1
|
László Z, Pankovics P, Urbán P, Herczeg R, Balka G, Igriczi B, Cságola A, Albert M, Tóth F, Reuter G, Boros Á. Multiple Co-Infecting Caliciviruses in Oral Fluid and Enteric Samples of Swine Detected by a Novel RT-qPCR Assay and a 3'RACE-PCR-NGS Method. Viruses 2025; 17:193. [PMID: 40006947 PMCID: PMC11860220 DOI: 10.3390/v17020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Caliciviruses including noro- and sapoviruses of family Caliciviridae are important enteric human and swine pathogens, while others, like valoviruses, are less known. In this study, we developed a detection and typing pipeline for the most prevalent swine enteric caliciviruses-sapovirus GIII (Sw-SaV), norovirus GII (Sw-NoV), and valovirus GI (Sw-VaV). The pipeline integrates triplex RT-qPCR, 3'RACE semi-nested PCR, and next-generation sequencing (NovaSeq, Illumina) techniques. A small-scale epidemiological investigation was conducted on archived enteric and, for the first time, on oral fluid/saliva samples of diarrheic and asymptomatic swine of varying ages from Hungary and Slovakia. In enteric samples, Sw-SaV was the most prevalent, detected in 26.26% of samples, primarily in diarrheic pigs with low Cq values, followed by Sw-NoV (2.53%) in nursery pigs. In oral fluid samples, Sw-NoV predominated (7.46%), followed by Sw-SaV (4.39%). Sw-VaVs were sporadically found in both sample types. A natural, asymptomatic Sw-SaV outbreak was retrospectively detected where the transient shedding of the virus was <2 weeks. Complete capsid sequences (n = 59; 43 Sw-SaV, 13 Sw-NoV, and 3 Sw-VaV) including multiple (up to five) co-infecting variants were identified. Sw-SaV sequences belong to seven genotypes, while Sw-NoV and Sw-VaV strains clustered into distinct sub-clades, highlighting the complex diversity of these enteric caliciviruses in swine.
Collapse
Affiliation(s)
- Zoltán László
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 7624 Pecs, Hungary; (Z.L.); (P.P.); (F.T.); (G.R.)
| | - Péter Pankovics
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 7624 Pecs, Hungary; (Z.L.); (P.P.); (F.T.); (G.R.)
| | - Péter Urbán
- Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, János Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (P.U.); (R.H.)
| | - Róbert Herczeg
- Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, János Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (P.U.); (R.H.)
| | - Gyula Balka
- Department of Pathology, University of Veterinary Medicine, István Str 2., 1078 Budapest, Hungary; (G.B.); (B.I.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, 1078 Budapest, Hungary
| | - Barbara Igriczi
- Department of Pathology, University of Veterinary Medicine, István Str 2., 1078 Budapest, Hungary; (G.B.); (B.I.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, 1078 Budapest, Hungary
| | - Attila Cságola
- Ceva Phylaxia Ltd., 1107 Budapest, Hungary; (A.C.); (M.A.)
| | - Mihály Albert
- Ceva Phylaxia Ltd., 1107 Budapest, Hungary; (A.C.); (M.A.)
| | - Fruzsina Tóth
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 7624 Pecs, Hungary; (Z.L.); (P.P.); (F.T.); (G.R.)
| | - Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 7624 Pecs, Hungary; (Z.L.); (P.P.); (F.T.); (G.R.)
| | - Ákos Boros
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 7624 Pecs, Hungary; (Z.L.); (P.P.); (F.T.); (G.R.)
| |
Collapse
|
2
|
Davidson I, Stamelou E, Giantsis IA, Papageorgiou KV, Petridou E, Kritas SK. The Complexity of Swine Caliciviruses. A Mini Review on Genomic Diversity, Infection Diagnostics, World Prevalence and Pathogenicity. Pathogens 2022; 11:pathogens11040413. [PMID: 35456088 PMCID: PMC9030053 DOI: 10.3390/pathogens11040413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/01/2023] Open
Abstract
Caliciviruses are single stranded RNA viruses, non-enveloped structurally, that are implicated in the non-bacterial gastroenteritis in various mammal species. Particularly in swine, viral gastroenteritis represents a major problem worldwide, responsible for significant economic losses for the pig industry. Among the wide range of viruses that are the proven or suspected etiological agents of gastroenteritis, the pathogenicity of the members of Caliciviridae family is among the less well understood. In this context, the present review presents and discusses the current knowledge of two genera belonging to this family, namely the Norovirus and the Sapovirus, in relation to swine. Aspects such as pathogenicity, clinical evidence, symptoms, epidemiology and worldwide prevalence, genomic diversity, identification tools as well as interchanging hosts are not only reviewed but also critically evaluated. Generally, although often asymptomatic in pigs, the prevalence of those microbes in pig farms exhibits a worldwide substantial increasing trend. It should be mentioned, however, that the factors influencing the symptomatology of these viruses are still far from well established. Interestingly, both these viruses are also characterized by high genetic diversity. These high levels of molecular diversity in Caliciviridae family are more likely a result of recombination rather than evolutionary or selective adaptation via mutational steps. Thus, molecular markers for their detection are mostly based on conserved regions such as the RdRp region. Finally, it should be emphasized that Norovirus and the Sapovirus may also infect other domestic, farm and wild animals, including humans, and therefore their surveillance and clarification role in diseases such as diarrhea is a matter of public health importance as well.
