1
|
Khachatoorian R, French SW. Chaperones in hepatitis C virus infection. World J Hepatol 2016; 8:9-35. [PMID: 26783419 PMCID: PMC4705456 DOI: 10.4254/wjh.v8.i1.9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/01/2015] [Accepted: 12/18/2015] [Indexed: 02/06/2023] Open
Abstract
The hepatitis C virus (HCV) infects approximately 3% of the world population or more than 185 million people worldwide. Each year, an estimated 350000-500000 deaths occur worldwide due to HCV-associated diseases including cirrhosis and hepatocellular carcinoma. HCV is the most common indication for liver transplantation in patients with cirrhosis worldwide. HCV is an enveloped RNA virus classified in the genus Hepacivirus in the Flaviviridae family. The HCV viral life cycle in a cell can be divided into six phases: (1) binding and internalization; (2) cytoplasmic release and uncoating; (3) viral polyprotein translation and processing; (4) RNA genome replication; (5) encapsidation (packaging) and assembly; and (6) virus morphogenesis (maturation) and secretion. Many host factors are involved in the HCV life cycle. Chaperones are an important group of host cytoprotective molecules that coordinate numerous cellular processes including protein folding, multimeric protein assembly, protein trafficking, and protein degradation. All phases of the viral life cycle require chaperone activity and the interaction of viral proteins with chaperones. This review will present our current knowledge and understanding of the role of chaperones in the HCV life cycle. Analysis of chaperones in HCV infection will provide further insights into viral/host interactions and potential therapeutic targets for both HCV and other viruses.
Collapse
|
2
|
Peel M, Scribner A. Cyclophilin inhibitors as antiviral agents. Bioorg Med Chem Lett 2013; 23:4485-92. [PMID: 23849880 PMCID: PMC7125669 DOI: 10.1016/j.bmcl.2013.05.101] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 12/12/2022]
Abstract
Cyclophilins (Cyps) are ubiquitous proteins that effect the cis-trans isomerization of Pro amide bonds, and are thus crucial to protein folding. CypA is the most prevalent of the ~19 human Cyps, and plays a crucial role in viral infectivity, most notably for HIV-1 and HCV. Cyclophilins have been shown to play key roles in effective replication of a number of viruses from different families. A drug template for CypA inhibition is cyclosporine A (CsA), a cyclic undecapeptide that simultaneously binds to both CypA and the Ca(2+)-dependent phosphatase calcineurin (CN), and can attenuate immune responses. Synthetic modifications of the CsA scaffold allows for selective binding to CypA and CN separately, thus providing access to novel, non-immunosuppressive antiviral agents.
Collapse
Affiliation(s)
- Michael Peel
- SCYNEXIS Inc., Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
3
|
Peel M, Scribner A. Optimization of Cyclophilin Inhibitors for Use in Antiviral Therapy. SUCCESSFUL STRATEGIES FOR THE DISCOVERY OF ANTIVIRAL DRUGS 2013. [DOI: 10.1039/9781849737814-00384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cyclophilins are members of the Propyl Peptidase Isomerase (PPIase) family of proteins and have recently been found to be required for efficient replication and/or infectivity of several viruses. Cyclosporine A (CsA), the prototypical inhibitor of cyclophilins has shown good activity against several key viruses, including HIV‐1 and HCV, however the immunosuppressive activity of CsA precludes its use as an effective anti‐viral agent. Structural information derived from the ternary complex formed by CsA, cyclophilin A and calcineurin has allowed the design of non‐immunosuppressive derivatives of CsA that retain, and in some cases improve, antiviral activity toward hepatitis C. Chemical modification of CsA has led to compounds with improved pharmacokinetic properties and with reduced drug‐drug interaction potential. Non‐CsA derived inhibitors of cyclophilin A have recently been identified and hold promise as synthetically more tractable leads for cyclophilin‐based discovery projects.
