1
|
Prediction and identification of new type holin protein of Escherichia coli phage ECP26. Food Sci Biotechnol 2022; 31:843-847. [DOI: 10.1007/s10068-022-01089-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/27/2022] [Accepted: 04/18/2022] [Indexed: 11/04/2022] Open
|
2
|
Park DW, Park JH. Characterization of Endolysin LysECP26 Derived from rV5-like Phage vB_EcoM-ECP26 for Inactivation of Escherichia coli O157:H7. J Microbiol Biotechnol 2020; 30:1552-1558. [PMID: 32699198 PMCID: PMC9728275 DOI: 10.4014/jmb.2005.05030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
With an increase in the consumption of non-heated fresh food, foodborne shiga toxin-producing Escherichia coli (STEC) has emerged as one of the most problematic pathogens worldwide. Endolysin, a bacteriophage-derived lysis protein, is able to lyse the target bacteria without any special resistance, and thus has been garnering interest as a powerful antimicrobial agent. In this study, rV5-like phage endolysin targeting E. coli O157:H7, named as LysECP26, was identified and purified. This endolysin had a lysozyme-like catalytic domain, but differed markedly from the sequence of lambda phage endolysin. LysECP26 exhibited strong activity with a broad lytic spectrum against various gram-negative strains (29/29) and was relatively stable at a broad temperature range (4°C- 55°C). The optimum temperature and pH ranges of LysECP26 were identified at 37°C-42°C and pH 7- 8, respectively. NaCl supplementation did not affect the lytic activity. Although LysECP26 was limited in that it could not pass the outer membrane, E. coli O157: H7 could be effectively controlled by adding ethylenediaminetetraacetic acid (EDTA) and citric acid (1.44 and 1.14 log CFU/ml) within 30 min. Therefore, LysECP26 may serv as an effective biocontrol agent for gram-negative pathogens, including E. coli O157:H7.
Collapse
Affiliation(s)
- Do-Won Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Jong-Hyun Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea,Corresponding author Phone: +82-31-750-5523 Fax: +82-31-750-5273 E-mail:
| |
Collapse
|
3
|
Montso PK, Mlambo V, Ateba CN. Characterization of Lytic Bacteriophages Infecting Multidrug-Resistant Shiga Toxigenic Atypical Escherichia coli O177 Strains Isolated From Cattle Feces. Front Public Health 2019; 7:355. [PMID: 32039126 PMCID: PMC6988782 DOI: 10.3389/fpubh.2019.00355] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/07/2019] [Indexed: 11/13/2022] Open
Abstract
The increasing incidence of antibiotic resistance and emergence of virulent bacterial pathogens, coupled with a lack of new effective antibiotics, has reignited interest in the use of lytic bacteriophage therapy. The aim of this study was to characterize lytic Escherichia coli O177-specific bacteriophages isolated from cattle feces to determine their potential application as biocontrol agents. A total of 31 lytic E. coli O177-specific bacteriophages were isolated. A large proportion (71%) of these phage isolates produced large plaques while 29% produced small plaques on 0.3% soft agar. Based on different plaque morphologies and clarity and size of plaques, eight phages were selected for further analyses. Spot test and efficiency of plating (EOP) analyses were performed to determine the host range for selected phages. Phage morphotype and growth were analyzed using transmission electron microscopy and the one-step growth curve method. Phages were also assessed for thermal and pH stability. The spot test revealed that all selected phages were capable of infecting different environmental E. coli strains. However, none of the phages infected American Type Culture Collection (ATCC) and environmental Salmonella strains. Furthermore, EOP analysis (range: 0.1-1.0) showed that phages were capable of infecting a wide range of E. coli isolates. Selected phage isolates had a similar morphotype (an icosahedral head and a contractile tail) and were classified under the order Caudovirales, Myoviridae family. The icosahedral heads ranged from 81.2 to 110.77 nm, while the contractile tails ranged from 115.55 to 132.57 nm in size. The phages were found to be still active after 60 min of incubation at 37 and 40°C. Incremental levels of pH induced a quadratic response on stability of all phages. The pH optima for all eight phages ranged between 7.6 and 8.0, while at pH 3.0 all phages were inactive. Phage latent period ranged between 15 and 25 min while burst size ranged from 91 to 522 virion particles [plaque-forming unit (PFU)] per infected cell. These results demonstrate that lytic E. coli O177-specific bacteriophages isolated from cattle feces are highly stable and have the capacity to infect different E. coli strains, traits that make them potential biocontrol agents.