Collapse
Affiliation(s)
- Irit Davidson
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan 50250, Israel;
| | - Efthymia Stamelou
- Department of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.S.); (K.V.P.); (E.P.); (S.K.K.)
| | - Ioannis A. Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
- Correspondence:
| | - Konstantinos V. Papageorgiou
- Department of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.S.); (K.V.P.); (E.P.); (S.K.K.)
| | - Evanthia Petridou
- Department of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.S.); (K.V.P.); (E.P.); (S.K.K.)
| | - Spyridon K. Kritas
- Department of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.S.); (K.V.P.); (E.P.); (S.K.K.)
| |
Collapse
|
3
|
Cavicchio L, Laconi A, Piccirillo A, Beato MS. Swine Norovirus: Past, Present, and Future. Viruses 2022; 14:537. [PMID: 35336944 PMCID: PMC8953536 DOI: 10.3390/v14030537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 01/18/2023] Open
Abstract
Norovirus, an ssRNA + virus of the family Caliciviridae, is a leading disease burden in humans worldwide, causing an estimated 600 million cases of acute gastroenteritis every year. Since the discovery of norovirus in the faeces of swine in Japan in the 1990s, swine norovirus has been reported in several countries on several continents. The identification of the human-associated GII.4 genotype in swine has raised questions about this animal species as a reservoir of norovirus with zoonotic potential, even if species-specific P-types are usually detected in swine. This review summarises the available data regarding the geographic distribution of norovirus in swine, the years of detection, the genotype characterisation, and the prevalence in specific production groups. Furthermore, we discuss the major bottlenecks for the detection and characterisation of swine noroviruses.
Collapse
Affiliation(s)
- Lara Cavicchio
- Diagnostic Virology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVE), Viale dell’Università 10, Legnaro, 35020 Padua, Italy;
| | - Andrea Laconi
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (A.L.); (A.P.)
| | - Alessandra Piccirillo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (A.L.); (A.P.)
| | - Maria Serena Beato
- National Reference Laboratory for African Swine Fever and Ruminant retroviruses, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche (IZSUM), Via G. Salvemini, 1, 06126 Perugia, Italy
| |
Collapse
|
4
|
Stamelou E, Giantsis IA, Papageorgiou KV, Petridou E, Davidson I, Polizopοulou ZS, Papa A, Kritas SK. Epidemiology of Astrovirus, Norovirus and Sapovirus in Greek pig farms indicates high prevalence of Mamastrovirus suggesting the potential need for systematic surveillance. Porcine Health Manag 2022; 8:5. [PMID: 35000615 PMCID: PMC8744241 DOI: 10.1186/s40813-021-00245-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/28/2021] [Indexed: 11/25/2022] Open
Abstract
Backround Astrovirus, Norovirus and Sapovirus exhibit a wide distribution in swine pig herds worldwide. However, the association of porcine Astrovirus (PAstV), porcine Norovirus (PoNoV) and porcine Sapovirus (PoSaV) with disease in pigs remains uncertain. In this study, we investigated the prevalence of PAstV, PoNoV and PoSaV in Greek pig farms using both conventional RT-PCR and SYBR-Green Real-time RT-PCR in an effort to compare the sensitivity of the two methods. We examined 1400 stool samples of asymptomatic pigs originating from 28 swine farms throughout Greece in pools of five. Results PAstV was detected in all 28 swine farms examined, with an overall prevalence of 267/280 positive pools (95.4%). Porcine Caliciviruses prevalence was found at 36 and 57 out of the 280 examined samples, by the conventional and SYBR-Green Real time RT-PCR, respectively. Sequencing and phylogenetic analysis of the positive samples revealed that the detected PAstV sequences are clustered within PAstV1, 3 and 4 lineages, with PAstV3 being the predominant haplotype (91.2%). Interestingly, sequencing of the Calicivirus positive samples demonstrated the presence of non-target viruses, i.e. Sapovirus, Kobuvirus and Sapelovirus sequences and one sequence highly similar to bat Astrovirus, while no Norovirus sequence was detected. Conclusions The high prevalence of PAstV in Greek pig farms poses a necessity for further investigation of the pathogenicity of this virus and its inclusion in surveillance programs in case that it proves to be important. To our knowledge, this is the first epidemiological study of these viruses in pig farms in Greece. Supplementary Information The online version contains supplementary material available at 10.1186/s40813-021-00245-8.
Collapse
Affiliation(s)
- Efthymia Stamelou
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100, Florina, Greece.
| | - Konstantinos V Papageorgiou
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Evanthia Petridou
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Irit Davidson
- Kimron Veterinary Institute, 50250, Bet Dagan, Israel
| | - Zoe S Polizopοulou
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Anna Papa
- Laboratory of Microbiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Spyridon K Kritas
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
5
|
Cavicchio L, Tassoni L, Laconi A, Cunial G, Gagliazzo L, Milani A, Campalto M, Di Martino G, Forzan M, Monne I, Beato MS. Unrevealed genetic diversity of GII Norovirus in the swine population of North East Italy. Sci Rep 2020; 10:9217. [PMID: 32513947 PMCID: PMC7280493 DOI: 10.1038/s41598-020-66140-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/13/2020] [Indexed: 12/02/2022] Open
Abstract
Noroviruses (NoVs) are one of the major causative agents of non-bacterial gastroenteritis in humans worldwide. NoVs, belonging to Caliciviridae, are classified into ten genogroups (G) and eight P-groups based on major capsid protein (VP1) and of the RNA-dependent-RNA-polymerase (RdRp), respectively. In swine, the main genogroup and P-group identified are GII and GII.P; which can infect humans too. To date, only one case of GIIP.11 have been identified in swine in Italy while the circulation of other P-types is currently unknown. In the present study, 225 swine faecal samples were collected from 74 swine herds in Veneto region through on-farm monitoring. NoV circulation was particularly high in older pigs. The phylogenetic analysis showed the co-circulation of NoVs belonging to two different P-types: GII.P11 and GII.P18, here described for the first time in Italy, presenting an extensive genetic diversity, never described before worldwide. Distinct NoV genetic subgroups and unique amino acid mutations were identified for each P-type for the first time. This study demonstrated the co-circulation of diverse swine NoVs subgroups in Italy, raising questions on the origin of such diversity and suggesting that continuous monitoring of swine NoVs is needed to track the emergence of potentially zoonotic viruses by recombination events.
