns and therefore may influence host gene expression. The frequent colocation of endogenous florendovirus loci with TA simple sequence repeats, which are associated with chromosome fragility, suggests sequence capture during repair of double-stranded DNA breaks. Endogenous viral elements have been extensively described in animals but their significance in plants is less well understood. Here, Geering et al. describe a new group of endogenous pararetroviruses, called florendoviruses, which have colonized the genomes of many important crop species.
Collapse
|
24
|
Rice genomes recorded ancient pararetrovirus activities: Virus genealogy and multiple origins of endogenization during rice speciation. Virology 2014; 471-473:141-52. [PMID: 25461539 DOI: 10.1016/j.virol.2014.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 09/11/2014] [Indexed: 11/21/2022]
Abstract
Viral fossils in rice genomes are a best entity to understand ancient pararetrovirus activities through host plant history because of our advanced knowledge of the genomes and evolutionary history with rice and its related species. Here, we explored organization, geographic origins and genealogy of rice pararetroviruses, which were turned into endogenous rice tungro bacilliform virus-like (eRTBVL) sequences. About 300 eRTBVL sequences from three representative rice genomes were clearly classified into six families. Most of the endogenization events of the eRTBVLs were initiated before differentiation of the rice progenitor (> 160,000 years ago). We successfully followed the genealogy of old relic viruses during rice speciation, and inferred the geographical origins for these viruses. Possible virus genomic sequences were explained mostly by recombinations between different virus families. Interestingly, we discovered that only a few recombination events among the numerous occasions had determined the virus genealogy.
Collapse
|
25
|
Umber M, Filloux D, Muller E, Laboureau N, Galzi S, Roumagnac P, Iskra-Caruana ML, Pavis C, Teycheney PY, Seal SE. The genome of African yam (Dioscorea cayenensis-rotundata complex) hosts endogenous sequences from four distinct Badnavirus species. MOLECULAR PLANT PATHOLOGY 2014; 15:790-801. [PMID: 24605894 PMCID: PMC6638810 DOI: 10.1111/mpp.12137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Several endogenous viral elements (EVEs) have been identified in plant genomes, including endogenous pararetroviruses (EPRVs). Here, we report the first characterization of EPRV sequences in the genome of African yam of the Dioscorea cayenensis-rotundata complex. We propose that these sequences should be termed 'endogenous Dioscorea bacilliform viruses' (eDBVs). Molecular characterization of eDBVs shows that they constitute sequences originating from various parts of badnavirus genomes, resulting in a mosaic structure that is typical of most EPRVs characterized to date. Using complementary molecular approaches, we show that eDBVs belong to at least four distinct Badnavirus species, indicating multiple, independent, endogenization events. Phylogenetic analyses of eDBVs support and enrich the current taxonomy of yam badnaviruses and lead to the characterization of a new Badnavirus species in yam. The impact of eDBVs on diagnosis, yam germplasm conservation and movement, and breeding is discussed.
Collapse
Affiliation(s)
- Marie Umber
- INRA, UR1321 ASTRO Agrosystèmes tropicaux, F-97170, Petit-Bourg, (Guadeloupe), France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Seal S, Turaki A, Muller E, Kumar PL, Kenyon L, Filloux D, Galzi S, Lopez-Montes A, Iskra-Caruana ML. The prevalence of badnaviruses in West African yams (Dioscorea cayenensis-rotundata) and evidence of endogenous pararetrovirus sequences in their genomes. Virus Res 2014; 186:144-54. [PMID: 24457074 DOI: 10.1016/j.virusres.2014.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/19/2013] [Accepted: 01/11/2014] [Indexed: 02/09/2023]
Abstract
Yam (Dioscorea spp.) is an important vegetatively-propagated staple crop in West Africa. Viruses are pervasive in yam worldwide, decreasing growth and yield, as well as hindering the international movement of germplasm. Badnaviruses have been reported to be the most prevalent in yam, and genomes of some other badnaviruses are known to be integrated in their host plant species. However, it was not clear if a similar scenario occurs in Dioscorea yam. This study was conducted to verify the prevalence of badnaviruses, and determine if badnavirus genomes are integrated in the yam genome. Leaf samples (n=58) representing eight species of yam from global yam collections kept at CIRAD, France, and 127 samples of D. rotundata breeding lines (n=112) and landraces (n=15) at IITA, Nigeria, were screened using generic badnavirus PCR primers. Positive amplification of an expected ca. 579bp fragment, corresponding to a partial RT-RNaseH region, was detected in 47 (81%) of 58 samples