1
|
Thakur A, Kumar M. AntiVIRmiR: A repository of host antiviral miRNAs and their expression along with experimentally validated viral miRNAs and their targets. Front Genet 2022; 13:971852. [PMID: 36159991 PMCID: PMC9493126 DOI: 10.3389/fgene.2022.971852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
miRNAs play an essential role in promoting viral infections as well as modulating the antiviral defense. Several miRNA repositories have been developed for different species, e.g., human, mouse, and plant. However, 'VIRmiRNA' is the only existing resource for experimentally validated viral miRNAs and their targets. We have developed a 'AntiVIRmiR' resource encompassing data on host/virus miRNA expression during viral infection. This resource with 22,741 entries is divided into four sub-databases viz., 'DEmiRVIR', 'AntiVmiR', 'VIRmiRNA2' and 'VIRmiRTar2'. 'DEmiRVIR' has 10,033 differentially expressed host-viral miRNAs for 21 viruses. 'AntiVmiR' incorporates 1,642 entries for host miRNAs showing antiviral activity for 34 viruses. Additionally, 'VIRmiRNA2' includes 3,340 entries for experimentally validated viral miRNAs from 50 viruses along with 650 viral isomeric sequences for 14 viruses. Further, 'VIRmiRTar2' has 7,726 experimentally validated targets for viral miRNAs against 21 viruses. Furthermore, we have also performed network analysis for three sub-databases. Interactions between up/down-regulated human miRNAs and viruses are displayed for 'AntiVmiR' as well as 'DEmiRVIR'. Moreover, 'VIRmiRTar2' interactions are shown among different viruses, miRNAs, and their targets. We have provided browse, search, external hyperlinks, data statistics, and useful analysis tools. The database available at https://bioinfo.imtech.res.in/manojk/antivirmir would be beneficial for understanding the host-virus interactions as well as viral pathogenesis.
Collapse
Affiliation(s)
- Anamika Thakur
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manoj Kumar
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Abstract
One of the most important resources for researchers of noncoding RNAs is the information available in public databases spread over the internet. However, the effective exploration of this data can represent a daunting task, given the large amount of databases available and the variety of stored data. This chapter describes a classification of databases based on information source, type of RNA, source organisms, data formats, and the mechanisms for information retrieval, detailing the relevance of each of these classifications and its usability by researchers. This classification is used to update a 2012 review, indexing now more than 229 public databases. This review will include an assessment of the new trends for ncRNA research based on the information that is being offered by the databases. Additionally, we will expand the previous analysis focusing on the usability and application of these databases in pathogen and disease research. Finally, this chapter will analyze how currently available database schemas can help the development of new and improved web resources.
Collapse
|
3
|
Fan Y, Habib M, Xia J. Xeno-miRNet: a comprehensive database and analytics platform to explore xeno-miRNAs and their potential targets. PeerJ 2018; 6:e5650. [PMID: 30280028 PMCID: PMC6166626 DOI: 10.7717/peerj.5650] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/24/2018] [Indexed: 11/20/2022] Open
Abstract
Xeno-miRNAs are microRNAs originating from exogenous species detected in host biofluids. A growing number of studies have suggested that many of these xeno-miRNAs may be involved in cross-species interactions and manipulations. To date, hundreds of xeno-miRNAs have been reported in different hosts at various abundance levels. Based on computational predictions, many more miRNAs could be potentially transferred to human circulation system. There is a clear need for bioinformatics resources and tools dedicated to xeno-miRNA annotations and their potential functions. To address this need, we have systematically curated xeno-miRNAs from multiple sources, performed target predictions using well-established algorithms, and developed a user-friendly web-based tool—Xeno-miRNet—to allow researchers to search and explore xeno-miRNAs and their potential targets within different host species. Xeno-miRNet currently contains 1,702 (including both detected and predicted) xeno-miRNAs from 54 species and 98,053 potential gene targets in six hosts. The web application is freely available at http://xeno.mirnet.ca.