Collapse
Affiliation(s)
- L Cavicchio
- Diagnostic Virology Laboratory, Department of Animal Health, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell'Università 10, 35020, Legnaro, Padua, Italy
| | - L Tassoni
- Diagnostic Virology Laboratory, Department of Animal Health, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell'Università 10, 35020, Legnaro, Padua, Italy
| | - A Laconi
- EU, OIE/FAO and National Reference Laboratory for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell'Università 10, 35020, Legnaro, Padua, Italy
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - G Cunial
- Epidemiology Department, Istituto Zooprofilattico Sperimentale Delle Venezie (IZSVe), Viale dell'Università 10, 35020, Legnaro, Padua, Italy
| | - L Gagliazzo
- Epidemiology Department, Istituto Zooprofilattico Sperimentale Delle Venezie (IZSVe), Viale dell'Università 10, 35020, Legnaro, Padua, Italy
| | - A Milani
- EU, OIE/FAO and National Reference Laboratory for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell'Università 10, 35020, Legnaro, Padua, Italy
| | - M Campalto
- Diagnostic Virology Laboratory, Department of Animal Health, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell'Università 10, 35020, Legnaro, Padua, Italy
| | - G Di Martino
- Epidemiology Department, Istituto Zooprofilattico Sperimentale Delle Venezie (IZSVe), Viale dell'Università 10, 35020, Legnaro, Padua, Italy
| | - M Forzan
- Department of Veterinary Virology, University of Pisa, Viale delle Piagge 2, 56124, Pisa, Italy
| | - I Monne
- EU, OIE/FAO and National Reference Laboratory for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell'Università 10, 35020, Legnaro, Padua, Italy
| | - M S Beato
- Diagnostic Virology Laboratory, Department of Animal Health, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell'Università 10, 35020, Legnaro, Padua, Italy.
| |
Collapse
|
6
|
Nagai M, Wang Q, Oka T, Saif LJ. Porcine sapoviruses: Pathogenesis, epidemiology, genetic diversity, and diagnosis. Virus Res 2020; 286:198025. [PMID: 32470356 PMCID: PMC7255249 DOI: 10.1016/j.virusres.2020.198025] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 11/16/2022]
Abstract
The first porcine Sapovirus (SaV) Cowden strain was discovered in 1980. To date, eight genogroups (GIII, V-IX) and three genogroups (GIII, GV, and GVI) of porcine SaVs have been detected from domestic pigs worldwide and wild boars in Japan, respectively based on the capsid sequences. Although GIII Cowden strain replicated in the villous epithelial cells and caused intestinal lesions in the proximal small intestines (mainly in duodenal and less in jejunum), leading to mild to severe diarrhea, in the orally inoculated neonatal gnotobiotic pigs, the significance of porcine SaVs in different ages of pigs with diarrhea in the field is still undetermined. This is due to two reasons: 1) similar prevalence of porcine SaVs was detected in diarrheic and non-diarrheic pigs; and 2) co-infection of porcine SaVs with other enteric pathogens is common in pigs. Diagnosis of porcine SaV infection is mainly based on the detection of viral nucleic acids using reverse transcription (RT)-PCR and sequencing. Much is unknown about these genetically diverse viruses to understand their role in pig health and to evaluate whether vaccines are needed to prevent SaV infection.
Collapse
Affiliation(s)
- Makoto Nagai
- Laboratory of Infectious Disease, School of Veterinary Medicine, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Qiuhong Wang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| | - Tomoichiro Oka
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA
| |
Collapse
|
7
|
Sunaga F, Masuda T, Aoki H, Ito M, Sano K, Naoi Y, Katayama Y, Omatsu T, Oba M, Furuya T, Shirai J, Mizutani T, Oka T, Nagai M. Complete genome sequencing and genetic characterization of porcine sapovirus genogroup (G) X and GXI: GVI, GVII, GX, and GXI sapoviruses share common genomic features and form a unique porcine SaV clade. INFECTION GENETICS AND EVOLUTION 2019; 75:103959. [PMID: 31299324 DOI: 10.1016/j.meegid.2019.103959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 01/06/2023]
Abstract
Sapoviruses (SaVs) are enteric viruses belonging to the family Caliciviridae that infect humans and animals, including pigs. To date, SaVs have been classified into 19 genogroups (G) based on complete VP1 sequences; however, complete genome sequences of some SaV Gs are not yet available. In this study, we determined the full genome sequences of four SaVs (two GX and two GXI SaVs) and analyzed them together with those of other SaVs. The complete genome sequences of GX and GXI SaVs, excluding the poly(A) tails, were 7124, 7142, 7170, and 7179 nucleotides, which were shorter than those of other SaVs, except for porcine GVI and GVII viruses. Genetic characterization revealed that GX SaVs and GXI SaVs shared common features with GVI and GVII viruses, such as the first 10 amino acid residues in the ORF1 coding region, a shorter ORF1 than that of the other genogroups, and the predicted secondary structure of the 5' end of the genome and the starting region of non-structural protein/structural protein junction. Phylogenetic analyses showed that GX and GXI SaVs branched with porcine GVI, GVII, and GIX SaVs and formed a clade consisting of only porcine SaVs. These findings suggest that porcine GX and GXI SaVs together with porcine GVI, GVII, and possibly GIX SaVs, evolved from a common ancestor in the porcine population.