analysed from CIRAD collections, and 100% of the 127 IITA D. rotundata samples. All the D. cayenensis and D. rotundata samples from the CIRAD and IITA collections tested PCR-positive, and sequencing of a selection of the PCR products confirmed they were typical of the genus Badnavirus. A comparison of serological and nucleic acid techniques was used to investigate whether the PCR-positives were sequences amplified from badnavirus particles or putative endogenous badnavirus sequences in the yam genome. Protein A sandwich-enzyme-linked immunosorbent assay (PAS-ELISA) with badnavirus polyclonal antisera detected cross-reacting viral particles in only 60% (92 of 153) of the CIRAD collection samples analysed, in contrast to the aforementioned 81% by PCR. Immunosorbent electron microscopy (ISEM) of virus preparations of a select set of 16 samples, representing different combinations of positive and negative PCR and PAS-ELISA results, identified bacilliform particles in 11 of these samples. Three PCR-positive yam samples from Burkina Faso (cv. Pilimpikou) were identified in which no viral particles were detected by either PAS-ELISA or ISEM. Southern hybridisation results using a yam badnavirus RT-RNaseH sequence (Gn155Dr) as probe, supported a lack of badnavirus particles in the cv. Pilimpikou and identified their equivalent sequences to be of plant genome origin. Probe Gn155Dr, however, hybridised to viral particles and plant genomic DNA in three D. rotundata samples from Guinea. These results represent the first data demonstrating the presence of integrated sequences of badnaviruses in yam. The implications of this for virus-indexing, breeding and multiplication of seed yams are discussed.
Collapse
Affiliation(s)
- Susan Seal
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK; CIRAD, UMR BGPI, F-34098 Montpellier, France.
| | - Aliyu Turaki
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | | | - P Lava Kumar
- International Institute of Tropical Agriculture (IITA), Oyo Road PMB 5320, Ibadan, Nigeria
| | - Lawrence Kenyon
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | | | - Serge Galzi
- CIRAD, UMR BGPI, F-34098 Montpellier, France
| | - Antonio Lopez-Montes
- International Institute of Tropical Agriculture (IITA), Oyo Road PMB 5320, Ibadan, Nigeria
| | | |
Collapse
|
27
|
Hull R. Replication of Plant Viruses. PLANT VIROLOGY 2014. [PMCID: PMC7184227 DOI: 10.1016/b978-0-12-384871-0.00007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Viruses replicate using both their own genetic information and host cell components and machinery. The different genome types have different replication pathways which contain controls on linking the process with translation and movement around the cell as well as not compromising the infected cell. This chapter discusses the replication mechanisms, faults in replication and replication of viruses co-infecting cells. Viruses replicate using both their own genetic information and host cell components and machinery. The different genome types have different replication pathways which contain controls on linking the process with translation and movement around the cell as well as not compromising the infected cell. This chapter discusses the replication mechanisms, faults in replication and replication of viruses coinfecting cells.
Collapse
|
28
|
Eid S, Pappu HR. Expression of endogenous para-retroviral genes and molecular analysis of the integration events in its plant host Dahlia variabilis. Virus Genes 2013; 48:153-9. [PMID: 24258394 DOI: 10.1007/s11262-013-0998-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 10/16/2013] [Indexed: 10/26/2022]
Abstract
The dahlia (Dahlia variabilis) genome contains an endogenous pararetrovirus sequence (EPRS) tentatively designated as DvEPRS. The DvEPRS shares genome structure and organization that is typical of members of the Caulimovirus genus. Studies were carried out to better understand the nature of this integration and to determine the gene expression of this DvEPRS. Genomic Southern hybridization showed multiple and random integration events of the DvEPRS in the dahlia genome. To investigate the presence of DvEPRS transcripts, RT-PCR was done on DNase-treated total RNA from DvEPRS-infected dahlia plants. Results showed the expression of open reading frames I, V, and VI. Direct PCR from sap extracts produced more intense DNA amplicons of Dahlia mosaic virus and Dahlia common mosaic virus which are believed to exist as typical episomal caulimoviruses, whereas significantly less intense amplicon was seen in case of DvEPRS in comparison with internal transcribed spacer region of dahlias amplicon. The DvEPRS in wild and cultivated species of Dahlia offer a model system to study the molecular events underlying the ecology, evolution and spread of DvEPRS within natural and managed ecosystems and the factors affecting integration of these EPRS in the plant genome.