Collapse
Affiliation(s)
- Yannan Fan
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Maria Habib
- Department of Animal Science, McGill University, Ste. Anne de Bellevue, Quebec, Canada.,Department of Business Information Technology, University of Jordan, Amman, Jordan
| | - Jianguo Xia
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada.,Department of Animal Science, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| |
Collapse
|
4
|
Shu X, Zang X, Liu X, Yang J, Wang J. Predicting MicroRNA Mediated Gene Regulation between Human and Viruses. Cells 2018; 7:cells7080100. [PMID: 30096814 PMCID: PMC6115789 DOI: 10.3390/cells7080100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 01/22/2023] Open
Abstract
MicroRNAs (miRNAs) mediate various biological processes by actively fine-tuning gene expression at the post-transcriptional level. With the identification of numerous human and viral miRNAs, growing evidence has indicated a common role of miRNAs in mediating the interactions between humans and viruses. However, there is only limited information about Cross-Kingdom miRNA target sites from studies. To facilitate an extensive investigation on the interplay among the gene regulatory networks of humans and viruses, we designed a prediction pipeline, mirTarP, that is suitable for miRNA target screening on the genome scale. By applying mirTarP, we constructed the database mirTar, which is a comprehensive miRNA target repository of bidirectional interspecies regulation between viruses and humans. To provide convenient downloading for users from both the molecular biology field and medical field, mirTar classifies viruses according to “ICTV viral category” and the “medical microbiology classification” on the web page. The mirTar database and mirTarP tool are freely available online.
Collapse
Affiliation(s)
- Xin Shu
- The State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Science, Nanjing University, Nanjing 210023, China.
| | - Xinyuan Zang
- The State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Science, Nanjing University, Nanjing 210023, China.
| | - Xiaoshuang Liu
- The State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Science, Nanjing University, Nanjing 210023, China.
| | - Jie Yang
- The State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Science, Nanjing University, Nanjing 210023, China.
| | - Jin Wang
- The State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Science, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
5
|
van der Lee R, Feng Q, Langereis MA, ter Horst R, Szklarczyk R, Netea MG, Andeweg AC, van Kuppeveld FJM, Huynen MA. Integrative Genomics-Based Discovery of Novel Regulators of the Innate Antiviral Response. PLoS Comput Biol 2015; 11:e1004553. [PMID: 26485378 PMCID: PMC4618338 DOI: 10.1371/journal.pcbi.1004553] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 09/12/2015] [Indexed: 01/16/2023] Open
Abstract
The RIG-I-like receptor (RLR) pathway is essential for detecting cytosolic viral RNA to trigger the production of type I interferons (IFNα/β) that initiate an innate antiviral response. Through systematic assessment of a wide variety of genomics data, we discovered 10 molecular signatures of known RLR pathway components that collectively predict novel members. We demonstrate that RLR pathway genes, among others, tend to evolve rapidly, interact with viral proteins, contain a limited set of protein domains, are regulated by specific transcription factors, and form a tightly connected interaction network. Using a Bayesian approach to integrate these signatures, we propose likely novel RLR regulators. RNAi knockdown experiments revealed a high prediction accuracy, identifying 94 genes among 187 candidates tested (~50%) that affected viral RNA-induced production of IFNβ. The discovered antiviral regulators may participate in a wide range of processes that highlight the complexity of antiviral defense (e.g. MAP3K11, CDK11B, PSMA3, TRIM14, HSPA9B, CDC37, NUP98, G3BP1), and include uncharacterized factors (DDX17, C6orf58, C16orf57, PKN2, SNW1). Our validated RLR pathway list (http://rlr.cmbi.umcn.nl/), obtained using a combination of integrative genomics and experiments, is a new resource for innate antiviral immunity research.
Collapse
Affiliation(s)
- Robin van der Lee
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Qian Feng
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
| | - Martijn A. Langereis
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
| | - Rob ter Horst
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Radek Szklarczyk
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud university medical center, Nijmegen, The Netherlands
| | - Arno C. Andeweg
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Frank J. M. van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
| | - Martijn A. Huynen
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Wan XX, Yi H, Qu JQ, He QY, Xiao ZQ. Integrated analysis of the differential cellular and EBV miRNA expression profiles in microdissected nasopharyngeal carcinoma and non-cancerous nasopharyngeal tissues. Oncol Rep 2015; 34:2585-601. [PMID: 26330189 DOI: 10.3892/or.2015.4237] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/26/2015] [Indexed: 01/17/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is commonly diagnosed in southern Asia. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression post-transcriptionally. Increasing evidence suggests that the dysregulation of miRNAs promotes NPC tumorigenesis. Epstein-Barr virus (EBV) infection and EBV-encoded miRNAs are also associated with the development of NPC. However, it is unclear how cellular and EBV miRNAs jointly regulate target genes and signaling pathways in NPC. In the present study, we analyzed the differential cellular and EBV miRNA expression profiles in 20 pooled NPC tissues using microarrays. We found that 19 cellular miRNAs and 9 EBV miRNAs were upregulated and 31 cellular miRNAs were downregulated in NPC tissues. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the 19 upregulated miRNAs target mainly the p53 signaling pathway in cancer, whereas the downregulated miRNAs regulate pathways related to cancer, focal adhesion and Erb, and MAPK signaling. In contrast, the upregulated EBV miRNAs target primarily the TGF-β and Wnt signaling pathways. Data also suggested that cellular miR-34b, miR-34c, miR-18a, miR‑200a/b, miR-449a, miR-31 and let-7 may be dysregulated in NPCs, and that the aberrant activation of their target genes in the p53 pathway and cell cycle enhance NPC cell survival and proliferation. In addition, EBV-miRNAs such as BART3 and BART5 target genes in the p53, TGF-β and Wnt signaling pathways to modulate NPC apoptosis and transformation. To better elucidate the interaction between miRNAs and target genes, we constructed an anti-correlated cellular and EBV miRNA/target gene regulatory network. The current findings may help dissect the roles played by cellular and EBV miRNAs during NPC tumorigenesis, and also provide useful biomarkers for the diagnosis and treatment of NPCs.