Collapse
Affiliation(s)
- Fujiko Sunaga
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Tsuneyuki Masuda
- Kurayoshi Livestock Hygiene Service Center, Kurayoshi, Tottori 683-0017, Japan
| | - Hiroshi Aoki
- Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Mika Ito
- Ishikawa Nanbu Livestock Hygiene Service Center, Kanazawa, Ishikawa 920-3101, Japan
| | - Kaori Sano
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan; Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-0052, Japan
| | - Yuki Naoi
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Mami Oba
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Tetsuya Furuya
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Junsuke Shirai
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Tomoichiro Oka
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan.
| | - Makoto Nagai
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan; Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
8
|
Animals as Reservoir for Human Norovirus. Viruses 2019; 11:v11050478. [PMID: 31130647 PMCID: PMC6563253 DOI: 10.3390/v11050478] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/12/2023] Open
Abstract
Norovirus is the most common cause of non-bacterial gastroenteritis and is a burden worldwide. The increasing norovirus diversity is currently categorized into at least 10 genogroups which are further classified into more than 40 genotypes. In addition to humans, norovirus can infect a broad range of hosts including livestock, pets, and wild animals, e.g., marine mammals and bats. Little is known about norovirus infections in most non-human hosts, but the close genetic relatedness between some animal and human noroviruses coupled with lack of understanding where newly appearing human norovirus genotypes and variants are emerging from has led to the hypothesis that norovirus may not be host restricted and might be able to jump the species barrier. We have systematically reviewed the literature to describe the diversity, prevalence, and geographic distribution of noroviruses found in animals, and the pathology associated with infection. We further discuss the evidence that exists for or against interspecies transmission including surveillance data and data from in vitro and in vivo experiments.
Collapse
|
9
|
Kuroda M, Masuda T, Ito M, Naoi Y, Doan YH, Haga K, Tsuchiaka S, Kishimoto M, Sano K, Omatsu T, Katayama Y, Oba M, Aoki H, Ichimaru T, Sunaga F, Mukono I, Yamasato H, Shirai J, Katayama K, Mizutani T, Oka T, Nagai M. Genetic diversity and intergenogroup recombination events of sapoviruses detected from feces of pigs in Japan. INFECTION GENETICS AND EVOLUTION 2017; 55:209-217. [PMID: 28923281 DOI: 10.1016/j.meegid.2017.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 01/02/2023]
Abstract
Sapoviruses (SaV) are enteric viruses infecting humans and animals. SaVs are highly diverse and are divided into multiple genogroups based on structural protein (VP1) sequences. SaVs detected from pigs belong to eight genogroups (GIII, GV, GVI, GVII, GVIII, GIX, GX, and GXI), but little is known about the SaV genogroup distribution in the Japanese pig population. In the present study, 26 nearly complete genome (>6000 nucleotide: nt) and three partial sequences (2429nt, 4364nt, and 4419nt in length, including the entire VP1 coding region) of SaV were obtained from one diarrheic and 15 non-diarrheic porcine feces in Japan via a metagenomics approach. Phylogenetic analysis of the complete VP1 amino acid sequence (aa) revealed that 29 porcine SaVs were classified into seven genogroups; GIII (11 strains), GV (1 strain), GVI (3 strains), GVII (6 strains), GVIII (1 strain), GX (3 strains), and GXI (4 strains). This manuscript presents the first nearly complete genome sequences of GX and GXI, and demonstrates novel intergenogroup recombination events.
Collapse
Affiliation(s)
- Moegi Kuroda
- Kurayoshi Livestock Hygiene Service Center, Kurayoshi, Tottori 683-0017, Japan
| | - Tsuneyuki Masuda
- Kurayoshi Livestock Hygiene Service Center, Kurayoshi, Tottori 683-0017, Japan
| | - Mika Ito
- Ishikawa Nanbu Livestock Hygiene Service Center, Kanazawa, Ishikawa 920-3101, Japan
| | - Yuki Naoi
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Yen Hai Doan
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Kei Haga
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan; Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Graduate School of Infection Control Sciences, Minato, Tokyo 108-8641, Japan
| | - Shinobu Tsuchiaka
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Mai Kishimoto
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Kaori Sano
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Mami Oba
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Hiroshi Aoki
- Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Toru Ichimaru
- Department of Health and Medical Sciences, Ishikawa Prefectural Nursing University, Kahoku, Ishikawa 929-1210, Japan
| | - Fujiko Sunaga
- Laboratory of Infectious Diseases, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Itsuro Mukono
- Ishikawa Nanbu Livestock Hygiene Service Center, Kanazawa, Ishikawa 920-3101, Japan
| | - Hiroshi Yamasato
- Kurayoshi Livestock Hygiene Service Center, Kurayoshi, Tottori 683-0017, Japan
| | - Junsuke Shirai
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Kazuhiko Katayama
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan; Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Graduate School of Infection Control Sciences, Minato, Tokyo 108-8641, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Tomoichiro Oka
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan.
| | - Makoto Nagai
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan; Department of Bioproduction Science, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan.
