1
|
Zhao B, Hu L, Song Y, Patil K, Ramani S, Atmar RL, Estes MK, Prasad BVV. Norovirus Protease Structure and Antivirals Development. Viruses 2021; 13:v13102069. [PMID: 34696498 PMCID: PMC8537771 DOI: 10.3390/v13102069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 11/30/2022] Open
Abstract
Human norovirus (HuNoV) infection is a global health and economic burden. Currently, there are no licensed HuNoV vaccines or antiviral drugs available. The protease encoded by the HuNoV genome plays a critical role in virus replication by cleaving the polyprotein and is an excellent target for developing small-molecule inhibitors. The current strategy for developing HuNoV protease inhibitors is by targeting the enzyme’s active site and designing inhibitors that bind to the substrate-binding pockets located near the active site. However, subtle differential conformational flexibility in response to the different substrates in the polyprotein and structural differences in the active site and substrate-binding pockets across different genogroups, hamper the development of effective broad-spectrum inhibitors. A comparative analysis of the available HuNoV protease structures may provide valuable insight for identifying novel strategies for the design and development of such inhibitors. The goal of this review is to provide such analysis together with an overview of the current status of the design and development of HuNoV protease inhibitors.
Collapse
Affiliation(s)
- Boyang Zhao
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (K.P.); (S.R.); (R.L.A.); (M.K.E.)
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Ketki Patil
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (K.P.); (S.R.); (R.L.A.); (M.K.E.)
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (K.P.); (S.R.); (R.L.A.); (M.K.E.)
| | - Robert L. Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (K.P.); (S.R.); (R.L.A.); (M.K.E.)
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (K.P.); (S.R.); (R.L.A.); (M.K.E.)
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - B. V. Venkataram Prasad
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (K.P.); (S.R.); (R.L.A.); (M.K.E.)
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
- Correspondence: ; Tel.: +1-713-798-5686
| |
Collapse
|
2
|
Castells M, Colina R. Viral Enteritis in Cattle: To Well Known Viruses and Beyond. MICROBIOLOGY RESEARCH 2021; 12:663-682. [DOI: 10.3390/microbiolres12030048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Livestock products supply about 13 percent of energy and 28 percent of protein in diets consumed worldwide. Diarrhea is a leading cause of sickness and death of beef and dairy calves in their first month of life and also affecting adult cattle, resulting in large economic losses and a negative impact on animal welfare. Despite the usual multifactorial origin, viruses are generally involved, being among the most important causes of diarrhea. There are several viruses that have been confirmed as etiological agents (i.e., rotavirus and coronavirus), and some viruses that are not yet confirmed as etiological agents. This review summarizes the viruses that have been detected in the enteric tract of cattle and tries to deepen and gather knowledge about them.
Collapse
Affiliation(s)
- Matías Castells
- Centro Universitario Regional Litoral Norte, Laboratorio de Virología Molecular, Universidad de la República, Salto 50000, Uruguay
| | - Rodney Colina
- Centro Universitario Regional Litoral Norte, Laboratorio de Virología Molecular, Universidad de la República, Salto 50000, Uruguay
| |
Collapse
|
3
|
Castells M, Cristina J, Colina R. Evolutionary history and spatiotemporal dynamic of GIII norovirus: From emergence to classification in four genotypes. Transbound Emerg Dis 2021; 69:1872-1879. [PMID: 34038622 DOI: 10.1111/tbed.14168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/25/2021] [Indexed: 01/09/2023]
Abstract
Noroviruses belong to a genetically diverse group of viruses infecting a wide range of mammalian host species, and those detected in cattle and sheep are classified within genogroup III (GIII). The current classification of norovirus in genogroups and genotypes is based on phylogenetic clustering and average distances within and between these phylogenetic clusters; however, the classification studies have been focused mainly on human norovirus, being GIII norovirus relegated. Due to the increasing number of studies on GIII norovirus, the need of an updated and extensive classification is evident. The aim of this study was to update the classification of norovirus within GIII, to describe the emergence of a circulating recombinant strain, and to reconstruct the evolutionary history of this genogroup. Two P-types (GIII.P1-2) and four genotypes (GIII.1-4) were described. For the genogroup GIII, the evolutionary rate estimated was 2.78E-3 s/s/y (95%HPD, 1.79E-3 s/s/y-3.78E-3 s/s/y), and the tMRCA was estimated around 1500 (95%HPD, 1247-1688). Despite the long history of this genogroup, the genotypes detected at present emerged in the last 100 years. Interestingly, most of the recombinant GIII.2P[1] strains detected worldwide were originated from a single recombination event and this recombinant strain was later dispersed through the world. Finally, our results indicate that a scenario of genotypes replacement through the time is highly probable.