Collapse
Affiliation(s)
- Peter Kotsoana Montso
- Bacteriophage Therapy and Phage Bio-Control Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- Food Security and Safety Niche Area, North-West University, Mmabatho, South Africa
| | - Victor Mlambo
- Faculty of Agriculture and Natural Sciences, School of Agricultural Sciences, University of Mpumalanga, Mbombela, South Africa
| | - Collins Njie Ateba
- Bacteriophage Therapy and Phage Bio-Control Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- Food Security and Safety Niche Area, North-West University, Mmabatho, South Africa
| |
Collapse
|
4
|
Korf IHE, Meier-Kolthoff JP, Adriaenssens EM, Kropinski AM, Nimtz M, Rohde M, van Raaij MJ, Wittmann J. Still Something to Discover: Novel Insights into Escherichia coli Phage Diversity and Taxonomy. Viruses 2019; 11:E454. [PMID: 31109012 PMCID: PMC6563267 DOI: 10.3390/v11050454] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/29/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to gain further insight into the diversity of Escherichia coli phagesfollowed by enhanced work on taxonomic issues in that field. Therefore, we present the genomiccharacterization and taxonomic classification of 50 bacteriophages against E. coli isolated fromvarious sources, such as manure or sewage. All phages were examined for their host range on a setof different E. coli strains, originating, e.g., from human diagnostic laboratories or poultry farms.Transmission electron microscopy revealed a diversity of morphotypes (70% Myo-, 22% Sipho-, and8% Podoviruses), and genome sequencing resulted in genomes sizes from ~44 to ~370 kb.Annotation and comparison with databases showed similarities in particular to T4- and T5-likephages, but also to less-known groups. Though various phages against E. coli are already describedin literature and databases, we still isolated phages that showed no or only few similarities to otherphages, namely phages Goslar, PTXU04, and KWBSE43-6. Genome-based phylogeny andclassification of the newly isolated phages using VICTOR resulted in the proposal of new generaand led to an enhanced taxonomic classification of E. coli phages.
Collapse
Affiliation(s)
- Imke H E Korf
- Leibniz Institute DSMZ⁻German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig,Germany.
| | - Jan P Meier-Kolthoff
- Leibniz Institute DSMZ⁻German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig,Germany.
| | | | - Andrew M Kropinski
- Departments of Food Science and Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Manfred Nimtz
- Protein Analytics Platform, Helmholtz-Centre for Infection Research (HZI), 38124 Braunschweig,Germany.
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz-Centre for Infection Research (HZI), 38124 Braunschweig,Germany.
| | - Mark J van Raaij
- Department of Macromolecular Structure, Centro Nacional de Biotecnologia CNB-CSIC, 28049 Madrid,Spain.
| | - Johannes Wittmann
- Leibniz Institute DSMZ⁻German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig,Germany.