| |
Collapse
|
10
|
Sisay Z, Djikeng A, Berhe N, Belay G, Abegaz WE, Wang QH, Saif LJ. First detection and molecular characterization of sapoviruses and noroviruses with zoonotic potential in swine in Ethiopia. Arch Virol 2016; 161:2739-47. [PMID: 27424025 DOI: 10.1007/s00705-016-2974-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/07/2016] [Indexed: 10/21/2022]
Abstract
Noroviruses (NoVs) and sapoviruses (SaVs), which belong to the family Caliciviridae, are important human and animal enteric pathogens with zoonotic potential. In Ethiopia, no study has been done on the epidemiology of animal NoVs and SaVs. The aim of this study was to detect and characterize NoVs and SaVs from swine of various ages. Swine fecal samples (n = 117) were collected from commercial farms in Ethiopia. The samples were screened for caliciviruses by reverse transcription polymerase chain reaction (RT-PCR) using universal and genogroup-specific primer pairs. Phylogenetic analysis was conducted using a portion of the RNA-dependent RNA polymerase (RdRp) region and the VP1 region of genome sequences of caliciviruses. Among 117 samples, potential caliciviruses were detected by RT-PCR in 17 samples (14.5 %). Of the RT-PCR-positive fecal samples, four were sequenced, of which two were identified as human NoV GII.1 and the other two as porcine SaV GIII. The porcine SaV strains that were detected were genetically related to the porcine enteric calicivirus Cowden strain genogroup III (GIII), which is the prototype porcine SaV strain. No porcine NoVs were detected. Our results showed the presence of NoVs in swine that are most similar to human strains. These findings have important implications for NoV epidemiology and food safety. Therefore, continued surveillance of NoVs in swine is needed to define their zoonotic potential, epidemiology and public and animal health impact. This is the first study to investigate enteric caliciviruses (noroviruses and sapoviruses) in swine in Ethiopia.
Collapse
Affiliation(s)
- Zufan Sisay
- Department of Microbiology and Immunology, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia. .,Microbial, Cellular and Molecular Biology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
| | - Appolinaire Djikeng
- Biosciences eastern and central Africa-International Livestock, Research Institute (BecA-ILRI) Hub, P.O. Box 30709, Nairobi, 00100, Kenya
| | - Nega Berhe
- Department of Microbiology and Immunology, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.,Centre for Imported and Tropical Diseases, Oslo University Hospital-Ulleval, Oslo, Nornway
| | - Gurja Belay
- Microbial, Cellular and Molecular Biology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Woldaregay Erku Abegaz
- Department of Microbiology and Immunology, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Q H Wang
- Food Animal Health Research Program, Ohio Agricultural Research Development Center, The Ohio State University, Wooster, OH, USA
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research Development Center, The Ohio State University, Wooster, OH, USA
| |
Collapse
|
11
|
Lauritsen KT, Hansen MS, Johnsen CK, Jungersen G, Böttiger B. Repeated examination of natural sapovirus infections in pig litters raised under experimental conditions. Acta Vet Scand 2015; 57:60. [PMID: 26410386 PMCID: PMC4583762 DOI: 10.1186/s13028-015-0146-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 09/02/2015] [Indexed: 01/14/2023] Open
Abstract
Background Porcine sapovirus, belonging to the family Caliciviridae, is an enteric virus that is widespread in the swine industry worldwide. A total of 14 sapovirus genogroups have been suggested and the most commonly found genogroup in swine is genogroup III (GIII). The goal of the present experiment was to examine the presence of sapovirus in 51 naturally infected pigs at two different time points. The pigs were kept under experimental conditions after weaning. Previous studies on sapovirus have primarily been of a cross sectional nature, typically prevalence studies performed on farms and abattoirs. In the present study, faecal samples, collected from each pig at 5½ weeks and 15–18 weeks of age, were analysed for sapovirus by reverse transciptase polymerase chain reaction and positive findings were genotyped by sequencing. Results At 5½ weeks of age, sapovirus was detected in the majority of the pigs. Sequencing revealed four different strains in the 5½ week olds—belonging to genogroups GIII and GVII. Ten to 13 weeks later, the virus was no longer detectable from stools of infected pigs. However, at this time point 13 pigs were infected with another GIII sapovirus strain not previously detected in the pigs studied. This GIII strain was only found in pigs that, in the initial samples, were virus-negative or positive for GVII. Conclusions At 5 weeks of age 74 % of the pigs were infected with sapovirus. At 15–18 weeks of age all pigs had cleared their initial infection, but a new sapovirus GIII strain was detected in 25 % of the pigs. None of the pigs initially infected with the first GIII strain were reinfected with this new GIII strain, which may indicate the presence of a genogroup-specific immunity.
Collapse
|
12
|
Valente CS, Alfieri AF, Barry AF, Leme RA, Lorenzetti E, Alfieri AA. Age distribution of porcine sapovirus asymptomatic infection and molecular evidence of genogroups GIII and GIX? circulation in distinct Brazilian pig production systems. Trop Anim Health Prod 2015; 48:21-7. [DOI: 10.1007/s11250-015-0912-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 09/07/2015] [Indexed: 12/19/2022]
|
13
|
Silva PFN, Alfieri AF, Barry AF, de Arruda Leme R, Gardinali NR, van der Poel WHM, Alfieri AA. High frequency of porcine norovirus infection in finisher units of Brazilian pig-production systems. Trop Anim Health Prod 2014; 47:237-41. [PMID: 25281212 DOI: 10.1007/s11250-014-0685-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/16/2014] [Indexed: 12/01/2022]
Abstract
Norovirus (NoV) is a member of the Caliciviridae family and is considered an emerging human enteric pathogen. NoVs are detected in farm animals such as cattle, sheep and pigs. Porcine NoV (PoNoV) is widespread worldwide, but frequency of infection is often low. This study aimed to investigate the natural PoNoV infection from adult animals of an important Brazilian pig-production region. Faecal samples (n = 112) of asymptomatic pigs aged 9 to 24 weeks old were collected from 16 grower-to-finish herds located in Paraná state, Brazilian Southern region, and evaluated for PoNoV presence. A reverse transcription-polymerase chain reaction (RT-PCR) assay was performed using specific primers that target a conserved region of the virus capsid gene (VP1). PoNoV was detected in 58 (51.8%) of the 112 faecal samples and in 14 (87.5%) of the 16 herds evaluated. Six of the obtained amplicons were submitted to phylogenetic genotyping analysis. The higher nucleotide (86.5-97.4%) and amino acid (100%) similarities of the sequences in this study were with the representative strains of the porcine NoV genogroup II genotype 11 (PoNoV GII-11). These results reveal that PoNoV infection is endemic in one of the most important pork production areas of Brazil and that the PoNoV GII-11 is prevalent in this region.