Collapse
Affiliation(s)
- S Eid
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | | |
Collapse
|
29
|
The common evolutionary history of badnaviruses and banana. INFECTION GENETICS AND EVOLUTION 2013; 21:83-9. [PMID: 24184704 DOI: 10.1016/j.meegid.2013.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/13/2013] [Accepted: 10/15/2013] [Indexed: 12/12/2022]
Abstract
Recent plant genome sequencing efforts have revealed myriad viral sequences suggesting a cryptic interaction between both partners. Interestingly, no integration step has ever been reported as an obligatory step in the life cycle of plant viruses. Circular dsDNA viruses belonging to the family Caulimoviridae are the most abundant among integrated plant viral sequences. In this review, we describe how this hitherto hidden interaction could inform the evolutionary history of both partners badnaviruses and banana plants.
Collapse
|
30
|
Hohn T, Rothnie H. Plant pararetroviruses: replication and expression. Curr Opin Virol 2013; 3:621-8. [PMID: 24063990 DOI: 10.1016/j.coviro.2013.08.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/26/2013] [Accepted: 08/26/2013] [Indexed: 02/07/2023]
Abstract
True retroviruses are not known in plants; however, plant pararetroviruses (caulimoviridae) share many retroviral properties, replicating by transcription in the nucleus followed by reverse transcription in the cytoplasm. Pararetroviruses have circular DNA genomes that do not integrate into the host genome, and display several unique expression strategies. Typical of plant pararetroviral pregenomic RNA is a highly structured leader of about 600nt long that is bypassed by scanning ribosomes. Caulimoviruses and Soymoviruses have a further interesting translation mechanism: at least six of the seven open reading frames are translated via polycistronic translation mediated by a specific transactivator (TAV), which modifies the translation complex. TAV also forms large intracellular inclusion bodies, which are the site of translation and virus assembly.
Collapse
Affiliation(s)
- Thomas Hohn
- Basel University, Botanical Institute, Basel, Switzerland.
| | | |
Collapse
|
31
|
Olarte A, Mantri N, Nugent G, Pang ECK. Subtracted diversity array identifies novel molecular markers including retrotransposons for fingerprinting Echinacea species. PLoS One 2013; 8:e70347. [PMID: 23940565 PMCID: PMC3734018 DOI: 10.1371/journal.pone.0070347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 06/18/2013] [Indexed: 01/01/2023] Open
Abstract
Echinacea, native to the Canadian prairies and the prairie states of the United States, has a long tradition as a folk medicine for the Native Americans. Currently, Echinacea are among the top 10 selling herbal medicines in the U.S. and Europe, due to increasing popularity for the treatment of common cold and ability to stimulate the immune system. However, the genetic relationship within the species of this genus is unclear, making the authentication of the species used for the medicinal industry more difficult. We report the construction of a novel Subtracted Diversity Array (SDA) for Echinacea species and demonstrate the potential of this array for isolating highly polymorphic sequences. In order to selectively isolate Echinacea-specific sequences, a Suppression Subtractive Hybridization (SSH) was performed between a pool of twenty-four Echinacea genotypes and a pool of other angiosperms and non-angiosperms. A total of 283 subtracted genomic DNA (gDNA) fragments were amplified and arrayed. Twenty-seven Echinacea genotypes including four that were not used in the array construction could be successfully discriminated. Interestingly, unknown samples of E. paradoxa and E. purpurea could be unambiguously identified from the cluster analysis. Furthermore, this Echinacea-specific SDA was also able to isolate highly polymorphic retrotransposon sequences. Five out of the eleven most discriminatory features matched to known retrotransposons. This is the first time retrotransposon sequences have been used to fingerprint Echinacea, highlighting the potential of retrotransposons as based molecular markers useful for fingerprinting and studying diversity patterns in Echinacea.