| |
Collapse
|
5
|
The Robust Self-Assembling Tubular Nanostructures Formed by gp053 from Phage vB_EcoM_FV3. Viruses 2019; 11:v11010050. [PMID: 30641882 PMCID: PMC6357053 DOI: 10.3390/v11010050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 02/02/2023] Open
Abstract
The recombinant phage tail sheath protein, gp053, from Escherichia coli infecting myovirus vB_EcoM_FV3 (FV3) was able to self-assemble into long, ordered and extremely stable tubular structures (polysheaths) in the absence of other viral proteins. TEM observations revealed that those protein nanotubes varied in length (~10–1000 nm). Meanwhile, the width of the polysheaths (~28 nm) corresponded to the width of the contracted tail sheath of phage FV3. The formed protein nanotubes could withstand various extreme treatments including heating up to 100 °C and high concentrations of urea. To determine the shortest variant of gp053 capable of forming protein nanotubes, a set of N- or/and C-truncated as well as poly-His-tagged variants of gp053 were constructed. The TEM analysis of these mutants showed that up to 25 and 100 amino acid residues could be removed from the N and C termini, respectively, without disturbing the process of self-assembly. In addition, two to six copies of the gp053 encoding gene were fused into one open reading frame. All the constructed oligomers of gp053 self-assembled in vitro forming structures of different regularity. By using the modification of cysteines with biotin, the polysheaths were tested for exposed thiol groups. Polysheaths formed by the wild-type gp053 or its mutants possess physicochemical properties, which are very attractive for the construction of self-assembling nanostructures with potential applications in different fields of nanosciences.
Collapse
|
6
|
Sváb D, Falgenhauer L, Rohde M, Chakraborty T, Tóth I. Identification and characterization of new broad host-range rV5-like coliphages C203 and P206 directed against enterobacteria. INFECTION GENETICS AND EVOLUTION 2018; 64:254-261. [PMID: 30033383 DOI: 10.1016/j.meegid.2018.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/08/2018] [Accepted: 07/03/2018] [Indexed: 11/18/2022]
Abstract
We isolated and characterized two novel rV5-like lytic bacteriophages from independently collected food samples. Nucleotide sequence analysis revealed that these phages have linear double-stranded DNA genomes comprising 138,073 bp with 213 CDS and 5 tRNA genes. The two genomes contain completely identical nucleotide sequence, albeit there is a 10,718 bp-long shift in the sequence. The GC content of the phage genomes was 43.7% and they showed high general homology to rV5-like phages. The new phages were termed C203 and P206. The genome of both phages contains a unique ORF that encodes for a putative phage homing endonuclease. The phage produced clear plaques with a burst size of approx. 1000 viral particles and a latent period of 60 min. Morphological investigation indicated that the new phages are members of the family Myoviridae with an approximate head length of 85 nm, tail length of 75 nm, and a head width of 96 nm. C203 and P206 exhibit a broad and uniform host range, which included enterohemorrhagic Escherichia coli strains of serogroup O157, multi drug resistant (MDR) E. coli strains of various sero- and pathotypes, and both Shigella sonnei and S. dysenteriae strains. C203 and P206 both effectively reduced the number of living EHEC O157:H7 Sakai in experimentally inoculated minced meat. The same broad host range, the lack of any virulence related genes, the stability and its short latent period suggest that these newly found phages could be suitable candidates as a bio-control agents against food-borne pathogenic Enterobacteria.
Collapse
Affiliation(s)
- Domonkos Sváb
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Linda Falgenhauer
- Institute of Medical Microbiology, Justus Liebig University Giessen, German Center for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Giessen, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, HZI, Braunschweig, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus Liebig University Giessen, German Center for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Giessen, Germany
| | - István Tóth
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
7
|
Magill DJ, Krylov VN, Shaburova OV, McGrath JW, Allen CCR, Quinn JP, Kulakov LA. Pf16 and phiPMW: Expanding the realm of Pseudomonas putida bacteriophages. PLoS One 2017; 12:e0184307. [PMID: 28877269 PMCID: PMC5587285 DOI: 10.1371/journal.pone.0184307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/21/2017] [Indexed: 12/22/2022] Open
Abstract
We present the analysis of two novel Pseudomonas putida phages, pf16 and phiPMW. Pf16 represents a peripherally related T4-like phage, and is the first of its kind infecting a Pseudomonad, with evidence suggesting cyanophage origins. Extensive divergence has resulted in pf16 occupying a newly defined clade designated as the pf16-related phages, lying at the interface of the Schizo T-Evens and Exo T-Evens. Recombination with an ancestor of the P. putida phage AF is likely responsible for the tropism of this phage. phiPMW represents a completely novel Pseudomonas phage with a genome containing substantial genetic novelty through its many hypothetical proteins. Evidence suggests that this phage has been extensively shaped through gene transfer events and vertical evolution. Phylogenetics shows that this phage has an evolutionary history involving FelixO1-related viruses but is in itself highly distinct from this group.