Collapse
Affiliation(s)
- Patrícia F N Silva
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Campus Universitário, PO Box 10011, Londrina, Paraná, 86057-970, Brazil
| | | | | | | | | | | | | |
Collapse
|
14
|
Wilhelm B, Leblanc D, Houde A, Brassard J, Gagné MJ, Plante D, Bellon-Gagnon P, Jones TH, Muehlhauser V, Janecko N, Avery B, Rajić A, McEwen SA. Survey of Canadian retail pork chops and pork livers for detection of hepatitis E virus, norovirus, and rotavirus using real time RT-PCR. Int J Food Microbiol 2014; 185:33-40. [PMID: 24929681 DOI: 10.1016/j.ijfoodmicro.2014.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/11/2014] [Accepted: 05/06/2014] [Indexed: 01/16/2023]
Abstract
Over the past 15 years, hepatitis E virus (HEV), norovirus (NoV), and rotavirus (RV) have been hypothesized to be potentially zoonotic; swine and pork have been suggested as possible human infection sources for all 3 viruses. Our objective was to estimate HEV, NoV, and RV prevalence and load on Canadian retail pork chops and livers. Using the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) sampling platform, pork livers (n=283) and chops (n=599) were collected, processed, and assayed for the 3 viruses by four collaborating federal laboratories using validated real time reverse transcriptase polymerase chain reactions (qRT-PCR). Follow-up qRT-PCR estimating viral load in genomic copies/g was followed by nested classical RT-PCR and isolate sequencing of a partial segment of the ORF2 gene. Local alignments were performed using MUSCLE (Multiple Sequence Comparison by Log-Expectation); a phylogenetic tree was created. Twenty-five livers and 6 chops were classified 'positive' (thresholds for viral RNA detected in both replicates of the assay) or 'suspect' (thresholds detected in one of two replicates) for HEV. Follow-up qRT-PCR detected HEV on 16 livers, 0 chops, and nested classical RT-PCR, on 14 livers and 0 chops. Initial qRT-PCR classified 12 chops 'suspect' for NoV. Follow-up qRT-PCR detected viral RNA on only one sample with thresholds greater than 40 in both replicates. No amplicon was yielded, and therefore no isolate was sequenced from this sample. Partial ORF2 genes from 14 HEV isolates were sequenced, and compared via sequence identity and phylogenetic analysis with selected human case isolates listed in NCBI-GenBank. Overall, HEV prevalence on retail pork was comparable with other published reports.
Collapse
Affiliation(s)
| | - Danielle Leblanc
- Agriculture and Agri-Food Canada, Food Research and Development Centre, 3600 Casavant Blvd. West, St-Hyacinthe, Québec J2S 8E3, Canada
| | - Alain Houde
- Agriculture and Agri-Food Canada, Food Research and Development Centre, 3600 Casavant Blvd. West, St-Hyacinthe, Québec J2S 8E3, Canada
| | - Julie Brassard
- Agriculture and Agri-Food Canada, Food Research and Development Centre, 3600 Casavant Blvd. West, St-Hyacinthe, Québec J2S 8E3, Canada
| | - Marie-Josée Gagné
- Agriculture and Agri-Food Canada, Food Research and Development Centre, 3600 Casavant Blvd. West, St-Hyacinthe, Québec J2S 8E3, Canada
| | - Daniel Plante
- Health Canada, Health Products & Foods: Québec Region, 1001 St Laurent West, Longueuil, Québec J4K 1C7, Canada
| | - Pascale Bellon-Gagnon
- Health Canada, Health Products & Foods: Québec Region, 1001 St Laurent West, Longueuil, Québec J4K 1C7, Canada
| | - Tineke H Jones
- Agriculture and Agri-Food Canada, Lacombe Research Centre, 6000 C & E Trail, Lacombe, Alberta T4L 1W1, Canada
| | - Victoria Muehlhauser
- Agriculture and Agri-Food Canada, Lacombe Research Centre, 6000 C & E Trail, Lacombe, Alberta T4L 1W1, Canada
| | - Nicol Janecko
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, 160 Research Lane, Suite 103, Guelph, Ontario N1G 5B2, Canada; University of Guelph, Ontario Veterinary College, Guelph, Ontario N1G 2W1, Canada
| | - Brent Avery
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, 160 Research Lane, Suite 103, Guelph, Ontario N1G 5B2, Canada
| | - Andrijana Rajić
- University of Guelph, Ontario Veterinary College, Guelph, Ontario N1G 2W1, Canada
| | - Scott A McEwen
- University of Guelph, Ontario Veterinary College, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
15
|
Liu ZK, Li JY, Pan H. Seroprevalence and molecular detection of porcine sapovirus in symptomatic suckling piglets in Guangdong Province, China. Trop Anim Health Prod 2014; 46:583-7. [DOI: 10.1007/s11250-013-0531-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2013] [Indexed: 01/26/2023]
|
16
|
Genetic diversity of porcine sapoviruses in pigs from the Amazon region of Brazil. Arch Virol 2013; 159:927-33. [PMID: 24197790 DOI: 10.1007/s00705-013-1904-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
Abstract
Sapoviruses (SaVs) belong to the family Caliciviridae and are related to gastroenteritis viruses of humans and animals. These agents have been reported from several countries of the world and represent an important cause of economic loss. The Amazon area has a high degree of diversity of animals and plants, is located in the Northern Region of Brazil and accounts for a large part of the Brazilian territory. In this study, stool samples were collected from pigs during the phase of nursing (less than 28 days of age) and post-weaning (29 to 56 days of age) from January 2008 to February 2009. A total of 169 specimens (108 nursing and 61 post-weaning pigs) were tested by reverse transcription polymerase chain reaction (RT-PCR) using the primers p289/p290 for the detection of caliciviruses (CVs), i.e., SaVs and noroviruses (NoVs). Positive sequences were analyzed using BioEdit software (v. 7.1.3.0) and compared with other sequences registered in the GenBank database. A positive frequency of 12.4 % (21/169) was observed, and all of the viruses found were identified as SaVs, with 15 belonging to genogroup GIII (71.4 %), three to GVII-1 (14.3 %) and three to GVIII-2 (14.3 %). No NoVs were detected. The frequency of SaV infections was significantly higher in nursing pigs (17.6 %-19/108) than in post-weaning pigs (3.3 %-2/61). Considering the consistency of the samples, 14.7 % of the samples were classified as diarrheic, but statistical analysis demonstrated that there was no significant difference compared to normal specimens (p = 0.5795). For the first time, we have demonstrated the circulation of SaVs in pigs from the Amazon.