Collapse
Affiliation(s)
- Alexandra Olarte
- School of Applied Sciences, Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia
| | - Nitin Mantri
- School of Applied Sciences, Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia
- * E-mail:
| | - Gregory Nugent
- School of Applied Sciences, Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia
| | - Edwin C. K. Pang
- School of Applied Sciences, Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
32
|
Sether DM, Melzer MJ, Borth WB, Hu JS. Pineapple bacilliform CO virus: Diversity, Detection, Distribution, and Transmission. PLANT DISEASE 2012; 96:1798-1804. [PMID: 30727278 DOI: 10.1094/pdis-08-11-0718-re] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Members of the genus Badnavirus (family Caulimovirdae) have been identified in dicots and monocots worldwide. The genome of a pineapple badnavirus, designated Pineapple bacilliform CO virus-HI1 (PBCOV-HI1), and nine genomic variants (A through H) were isolated and sequenced from pineapple, Ananas comosus, in Hawaii. The 7,451-nucleotide genome of PBCOV-HI1 possesses three open reading frames (ORFs) encoding putative proteins of 20 (ORF1), 15 (ORF2), and 211 (ORF3) kDa. ORF3 encodes a polyprotein that includes a putative movement protein and viral aspartyl proteinase, reverse transcriptase, and RNase H regions. Three distinct groups of putative endogenous pineapple pararetroviral sequences and Metaviridae-like retrotransposons encoding long terminal repeat, reverse-transcriptase, RNase H, and integrase regions were also identified from the pineapple genome. Detection assays were developed to distinguish PBCOV-HI1 and genomic variants, putative endogenous pararetrovirus sequences, and Ananas Metaviridae sequences also identified in pineapple. PBCOV-HI1 incidences in two commercially grown pineapple hybrids, PRI 73-114 and PRI 73-50, was 34 to 68%. PBCOV-HI1 was transmitted by gray pineapple mealybugs, Dysmicoccus neobrevipes, to pineapple.
Collapse
Affiliation(s)
- D M Sether
- University of Hawaii at Manoa, Department of Plant and Environmental Protection Sciences, Honolulu 96822-2232
| | - M J Melzer
- University of Hawaii at Manoa, Department of Plant and Environmental Protection Sciences, Honolulu 96822-2232
| | - W B Borth
- University of Hawaii at Manoa, Department of Plant and Environmental Protection Sciences, Honolulu 96822-2232
| | - J S Hu
- University of Hawaii at Manoa, Department of Plant and Environmental Protection Sciences, Honolulu 96822-2232
| |
Collapse
|
33
|
Desbiez C, Moury B, Lecoq H. The hallmarks of "green" viruses: do plant viruses evolve differently from the others? INFECTION GENETICS AND EVOLUTION 2011; 11:812-24. [PMID: 21382520 DOI: 10.1016/j.meegid.2011.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/22/2011] [Accepted: 02/24/2011] [Indexed: 12/13/2022]
Abstract
All viruses are obligatory parasites that must develop tight interactions with their hosts to complete their infectious cycle. Viruses infecting plants share many structural and functional similarities with those infecting other organisms, particularly animals and fungi. Quantitative data regarding their evolutionary mechanisms--generation of variability by mutation and recombination, changes in populations by selection and genetic drift have been obtained only recently, and appear rather similar to those measured for animal viruses.This review presents an update of our knowledge of the phylogenetic and evolutionary characteristics of plant viruses and their relation to their plant hosts, in comparison with viruses infecting other organisms.
Collapse
Affiliation(s)
- C Desbiez
- INRA, Unité de Pathologie Végétale UR407, F-84140 Montfavet, France.
| | | | | |
Collapse
|
34
|
Cuellar WJ, De Souza J, Barrantes I, Fuentes S, Kreuze JF. Distinct cavemoviruses interact synergistically with sweet potato chlorotic stunt virus (genus Crinivirus) in cultivated sweet potato. J Gen Virol 2011; 92:1233-1243. [PMID: 21307225 DOI: 10.1099/vir.0.029975-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two serologically unrelated sweet potato viruses causing symptoms of vein clearing in the indicator plant Ipomoea setosa were isolated and their genomes have been sequenced. They are associated with symptomless infections in sweet potato but distinct vein-clearing symptoms and higher virus titres were observed when these viruses co-infected with sweet potato chlorotic stunt virus (SPCSV), a virus that is distributed worldwide and is a mediator of severe virus diseases in this crop. Molecular characterization and phylogenetic analysis revealed an overall nucleotide identity of 47.6 % and an arrangement of the movement protein and coat protein domains characteristic of members of the genus Cavemovirus, in the family Caulimoviridae. We detected both cavemoviruses in cultivated sweet potato from East Africa, Central America and the Caribbean islands, but not in samples from South America. One of the viruses characterized showed a similar genome organization as, and formed a phylogenetic sublineage with, tobacco vein clearing virus (TVCV), giving further support to the previously suggested separation of TVCV, and related viral sequences, into a new caulimovirid genus. Given their geographical distribution and previous reports of similar but yet unidentified viruses, sweet potato cavemoviruses may co-occur with SPCSV more often than previously thought and they could therefore contribute to the extensive yield losses and cultivar decline caused by mixed viral infections in sweet potato.