Collapse
Affiliation(s)
- Damian J. Magill
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, Belfast, Northern Ireland
| | - Victor N. Krylov
- Department of Microbiology, Laboratory for Genetics of Bacteriophages, I.I. Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Olga V. Shaburova
- Department of Microbiology, Laboratory for Genetics of Bacteriophages, I.I. Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - John W. McGrath
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, Belfast, Northern Ireland
| | - Christopher C. R. Allen
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, Belfast, Northern Ireland
| | - John P. Quinn
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, Belfast, Northern Ireland
| | - Leonid A. Kulakov
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, Belfast, Northern Ireland
- * E-mail:
| |
Collapse
|
8
|
Dalmasso M, Strain R, Neve H, Franz CMAP, Cousin FJ, Ross RP, Hill C. Three New Escherichia coli Phages from the Human Gut Show Promising Potential for Phage Therapy. PLoS One 2016; 11:e0156773. [PMID: 27280590 PMCID: PMC4900583 DOI: 10.1371/journal.pone.0156773] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/19/2016] [Indexed: 01/08/2023] Open
Abstract
With the emergence of multi-drug resistant bacteria the use of bacteriophages (phages) is gaining renewed interest as promising anti-microbial agents. The aim of this study was to isolate and characterize phages from human fecal samples. Three new coliphages, ɸAPCEc01, ɸAPCEc02 and ɸAPCEc03, were isolated. Their phenotypic and genomic characteristics, and lytic activity against biofilm, and in combination with ciprofloxacin, were investigated. All three phages reduced the growth of E. coli strain DPC6051 at multiplicity of infection (MOI) between 10-3 and 105. A cocktail of all three phages completely inhibited the growth of E. coli. The phage cocktail also reduced biofilm formation and prevented the emergence of phage-resistant mutants which occurred with single phage. When combined with ciprofloxacin, phage alone or in cocktail inhibited the growth of E. coli and prevented the emergence of resistant mutants. These three new phages are promising biocontrol agents for E. coli infections.
Collapse
Affiliation(s)
- Marion Dalmasso
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Ronan Strain
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | | | - Fabien J. Cousin
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Teagasc Biotechnology Centre, Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
- * E-mail:
| |
Collapse
|
9
|
Incomplete LPS Core-Specific Felix01-Like Virus vB_EcoM_VpaE1. Viruses 2015; 7:6163-81. [PMID: 26633460 PMCID: PMC4690856 DOI: 10.3390/v7122932] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/10/2015] [Accepted: 11/18/2015] [Indexed: 12/21/2022] Open
Abstract
Bacteriophages represent a valuable source for studying the mechanisms underlying virus-host interactions. A better understanding of the host-specificity of viruses at the molecular level can promote various phage applications, including bacterial diagnostics, antimicrobial therapeutics, and improve methods in molecular biology. In this study, we describe the isolation and characterization of a novel coliphage, vB_EcoM_VpaE1, which has different host specificity than its relatives. Morphology studies, coupled with the results of genomic and proteomic analyses, indicate that vB_EcoM_VpaE1 belongs to the newly proposed genus Felix01likevirus in the family Myoviridae. The genus Felix01likevirus comprises a group of highly similar phages that infect O-antigen-expressing Salmonella and Escherichia coli (E. coli) strains. Phage vB_EcoM_VpaE1 differs from the rest of Felix01-like viruses, since it infects O-antigen-deficient E. coli strains with an incomplete core lipopolysaccharide (LPS). We show that vB_EcoM_VpaE1 can infect mutants of E. coli that contain various truncations in their LPS, and can even recognize LPS that is truncated down to the inner-core oligosaccharide, showing potential for the control of rough E. coli strains, which usually emerge as resistant mutants upon infection by O-Ag-specific phages. Furthermore, VpaE1 can replicate in a wide temperature range from 9 to 49 °C, suggesting that this virus is well adapted to harsh environmental conditions. Since the structural proteins of such phages tend to be rather robust, the receptor-recognizing proteins of VpaE1 are an attractive tool for application in glycan analysis, bacterial diagnostics and antimicrobial therapeutics.