Collapse
|
17
|
Leme RDA, Alfieri AF, Alfieri AA. Torque teno sus virus (TTSuV) infection at different stages of pig production cycle. PESQUISA VETERINARIA BRASILEIRA 2013. [DOI: 10.1590/s0100-736x2013000700002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Torque teno sus virus (TTSuV) infection is present in pig herds worldwide. It has been demonstrated that TTSuV might increase the severity of other important viral diseases with economic and public health impacts. At present, there is no information on the age distribution of pigs infected with TTSuV in Brazilian herds. This study evaluated the frequency of TTSuV infection in pigs at different stages of production. Fecal samples (n=190) from pigs at 1 to 24 weeks of age and from breeders at 6 farrow-to-weaning (up to 8 weeks of age) and 9 grower-to-finish (9 weeks of age onwards) farms in the western region of Paraná state, Brazil, were evaluated by PCR. Fragments of the 5' UTRs of TTSuV1 and/or TTSuVk2 DNAs were identified in 126 (66.3%) of the fecal samples. Significant differences were found with the percentages of positive samples for TTSuV1, TTSuVk2, and mixed infections by both genera between and within the different pig production stages. Fecal samples from the grower-to-finish farms had TTSuV detection rates (90.1%; 64/71) that were significantly (p<0.05) higher than those from the farrow-to-weaning farms (52.1%; 62/119). TTSuV detection was significantly (p<0.05) more frequent in finisher pigs than in the animals from the other stages. The UTR nucleotide sequences in this study presented higher similarities to strains from Norway (96%, TTSuV1), and Argentina and China (97.1%, TTSuVk2). These results suggest that TTSuV infection has spread to pigs of all production stages and that the viral infection rate increases with the age of the animals. In the western region of Paraná state, Brazil, TTSuV1 and TTSuVk2-induced infections were more frequently observed in suckling piglets and finisher pigs, respectively. Phylogenetic analysis pointed out the possibility of different strains of TTSuV1 and TTSuVk2 circulating in pig herds of Brazil.
Collapse
|
18
|
Ribeiro J, de Arruda Leme R, Alfieri AF, Alfieri AA. High frequency of Aichivirus C (porcine kobuvirus) infection in piglets from different geographic regions of Brazil. Trop Anim Health Prod 2013; 45:1757-62. [DOI: 10.1007/s11250-013-0428-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2013] [Indexed: 01/26/2023]
|
19
|
Prevalence of porcine noroviruses, molecular characterization of emerging porcine sapoviruses from finisher swine in the United States, and unified classification scheme for sapoviruses. J Clin Microbiol 2013; 51:2344-53. [PMID: 23678065 DOI: 10.1128/jcm.00865-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Noroviruses (NoVs) and sapoviruses (SaVs) are important human pathogens. Although the involvement of porcine NoVs in disease in pigs is unclear, they are genetically and antigenically closely related to human NoVs. Human NoV-like strains have been detected in pigs, raising public health concerns of potential interspecies transmission. Porcine SaVs are highly diverse and emerging in swine populations. Recently, at least three new genogroups of porcine SaVs have been proposed. In this study, we tested 413 pooled fecal samples collected from apparently healthy finisher pigs in North Carolina swine farms during 2009. Reverse transcription (RT)-PCR coupled hybridization assays were performed to detect known porcine NoVs. The overall prevalence of porcine NoVs determined was 18.9% based on this method. Samples were then tested by RT-PCR targeting the 5' end of the capsid region for genogroup II (GII) NoVs, a group which includes human NoVs, followed by sequence analysis. All NoVs identified belonged to typical porcine NoV genotypes, and no human NoV-like strains were detected in specimens from these pigs. Porcine NoV-negative samples (n = 335) were subsequently screened using universal calicivirus primers, and 17 SaV strains were confirmed by sequencing. Based on the partial RNA-dependent RNA polymerase (RdRp) region, they clustered with GIII, GVII, and GVIII and with currently unclassified SaVs. According to analysis of the complete capsid sequences, 7 representative strains clustered with GVII, GVIII, and GIX? SaVs. We tentatively classified SaVs into 14 genogroups based on the complete capsid protein VP1. In summary, porcine NoVs and highly divergent SaVs were present in North Carolina finisher pigs.