Collapse
Affiliation(s)
- Michael Peel
- SCYNEXIS Inc., Research Triangle Park, NC 27709 USA
| | | |
Collapse
|
4
|
Baugh J, Gallay P. Cyclophilin involvement in the replication of hepatitis C virus and other viruses. Biol Chem 2013; 393:579-87. [PMID: 22944661 DOI: 10.1515/hsz-2012-0151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 04/10/2012] [Indexed: 02/07/2023]
Abstract
In recent months, there has been a wealth of promising clinical data suggesting that a more effective treatment regimen, and potentially a cure, for hepatitis C virus (HCV) infection is close at hand. Leading this push are direct-acting antivirals (DAAs), currently comprising inhibitors that target the HCV protease NS3, the viral polymerase NS5B, and the non-structural protein NS5A. In combination with one another, along with the traditional standard-of-care ribavirin and PEGylated-IFNα, these compounds have proven to afford tremendous efficacy to treatment-naíve patients, as well as to prior non-responders. Nevertheless, by targeting viral components, the possibility of selecting for breakthrough and treatment-resistant virus strains remains a concern. Host-targeting antivirals are a distinct class of anti-HCV compounds that is emerging as a complementary set of tools to combat the disease. Cyclophilin (Cyp) inhibitors are one such group in this category. In contrast to DAAs, Cyp inhibitors target a host protein, CypA, and have also demonstrated remarkable antiviral efficiency in clinical trials, without the generation of viral escape mutants. This review serves to summarize the current literature on Cyps and their relation to the HCV viral life cycle, as well as other viruses.
Collapse
Affiliation(s)
- James Baugh
- Department of Immunology and Microbial Science, IMM-9, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
5
|
Ariumi Y, Kuroki M, Maki M, Ikeda M, Dansako H, Wakita T, Kato N. The ESCRT system is required for hepatitis C virus production. PLoS One 2011; 6:e14517. [PMID: 21264300 PMCID: PMC3019154 DOI: 10.1371/journal.pone.0014517] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 12/15/2010] [Indexed: 12/16/2022] Open
Abstract
Background Recently, lipid droplets have been found to be involved in an important cytoplasmic organelle for hepatitis C virus (HCV) production. However, the mechanisms of HCV assembly, budding, and release remain poorly understood. Retroviruses and some other enveloped viruses require an endosomal sorting complex required for transport (ESCRT) components and their associated proteins for their budding process. Methodology/Principal Findings To determine whether or not the ESCRT system is needed for HCV production, we examined the infectivity of HCV or the Core levels in culture supernatants as well as HCV RNA levels in HuH-7-derived RSc cells, in which HCV-JFH1 can infect and efficiently replicate, expressing short hairpin RNA or siRNA targeted to tumor susceptibility gene 101 (TSG101), apoptosis-linked gene 2 interacting protein X (Alix), Vps4B, charged multivesicular body protein 4b (CHMP4b), or Brox, all of which are components of the ESCRT system. We found that the infectivity of HCV in the supernatants was significantly suppressed in these knockdown cells. Consequently, the release of the HCV Core into the culture supernatants was significantly suppressed in these knockdown cells after HCV-JFH1 infection, while the intracellular infectivity and the RNA replication of HCV-JFH1 were not significantly affected. Furthermore, the HCV Core mostly colocalized with CHMP4b, a component of ESCRT-III. In this context, HCV Core could bind to CHMP4b. Nevertheless, we failed to find the conserved viral late domain motif, which is required for interaction with the ESCRT component, in the HCV-JFH1 Core, suggesting that HCV Core has a novel motif required for HCV production. Conclusions/Significance These results suggest that the ESCRT system is required for infectious HCV production.
Collapse
Affiliation(s)
- Yasuo Ariumi
- Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.
| | | | | | | | | | | | | |
Collapse
|
6
|
Yang F, Robotham JM, Grise H, Frausto S, Madan V, Zayas M, Bartenschlager R, Robinson M, Greenstein AE, Nag A, Logan TM, Bienkiewicz E, Tang H. A major determinant of cyclophilin dependence and cyclosporine susceptibility of hepatitis C virus identified by a genetic approach. PLoS Pathog 2010; 6:e1001118. [PMID: 20886100 PMCID: PMC2944805 DOI: 10.1371/journal.ppat.1001118] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 08/23/2010] [Indexed: 01/11/2023] Open
Abstract
Since the advent of genome-wide small interfering RNA screening, large numbers of cellular cofactors important for viral infection have been discovered at a rapid pace, but the viral targets and the mechanism of action for many of these cofactors remain undefined. One such cofactor is cyclophilin A (CyPA), upon which hepatitis C virus (HCV) replication critically depends. Here we report a new genetic selection scheme that identified a major viral determinant of HCV's dependence on CyPA and susceptibility to cyclosporine A. We selected mutant viruses that were able to infect CyPA-knockdown cells which were refractory to infection by wild-type HCV produced in cell culture. Five independent selections revealed related mutations in a single dipeptide motif (D316 and Y317) located in a proline-rich region of NS5A domain II, which has been implicated in CyPA binding. Engineering the mutations into wild-type HCV fully recapitulated the CyPA-independent and CsA-resistant phenotype and four putative proline substrates of CyPA were mapped to the vicinity of the DY motif. Circular dichroism analysis of wild-type and mutant NS5A peptides indicated that the D316E/Y317N mutations (DEYN) induced a conformational change at a major CyPA-binding site. Furthermore, nuclear magnetic resonance experiments suggested that NS5A with DEYN mutations adopts a more extended, functional conformation in the putative CyPA substrate site in domain II. Finally, the importance of this major CsA-sensitivity determinant was confirmed in additional genotypes (GT) other than GT 2a. This study describes a new genetic approach to identifying viral targets of cellular cofactors and identifies a major regulator of HCV's susceptibility to CsA and its derivatives that are currently in clinical trials.