Collapse
|
10
|
Henry M, Bobay LM, Chevallereau A, Saussereau E, Ceyssens PJ, Debarbieux L. The search for therapeutic bacteriophages uncovers one new subfamily and two new genera of Pseudomonas-infecting Myoviridae. PLoS One 2015; 10:e0117163. [PMID: 25629728 PMCID: PMC4309531 DOI: 10.1371/journal.pone.0117163] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 12/19/2014] [Indexed: 11/18/2022] Open
Abstract
In a previous study, six virulent bacteriophages PAK_P1, PAK_P2, PAK_P3, PAK_P4, PAK_P5 and CHA_P1 were evaluated for their in vivo efficacy in treating Pseudomonas aeruginosa infections using a mouse model of lung infection. Here, we show that their genomes are closely related to five other Pseudomonas phages and allow a subdivision into two clades, PAK_P1-like and KPP10-like viruses, based on differences in genome size, %GC and genomic contents, as well as number of tRNAs. These two clades are well delineated, with a mean of 86% and 92% of proteins considered homologous within individual clades, and 25% proteins considered homologous between the two clades. By ESI-MS/MS analysis we determined that their virions are composed of at least 25 different proteins and electron microscopy revealed a morphology identical to the hallmark Salmonella phage Felix O1. A search for additional bacteriophage homologs, using profiles of protein families defined from the analysis of the 11 genomes, identified 10 additional candidates infecting hosts from different species. By carrying out a phylogenetic analysis using these 21 genomes we were able to define a new subfamily of viruses, the Felixounavirinae within the Myoviridae family. The new Felixounavirinae subfamily includes three genera: Felixounalikevirus, PAK_P1likevirus and KPP10likevirus. Sequencing genomes of bacteriophages with therapeutic potential increases the quantity of genomic data on closely related bacteriophages, leading to establishment of new taxonomic clades and the development of strategies for analyzing viral genomes as presented in this article.
Collapse
Affiliation(s)
- Marine Henry
- Institut Pasteur, Molecular Biology of the Gene in Extremophiles Unit, Department of Microbiology, Paris, France
| | - Louis-Marie Bobay
- Institut Pasteur, Microbial Evolutionary Genomics Unit, Department of Genomes and Genetics, Paris, France
- CNRS, UMR3525, Paris, France
- Université Pierre et Marie Curie, Cellule Pasteur UPMC, Paris, France
| | - Anne Chevallereau
- Institut Pasteur, Molecular Biology of the Gene in Extremophiles Unit, Department of Microbiology, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Emilie Saussereau
- Institut Pasteur, Molecular Biology of the Gene in Extremophiles Unit, Department of Microbiology, Paris, France
- Université Pierre et Marie Curie, Cellule Pasteur UPMC, Paris, France
| | - Pieter-Jan Ceyssens
- Laboratory of Gene Technology, Division of Gene Technology, Katholieke Universiteit Leuven, Heverlee, B-3001, Belgium
- Unit of Bacterial Diseases, Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium
| | - Laurent Debarbieux
- Institut Pasteur, Molecular Biology of the Gene in Extremophiles Unit, Department of Microbiology, Paris, France
- * E-mail:
| |
Collapse
|
11
|
Switt AIM, Sulakvelidze A, Wiedmann M, Kropinski AM, Wishart DS, Poppe C, Liang Y. Salmonella phages and prophages: genomics, taxonomy, and applied aspects. Methods Mol Biol 2015; 1225:237-87. [PMID: 25253259 DOI: 10.1007/978-1-4939-1625-2_15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since this book was originally published in 2007 there has been a significant increase in the number of Salmonella bacteriophages, particularly lytic virus, and Salmonella strains which have been fully sequenced. In addition, new insights into phage taxonomy have resulted in new phage genera, some of which have been recognized by the International Committee of Taxonomy of Viruses (ICTV). The properties of each of these genera are discussed, along with the role of phage as agents of genetic exchange, as therapeutic agents, and their involvement in phage typing.