Collapse
Affiliation(s)
- Xun-Xun Wan
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jia-Quan Qu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Qiu-Yan He
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhi-Qiang Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
7
|
Navari M, Fuligni F, Laginestra MA, Etebari M, Ambrosio MR, Sapienza MR, Rossi M, De Falco G, Gibellini D, Tripodo C, Pileri SA, Leoncini L, Piccaluga PP. Molecular signature of Epstein Barr virus-positive Burkitt lymphoma and post-transplant lymphoproliferative disorder suggest different roles for Epstein Barr virus. Front Microbiol 2014; 5:728. [PMID: 25566237 PMCID: PMC4274971 DOI: 10.3389/fmicb.2014.00728] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/03/2014] [Indexed: 12/12/2022] Open
Abstract
Epstein Barr virus (EBV) infection is commonly associated with human cancer and, in particular, with lymphoid malignancies. Although the precise role of the virus in the pathogenesis of different lymphomas is largely unknown, it is well recognized that the expression of viral latent proteins and miRNA can contribute to its pathogenetic role. In this study, we compared the gene and miRNA expression profile of two EBV-associated aggressive B non-Hodgkin lymphomas known to be characterized by differential expression of the viral latent proteins aiming to dissect the possible different contribution of such proteins and EBV-encoded miRNAs. By applying extensive bioinformatic inferring and an experimental model, we found that EBV+ Burkitt lymphoma presented with significant over-expression of EBV-encoded miRNAs that were likely to contribute to its global molecular profile. On the other hand, EBV+ post-transplant diffuse large B-cell lymphomas presented a significant enrichment in genes regulated by the viral latent proteins. Based on these different viral and cellular gene expression patterns, a clear distinction between EBV+ Burkitt lymphoma and post-transplant diffuse large B-cell lymphomas was made. In this regard, the different viral and cellular expression patterns seemed to depend on each other, at least partially, and the latency type most probably played a significant role in their regulation. In conclusion, our data indicate that EBV influence over B-cell malignant clones may act through different mechanisms of transcriptional regulation and suggest that potentially different pathogenetic mechanisms may depend upon the conditions of the interaction between EBV and the host that finally determine the latency pattern.