Collapse
Affiliation(s)
- Feng Yang
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Jason M. Robotham
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Henry Grise
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Stephen Frausto
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Vanesa Madan
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Margarita Zayas
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | | | | | - Anita Nag
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Timothy M. Logan
- Department of Chemistry, Florida State University, Tallahassee, Florida, United States of America
| | - Ewa Bienkiewicz
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
7
|
Tang H. Cyclophilin inhibitors as a novel HCV therapy. Viruses 2010; 2:1621-1634. [PMID: 21994697 PMCID: PMC3185723 DOI: 10.3390/v2081621] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 07/23/2010] [Accepted: 08/04/2010] [Indexed: 12/16/2022] Open
Abstract
A critical role of Cyclophilins, mostly Cyclophilin A (CyPA), in the replication of HCV is supported by a growing body of in vitro and in vivo evidence. CyPA probably interacts directly with nonstructural protein 5A to exert its effect, through its peptidyl-prolyl isomerase activity, on maintaining the proper structure and function of the HCV replicase. The major proline substrates are located in domain II of NS5A, centered around a “DY” dipeptide motif that regulates CyPA dependence and CsA resistance. Importantly, Cyclosporine A derivatives that lack immunosuppressive function efficiently block the CyPA-NS5A interaction and inhibit HCV in cell culture, an animal model, and human trials. Given the high genetic barrier to development of resistance and the distinctness of their mechanism from that of either the current standard of care or any specifically targeted antiviral therapy for HCV (STAT-C), CyP inhibitors hold promise as a novel class of anti-HCV therapy.
Collapse
Affiliation(s)
- Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| |
Collapse
|
8
|
Chatterji U, Lim P, Bobardt MD, Wieland S, Cordek DG, Vuagniaux G, Chisari F, Cameron CE, Targett-Adams P, Parkinson T, Gallay PA. HCV resistance to cyclosporin A does not correlate with a resistance of the NS5A-cyclophilin A interaction to cyclophilin inhibitors. J Hepatol 2010; 53:50-6. [PMID: 20451281 PMCID: PMC2884070 DOI: 10.1016/j.jhep.2010.01.041] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Revised: 12/22/2009] [Accepted: 01/21/2010] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The cyclophilin (Cyp) inhibitors - cyclosporine A (CsA), NIM811, Debio 025, and SCY 635 - block HCV replication both in vitro and in vivo, and represent a novel class of potent anti-HCV agents. We and others showed that HCV relies on cyclophilin A (CypA) to replicate. We demonstrated that the hydrophobic pocket of CypA, where Cyp inhibitors bind, and which controls the isomerase activity of CypA, is critical for HCV replication. Recent studies showed that under Cyp inhibitor selection, mutations arose in the HCV nonstructural 5A (NS5A) protein. This led us to postulate that CypA assists HCV by acting on NS5A. METHODS We tested this hypothesis by developing several interaction assays including GST pull-down assays, ELISA, and mammalian two-hybrid binding assays. RESULTS We demonstrated that full-length NS5A and CypA form a stable complex. Remarkably, CsA prevents the CypA-NS5A interaction in a dose-dependent manner. Importantly, the CypA-NS5A interaction is conserved among genotypes and is interrupted by CsA. Surprisingly, the NS5A mutant protein, which arose in CsA-resistant HCV variants, behaves similarly to wild-type NS5A in terms of both CypA binding and CsA-mediated release from CypA. This latter finding suggests that HCV resistance to CsA does not correlate with a resistance of the CypA-NS5A interaction to Cyp inhibitors. Moreover, we found that CypA, devoid of its isomerase activity, fails to bind NS5A. CONCLUSIONS Altogether these data suggest that CypA, via its isomerase pocket, binds directly to NS5A, and most importantly, that disrupting this interaction stops HCV replication.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Paul Targett-Adams
- Antivirals Research Unit, Pfizer Global Research & Development, Sandwich Laboratories, England
| | - Tanya Parkinson
- Antivirals Research Unit, Pfizer Global Research & Development, Sandwich Laboratories, England
| | | |
Collapse
|