Collapse
Affiliation(s)
- Andrea I Moreno Switt
- Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Escuela de Medicina Veterinaria, Republica 440, 8370251, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
12
|
Complete Genome Sequences of Two Escherichia coli O157:H7 Phages Effective in Limiting Contamination of Food Products. GENOME ANNOUNCEMENTS 2014; 2:2/5/e00519-14. [PMID: 25212609 PMCID: PMC4161738 DOI: 10.1128/genomea.00519-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
We previously demonstrated that application of bacteriophages significantly reduced Escherichia coli O157:H7 contamination in spinach and ground beef. Here, we present the genomic sequences of two bacteriophages, vB_EcoS_FFH_1, a T5-like phage, and vB_EcoM_FFH_2, an rV5-like phage, used in those treatments.
Collapse
|
13
|
Kim M, Heu S, Ryu S. Complete genome sequence of enterobacteria phage 4MG, a new member of the subgroup "PVP-SE1-like phage" of the "rV5-like viruses". Arch Virol 2014; 159:3137-40. [PMID: 24938485 DOI: 10.1007/s00705-014-2140-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/30/2014] [Indexed: 11/26/2022]
Abstract
A novel virulent enterobacteria phage, 4MG, which was isolated from soil near a sewer, belongs to the family Myoviridae, as it possesses an isometric head and a long contractile tail. The complete genome of 4MG consists of a double-stranded DNA with a length of 148,567 bp, a G + C content of 46.3 %, 271 open reading frames (ORFs), and 21 tRNAs. Bioinformatic analysis revealed that 4MG highly resembles "rV5-like viruses" but can be separated, together with Salmonella phage PVP-SE1 and Cronobacter sakazakii phage vB_CsaM_GAP31, as part of the subgroup "PVP-SE1-like phage".
Collapse
Affiliation(s)
- Minsik Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-921, South Korea
| | | | | |
Collapse
|
14
|
Kropinski AM, Waddell T, Meng J, Franklin K, Ackermann HW, Ahmed R, Mazzocco A, Yates J, Lingohr EJ, Johnson RP. The host-range, genomics and proteomics of Escherichia coli O157:H7 bacteriophage rV5. Virol J 2013; 10:76. [PMID: 23497209 PMCID: PMC3606486 DOI: 10.1186/1743-422x-10-76] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 02/28/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Bacteriophages (phages) have been used extensively as analytical tools to type bacterial cultures and recently for control of zoonotic foodborne pathogens in foods and in animal reservoirs. METHODS We examined the host range, morphology, genome and proteome of the lytic E. coli O157 phage rV5, derived from phage V5, which is a member of an Escherichia coli O157:H7 phage typing set. RESULTS Phage rV5 is a member of the Myoviridae family possessing an icosahedral head of 91 nm between opposite apices. The extended tail measures 121 x 17 nm and has a sheath of 44 x 20 nm and a 7 nm-wide core in the contracted state. It possesses a 137,947 bp genome (43.6 mol%GC) which encodes 233 ORFs and six tRNAs. Until recently this virus appeared to be phylogenetically isolated with almost 70% of its gene products ORFans. rV5 is closely related to coliphages Delta and vB-EcoM-FY3, and more distantly related to Salmonella phages PVP-SE1 and SSE-121, Cronobacter sakazakii phage vB_CsaM_GAP31, and coliphages phAPEC8 and phi92. A complete shotgun proteomic analysis was carried out on rV5, extending what had been gleaned from the genomic analyses. Host range studies revealed that rV5 is active against several other E. coli.