Collapse
Affiliation(s)
- Mohsen Navari
- Hematopathology Section, Department of Experimental, Diagnostic, and Experimental Medicine, S. Orsola-Malpighi Hospital, Bologna University School of MedicineBologna, Italy
- Department of Medical Biotechnology, University of SienaSiena, Italy
- Department of Basic sciences, Torbat Heydariyeh University of Medical SciencesTorbat Heydariyeh, Iran
| | - Fabio Fuligni
- Hematopathology Section, Department of Experimental, Diagnostic, and Experimental Medicine, S. Orsola-Malpighi Hospital, Bologna University School of MedicineBologna, Italy
| | - Maria A. Laginestra
- Hematopathology Section, Department of Experimental, Diagnostic, and Experimental Medicine, S. Orsola-Malpighi Hospital, Bologna University School of MedicineBologna, Italy
| | - Maryam Etebari
- Hematopathology Section, Department of Experimental, Diagnostic, and Experimental Medicine, S. Orsola-Malpighi Hospital, Bologna University School of MedicineBologna, Italy
| | - Maria R. Ambrosio
- Department of Medical Biotechnology, University of SienaSiena, Italy
| | - Maria R. Sapienza
- Hematopathology Section, Department of Experimental, Diagnostic, and Experimental Medicine, S. Orsola-Malpighi Hospital, Bologna University School of MedicineBologna, Italy
| | - Maura Rossi
- Hematopathology Section, Department of Experimental, Diagnostic, and Experimental Medicine, S. Orsola-Malpighi Hospital, Bologna University School of MedicineBologna, Italy
| | - Giulia De Falco
- Nanchang Joint Programme in Biomedical Sciences, School of Biological and Chemical Sciences, Queen Mary University of LondonLondon, UK
| | - Davide Gibellini
- Microbiology and Virology Unit, Department of Pathology and Diagnostic, University of VeronaVerona, Italy
| | - Claudio Tripodo
- Tumour Immunology Unit, Human Pathology Section, Department of Health Science, Palermo University School of MedicinePalermo, Italy
| | - Stefano A. Pileri
- Hematopathology Section, Department of Experimental, Diagnostic, and Experimental Medicine, S. Orsola-Malpighi Hospital, Bologna University School of MedicineBologna, Italy
| | - Lorenzo Leoncini
- Department of Medical Biotechnology, University of SienaSiena, Italy
| | - Pier P. Piccaluga
- Hematopathology Section, Department of Experimental, Diagnostic, and Experimental Medicine, S. Orsola-Malpighi Hospital, Bologna University School of MedicineBologna, Italy
| |
Collapse
|
8
|
Qureshi A, Thakur N, Monga I, Thakur A, Kumar M. VIRmiRNA: a comprehensive resource for experimentally validated viral miRNAs and their targets. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2014; 2014:bau103. [PMID: 25380780 PMCID: PMC4224276 DOI: 10.1093/database/bau103] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Viral microRNAs (miRNAs) regulate gene expression of viral and/or host genes to benefit the virus. Hence, miRNAs play a key role in host–virus interactions and pathogenesis of viral diseases. Lately, miRNAs have also shown potential as important targets for the development of novel antiviral therapeutics. Although several miRNA and their target repositories are available for human and other organisms in literature, but a dedicated resource on viral miRNAs and their targets are lacking. Therefore, we have developed a comprehensive viral miRNA resource harboring information of 9133 entries in three subdatabases. This includes 1308 experimentally validated miRNA sequences with their isomiRs encoded by 44 viruses in viral miRNA ‘VIRmiRNA’ and 7283 of their target genes in ‘VIRmiRtar’. Additionally, there is information of 542 antiviral miRNAs encoded by the host against 24 viruses in antiviral miRNA ‘AVIRmir’. The web interface was developed using Linux-Apache-MySQL-PHP (LAMP) software bundle. User-friendly browse, search, advanced search and useful analysis tools are also provided on the web interface. VIRmiRNA is the first specialized resource of experimentally proven virus-encoded miRNAs and their associated targets. This database would enhance the understanding of viral/host gene regulation and may also prove beneficial in the development of antiviral therapeutics. Database URL: http://crdd.osdd.net/servers/virmirna
Collapse
Affiliation(s)
- Abid Qureshi
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Sector 39-A, Chandigarh 160036, India
| | - Nishant Thakur
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Sector 39-A, Chandigarh 160036, India
| | - Isha Monga
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Sector 39-A, Chandigarh 160036, India
| | - Anamika Thakur
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Sector 39-A, Chandigarh 160036, India
| | - Manoj Kumar
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Sector 39-A, Chandigarh 160036, India
| |
Collapse
|
9
|
Ghosal S, Das S, Sen R, Chakrabarti J. HumanViCe: host ceRNA network in virus infected cells in human. Front Genet 2014; 5:249. [PMID: 25120561 PMCID: PMC4114262 DOI: 10.3389/fgene.2014.00249] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 07/10/2014] [Indexed: 01/10/2023] Open
Abstract
Host-virus interaction via host cellular components has been an important field of research in recent times. RNA interference mediated by short interfering RNAs and microRNAs (miRNA), is a widespread anti-viral defense strategy. Importantly, viruses also encode their own miRNAs. In recent times miRNAs were identified as key players in host-virus interaction. Furthermore, viruses were shown to exploit the host miRNA networks to suite their own need. The complex cross-talk between host and viral miRNAs and their cellular and viral targets forms the environment for viral pathogenesis. Apart from protein-coding mRNAs, non-coding RNAs may also be targeted by host or viral miRNAs in virus infected cells, and viruses can exploit the host miRNA mediated gene regulatory network via the competing endogenous RNA effect. A recent report showed that viral U-rich non-coding RNAs called HSUR, expressed in primate virus herpesvirus saimiri (HVS) infected T cells, were able to bind to three host miRNAs, causing significant alteration in cellular level for one of the miRNAs. We have predicted protein coding and non protein-coding targets for viral and human miRNAs in virus infected cells. We identified viral miRNA targets within host non-coding RNA loci from AGO interacting regions in three different virus infected cells. Gene ontology (GO) and pathway enrichment analysis of the genes comprising the ceRNA networks in the virus infected cells revealed enrichment of key cellular signaling pathways related to cell fate decisions and gene transcription, like Notch and Wnt signaling pathways, as well as pathways related to viral entry, replication and virulence. We identified a vast number of non-coding transcripts playing as potential ceRNAs to the immune response associated genes; e.g., APOBEC family genes, in some virus infected cells. All these information are compiled in HumanViCe (http://gyanxet-beta.com/humanvice), a comprehensive database that provides the potential ceRNA networks in virus infected human cells.