Collapse
Affiliation(s)
- Wilmer J Cuellar
- Virology Laboratory, Crop Management & Production Systems Division, International Potato Center (CIP), Av. La Molina 1895, Lima 12, Peru
| | - Joao De Souza
- Virology Laboratory, Crop Management & Production Systems Division, International Potato Center (CIP), Av. La Molina 1895, Lima 12, Peru
| | - Israel Barrantes
- Magdeburg Centre for Systems Biology (MaCS), Otto von Guericke University, Sandtorstr. 1, D-39106 Magdeburg, Germany
| | - Segundo Fuentes
- Virology Laboratory, Crop Management & Production Systems Division, International Potato Center (CIP), Av. La Molina 1895, Lima 12, Peru
| | - Jan F Kreuze
- Applied Biotechnology Laboratory, Germplasm Enhancement & Crop Improvement Division, International Potato Center (CIP), Av. La Molina 1895, Lima 12, Peru
| |
Collapse
|
35
|
Lyttle DJ, Orlovich DA, Guy PL. Detection and analysis of endogenous badnaviruses in the New Zealand flora. AOB PLANTS 2011; 2011:plr008. [PMID: 22476479 PMCID: PMC3104934 DOI: 10.1093/aobpla/plr008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/31/2011] [Accepted: 03/08/2011] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS Badnaviruses and their host-integrated DNA occur in tropical crops and a few northern temperate species. Following the discovery of a badnavirus on a subantarctic island with floristic links to New Zealand, we postulated that badnaviruses exist in the New Zealand flora. Badnavirus reverse transcriptase (RT) sequences consist of variable regions flanked by highly conserved regions. This study used RT sequences to detect and characterize badnavirus sequences in the New Zealand flora and to investigate their utility for the study of broader aspects of plant biology. METHODOLOGY Molecular diversity of RT sequences was analysed using polymerase chain reaction and denaturing gradient gel electrophoresis (DGGE). In a study of the genus Melicytus, internal transcribed spacer (ITS) sequences were compared with the RT data. PRINCIPAL RESULTS No freely replicating badnaviruses were detected but more than half of the species (37/60) contained RT sequences. Phylogenetic analysis of 21 RT sequences formed monophyletic groups distinct from other species and from badnaviruses. No frameshift mutations occurred in any of the sequences translated in silico. More detailed study of the genus Melicytus indicated broader applications for our approach. Analysis of RT sequences revealed the presence of a previously unrecognized species (confirmed using ITS). Inheritance of DGGE profiles by Melicytus ramiflorus seedlings suggested that this species may undergo apomixis. CONCLUSIONS The presence of integrated badnavirus sequences in a wide range of taxa from this Southern Hemisphere flora indicates that these sequences may be common in many temperate regions. Potential to activate viruses from these sequences should be considered when placing these species in tissue culture or under other forms of abiotic or genomic stress. Analysis of endogenous RT sequences shows potential for the study of systematics, phylogenetics and plant reproductive biology.
Collapse
|
36
|
Sequence analysis of the replicase gene of 'sweet potato caulimo-like virus' suggests that this virus is a distinct member of the genus Cavemovirus. Arch Virol 2010; 156:535-7. [PMID: 21184242 DOI: 10.1007/s00705-010-0886-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 12/04/2010] [Indexed: 10/18/2022]
Abstract
Virion purification from indicator plants and partial sequencing of the replicase region of a 'sweet potato caulimo-like virus' (SPCV) isolate from Madeira, Portugal, are described. Phylogenetic analysis suggests that SPCV is a distinct member of the genus Cavemovirus (family Caulimoviridae). These results explain previous failed attempts to characterize SPCV based on antibodies or primers designed for other members of the Caulimoviridae. Using a quick DNA extraction protocol and PCR primers flanking the RT motif region, we were able to detect SPCV directly in sweet potato, thus saving considerable time during routine virus indexing.
Collapse
|