Collapse
Affiliation(s)
- Andrew M Kropinski
- Public Health Agency of Canada, Laboratory for Foodborne Diseases, 110 Stone Road West, Guelph, ON N1G 3W4, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Tom Waddell
- Abbott Point of Care, 185 Corkstown Road, Ottawa, ON, K2H 8V4, Canada
| | - Juncai Meng
- Merck Research Laboratories, 126E Lincoln Avenue, Rahway, NJ, 07065, USA
| | - Kristyn Franklin
- Public Health Agency of Canada, Laboratory for Foodborne Diseases, 110 Stone Road West, Guelph, ON N1G 3W4, Canada
| | - Hans-Wolfgang Ackermann
- Département de Microbiologie-infectiologie et immunologie, Faculté de médecine, Université Laval, Québec, QC, G1K 7P4, Canada
| | - Rafiq Ahmed
- Enteric Diseases Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Amanda Mazzocco
- Public Health Agency of Canada, Laboratory for Foodborne Diseases, 110 Stone Road West, Guelph, ON N1G 3W4, Canada
| | - John Yates
- The Scripps Research Institute, Department of Cell Biology, Proteomic Mass Spectrometry Laboratory, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Erika J Lingohr
- Public Health Agency of Canada, Laboratory for Foodborne Diseases, 110 Stone Road West, Guelph, ON N1G 3W4, Canada
| | - Roger P Johnson
- Public Health Agency of Canada, Laboratory for Foodborne Diseases, 110 Stone Road West, Guelph, ON N1G 3W4, Canada
| |
Collapse
|
15
|
Abbasifar R, Kropinski AM, Sabour PM, Ackermann HW, Alanis Villa A, Abbasifar A, Griffiths MW. Genome sequence of Cronobacter sakazakii myovirus vB_CsaM_GAP31. J Virol 2012; 86:13830-1. [PMID: 23166242 PMCID: PMC3503071 DOI: 10.1128/jvi.02629-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 11/20/2022] Open
Abstract
Cronobacter sakazakii is a pathogen that predominantly infects immunocompromised individuals, especially infants, where it causes meningitis. The genome of lytic C. sakazakii myovirus vB_CsaM_GAP31 has been fully sequenced. It consists of 147,940 bp and has a G+C content of 46.3%. A total of 295 genes, including 269 open reading frames and 26 tRNA genes, were identified. This phage is related to Salmonella phage PVP-SE1 and coliphages vB_EcoM-FV3 and rV5.
Collapse
Affiliation(s)
- Reza Abbasifar
- Canadian Research Institute for Food Safety, University of Guelph, Guelph, Ontario, Canada
| | - Andrew M. Kropinski
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Guelph, Ontario, Canada
| | - Parviz M. Sabour
- Agriculture and Agri-Food Canada, Guelph Food Research Centre, Guelph, Ontario, Canada
| | - Hans-Wolfgang Ackermann
- Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Université Laval, Quebec, Quebec, Canada
| | - Argentina Alanis Villa
- Canadian Research Institute for Food Safety, University of Guelph, Guelph, Ontario, Canada
| | - Arash Abbasifar
- Canadian Research Institute for Food Safety, University of Guelph, Guelph, Ontario, Canada
| | - Mansel W. Griffiths
- Canadian Research Institute for Food Safety, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|