Collapse
Affiliation(s)
- Suman Ghosal
- Computational Biology Group, Indian Association for the Cultivation of Science Kolkata, India
| | - Shaoli Das
- Computational Biology Group, Indian Association for the Cultivation of Science Kolkata, India
| | | | - Jayprokas Chakrabarti
- Computational Biology Group, Indian Association for the Cultivation of Science Kolkata, India ; Gyanxet Kolkata, India
| |
Collapse
|
10
|
Abstract
Noncoding RNAs (ncRNAs) constitute an evolutionary conserved system involved in the regulation of biological functions at posttranscriptional level. The capability to rapidly adapt their metabolism is essential for the survival of organisms. NcRNAs are a valuable means used by cells to rapidly transfer and internalize an external signal. NcRNAs are capable not only to influence the translational phase but also to affect epigenetic processes. They have been identified in almost all kingdoms of life (from archaea to human and plants). In this chapter we outline the currently available resources that could be used for the screening of viral and bacterial ncRNAs.
Collapse
|
11
|
MicroRNAs as Haematopoiesis Regulators. Adv Hematol 2013; 2013:695754. [PMID: 24454381 PMCID: PMC3884629 DOI: 10.1155/2013/695754] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/20/2013] [Accepted: 10/27/2013] [Indexed: 12/20/2022] Open
Abstract
The production of different types of blood cells including their formation, development, and differentiation is collectively known as haematopoiesis. Blood cells are divided into three lineages erythriod (erythrocytes), lymphoid (B and T cells), and myeloid (granulocytes, megakaryocytes, and macrophages). Haematopoiesis is a complex process regulated by several mechanisms including microRNAs (miRNAs). miRNAs are small RNAs which regulate the expression of a number of genes involved in commitment and differentiation of hematopoietic stem cells. Evidence shows that miRNAs play an important role in haematopoiesis; for example, myeloid and erythroid differentiation is blocked by the overexpression of miR-15a. miR-221, miR-222, and miR-24 inhibit the erythropoiesis, whereas miR-150 plays a role in B and T cell differentiation. miR-146 and miR-10a are downregulated in megakaryopoiesis. Aberrant expression of miRNAs was observed in hematological malignancies including chronic myelogenous leukemia, chronic lymphocytic leukemia, multiple myelomas, and B cell lymphomas. In this review we have focused on discussing the role of miRNA in haematopoiesis.
Collapse
|
12
|
Laganà A, Russo F, Veneziano D, Bella SD, Giugno R, Pulvirenti A, Croce CM, Ferro A. Extracellular circulating viral microRNAs: current knowledge and perspectives. Front Genet 2013; 4:120. [PMID: 23805153 PMCID: PMC3690336 DOI: 10.3389/fgene.2013.00120] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/04/2013] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs responsible of post-transcriptional regulation of gene expression through interaction with messenger RNAs (mRNAs). They are involved in important biological processes and are often dysregulated in a variety of diseases, including cancer and infections. Viruses also encode their own sets of miRNAs, which they use to control the expression of either the host’s genes and/or their own. In the past few years evidence of the presence of cellular miRNAs in extracellular human body fluids such as serum, plasma, saliva, and urine has accumulated. They have been found either cofractionate with the Argonaute2 protein or in membrane-bound vesicles such as exosomes. Although little is known about the role of circulating miRNAs, it has been demonstrated that miRNAs secreted by virus-infected cells are transferred to and act in uninfected recipient cells. In this work we summarize the current knowledge on viral circulating miRNAs and provide a few examples of computational prediction of their function.
Collapse
Affiliation(s)
- Alessandro Laganà
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University Columbus, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|