Collapse
|
20
|
Mathijs E, Stals A, Baert L, Botteldoorn N, Denayer S, Mauroy A, Scipioni A, Daube G, Dierick K, Herman L, Van Coillie E, Uyttendaele M, Thiry E. A review of known and hypothetical transmission routes for noroviruses. FOOD AND ENVIRONMENTAL VIROLOGY 2012; 4:131-52. [PMID: 23412887 DOI: 10.1007/s12560-012-9091-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 10/06/2012] [Indexed: 05/04/2023]
Abstract
Human noroviruses (NoVs) are considered a worldwide leading cause of acute non-bacterial gastroenteritis. Due to a combination of prolonged shedding of high virus levels in feces, virus particle shedding during asymptomatic infections, and a high environmental persistence, NoVs are easily transmitted pathogens. Norovirus (NoV) outbreaks have often been reported and tend to affect a lot of people. NoV is spread via feces and vomit, but this NoV spread can occur through several transmission routes. While person-to-person transmission is without a doubt the dominant transmission route, human infective NoV outbreaks are often initiated by contaminated food or water. Zoonotic transmission of NoV has been investigated, but has thus far not been demonstrated. The presented review aims to give an overview of these NoV transmission routes. Regarding NoV person-to-person transmission, the NoV GII.4 genotype is discussed in the current review as it has been very successful for several decades but reasons for its success have only recently been suggested. Both pre-harvest and post-harvest contamination of food products can lead to NoV food borne illness. Pre-harvest contamination of food products mainly occurs via contact with polluted irrigation water in case of fresh produce or with contaminated harvesting water in case of bivalve molluscan shellfish. On the other hand, an infected food handler is considered as a major cause of post-harvest contamination of food products. Both transmission routes are reviewed by a summary of described NoV food borne outbreaks between 2000 and 2010. A third NoV transmission route occurs via water and the spread of NoV via river water, ground water, and surface water is reviewed. Finally, although zoonotic transmission remains hypothetical, a summary on the bovine and porcine NoV presence observed in animals is given and the presence of human infective NoV in animals is discussed.
Collapse
Affiliation(s)
- Elisabeth Mathijs
- Department of Infectious and Parasitic diseases, Virology and Viral diseases, Faculty of Veterinary Medicine, University of Liège, Boulevard du Colonster 20, 4000, Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Liu GH, Li RC, Huang ZB, Yang J, Xiao CT, Li J, Li MX, Yan YQ, Yu XL. RT-PCR test for detecting porcine sapovirus in weanling piglets in Hunan Province, China. Trop Anim Health Prod 2012; 44:1335-9. [DOI: 10.1007/s11250-012-0138-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2012] [Indexed: 01/21/2023]
|
22
|
Liu GH, Li RC, Li J, Huang ZB, Xiao CT, Luo W, Ge M, Jiang DL, Yu XL. Seroprevalence of porcine cytomegalovirus and sapovirus infection in pigs in Hunan province, China. Arch Virol 2011; 157:521-4. [PMID: 22167251 DOI: 10.1007/s00705-011-1189-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/30/2011] [Indexed: 12/13/2022]
Abstract
The seroprevalence of porcine cytomegalovirus (PCMV) and sapovirus (SaV) infections in pigs was investigated in Hunan province, China, between May 2005 and October 2010. A total of 500 pig serum samples collected from 10 representative administrative regions in Hunan province were evaluated for antibodies against PCMV and SaV using enzyme-linked immunosorbent assay (ELISA). The overall seroprevalence of porcine cytomegalovirus and sapovirus in pigs was 96.40% (482/500) and 63.40% (317/500), and the seropositivity of 10 herds we surveyed varied, ranging from 94.74% to 98.48% and 56.36% to 72.50%, respectively. The highest prevalence was found in breeding sows (96.67% for PCMV and 83.33% for SaVs). The results of the present survey indicated that infections with porcine cytomegalovirus and sapovirus are highly prevalent in pigs in Hunan province, China.
Collapse
Affiliation(s)
- Guo-Hua Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan Province, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
dos Anjos K, Lima LMP, Silva PA, Inoue-Nagata AK, Nagata T. The possible molecular evolution of sapoviruses by inter- and intra-genogroup recombination. Arch Virol 2011; 156:1953-9. [DOI: 10.1007/s00705-011-1079-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 07/15/2011] [Indexed: 11/28/2022]
|
24
|
Song YJ, Yu JN, Nam HM, Bak HR, Lee JB, Park SY, Song CS, Seo KH, Choi IS. Identification of genetic diversity of porcine Norovirus and Sapovirus in Korea. Virus Genes 2011; 42:394-401. [PMID: 21369826 DOI: 10.1007/s11262-011-0588-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Accepted: 02/22/2011] [Indexed: 01/26/2023]
Abstract
It is well known that Norovirus (NoV) and Sapovirus (SaV) identified in humans and pigs have heterogeneous genome sequences. In this study, a total of three strains of NoV and 37 strains of SaV were detected in 567 porcine fecal samples by RT-PCR, corresponding detection rates of 0.5 and 6.5%, respectively. Phylogenetic analyses were conducted using amino acid sequences of the partial RNA-dependent RNA polymerase (RdRp) and complete capsid proteins of both viruses to determine their genogroups. Analysis with the RdRp sequences indicated that all three NoV strains HW41, DG32, and DO35 detected in this study were classified into genogroup II (GII). A further analysis with the complete capsid sequence demonstrated that the DO35 strain belonged to subgenotype b in GII-21 (GII-21b) along with the SW918 strain. A total of 26 strains out of 27 strains that were selected from the 37 porcine SaVs were classified into genogroup III when they were analyzed with the RdRp sequences. The remaining strain (DO19) was not clustered with any of the previously classified SaV strains, thereby suggesting the advent of a new genogroup virus. Additional analyses with the amino acid sequence of the capsid and the nucleotide sequence of the RdRp and capsid junction region supported the notion that the DO19 strain belonged to a novel genogroup of SaV. To the best of our knowledge, this is the first report to describe a novel porcine SaV belonging to an unknown genogroup in Korea.
Collapse
Affiliation(s)
- Young-Jo Song
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|