Collapse
Affiliation(s)
- Matías Castells
- Laboratorio de Virología Molecular, Centro Universitario Regional Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Rodney Colina
- Laboratorio de Virología Molecular, Centro Universitario Regional Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay
| |
Collapse
|
4
|
Ludwig-Begall LF, Lu J, Hosmillo M, de Oliveira-Filho EF, Mathijs E, Goodfellow I, Mauroy A, Thiry E. Replicative fitness recuperation of a recombinant murine norovirus - in vitro reciprocity of genetic shift and drift. J Gen Virol 2020; 101:510-522. [PMID: 32242791 DOI: 10.1099/jgv.0.001406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Noroviruses are recognized as the major cause of non-bacterial gastroenteritis in humans. Molecular mechanisms driving norovirus evolution are the accumulation of point mutations and recombination. Recombination can create considerable changes in a viral genome, potentially eliciting a fitness cost, which must be compensated via the adaptive capacity of a recombinant virus. We previously described replicative fitness reduction of the first in vitro generated WU20-CW1 recombinant murine norovirus, RecMNV. In this follow-up study, RecMNV's capability of replicative fitness recuperation and genetic characteristics of RecMNV progenies at early and late stages of an adaptation experiment were evaluated. Replicative fitness regain of the recombinant was demonstrated via growth kinetics and plaque size differences between viral progenies prior to and post serial in vitro passaging. Point mutations at consensus and sub-consensus population levels of early and late viral progenies were characterized via next-generation sequencing and putatively associated to fitness changes. To investigate the effect of genomic changes separately and in combination in the context of a lab-generated inter-MNV infectious virus, mutations were introduced into a recombinant WU20-CW1 cDNA for subsequent DNA-based reverse genetics recovery. We thus associated fitness loss of RecMNV to a C7245T mutation and functional VP2 (ORF3) truncation and demonstrated individual and cumulative compensatory effects of one synonymous OFR2 and two non-synonymous ORF1 consensus-level mutations acquired during successive rounds of in vitro replication. Our data provide evidence of viral adaptation in a controlled environment via genetic drift after genetic shift induced a fitness cost of an infectious recombinant norovirus.
Collapse
Affiliation(s)
- Louisa F Ludwig-Begall
- Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, Liège, Belgium
| | - Jia Lu
- Present address: The Babraham Institute, Babraham Hall House, Babraham, Cambridge, UK.,Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Myra Hosmillo
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Edmilson F de Oliveira-Filho
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, Liège, Belgium
| | - Elisabeth Mathijs
- Infectious diseases in animals, Sciensano, Ukkel, Belgium.,Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, Liège, Belgium
| | - Ian Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Axel Mauroy
- Staff direction for risk assessment, Control Policy, FASFC, Brussels, Belgium.,Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, Liège, Belgium
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, Liège, Belgium
| |
Collapse
|
5
|
Ludwig-Begall LF, Mauroy A, Thiry E. Norovirus recombinants: recurrent in the field, recalcitrant in the lab - a scoping review of recombination and recombinant types of noroviruses. J Gen Virol 2018; 99:970-988. [PMID: 29906257 DOI: 10.1099/jgv.0.001103] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Noroviruses are recognized as the major global cause of sporadic and epidemic non-bacterial gastroenteritis in humans. Molecular mechanisms driving norovirus evolution are the accumulation of point mutations and recombination. Intragenotypic recombination has long been postulated to be a driving force of GII.4 noroviruses, the predominant genotype circulating in humans for over two decades. Increasingly, emergence and re-emergence of different intragenotype recombinants have been reported. The number and types of norovirus recombinants remained undefined until the 2007 Journal of General Virology research article 'Norovirus recombination' reported an assembly of 20 hitherto unclassified intergenotypic norovirus recombinant types. In the intervening decade, a host of novel recombinants has been analysed. New recombination breakpoints have been described, in vitro and in vivo studies supplement in silico analyses, and advances have been made in analysing factors driving norovirus recombination. This work presents a timely overview of these data and focuses on important aspects of norovirus recombination and its role in norovirus molecular evolution. An overview of intergenogroup, intergenotype, intragenotype and 'obligatory' norovirus recombinants as detected via in silico methods in the field is provided, enlarging the scope of intergenotypic recombinant types to 80 in total, and notably including three intergenogroup recombinants. A recap of advances made studying norovirus recombination in the laboratory is given. Putative drivers and constraints of norovirus recombination are discussed and the potential link between recombination and norovirus zoonosis risk is examined.
Collapse
Affiliation(s)
- Louisa F Ludwig-Begall
- 1Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, B43b, Quartier Vallée 2, Avenue de Cureghem, 10, B-4000 Liège, Belgium
| | - Axel Mauroy
- 2Staff direction for risk assessment, Control Policy, Federal Agency for the Safety of the Food Chain, Blv du Jardin Botanique 55, 1000 Brussels, Belgium
| | - Etienne Thiry
- 1Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, B43b, Quartier Vallée 2, Avenue de Cureghem, 10, B-4000 Liège, Belgium
| |
Collapse
|
6
|
Mohamed FF, Ktob GKF, Ismaeil MEA, Ali AAH, Goyal SM. Phylogeny of bovine norovirus in Egypt based on VP2 gene. Int J Vet Sci Med 2018; 6:48-52. [PMID: 30255078 PMCID: PMC6147391 DOI: 10.1016/j.ijvsm.2018.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 11/07/2022] Open
Abstract
Bovine norovirus (BNoV) has emerged as a viral pathogen that causes a gastrointestinal illness and diarrhea in cattle. Despite its worldwide distribution, very little information is known about BNoV in Africa. In this study, BNoV was detected in 27.6% (8/29) of tested fecal materials, collected from sporadic cases of diarrheic calves, using the reverse transcription-polymerase chain reaction (RT-PCR) and primers that target RNA dependent RNA polymerase gene. Additionally, one primer pair was designed to flank the BNoV-VP2 (small capsid protein) gene for molecular analysis. Study VP2 sequences were phylogenetically-related to BNoV-GIII.2 (Newbury2-like) genotype, which is highly prevalent all over the world. However, they were separated within the cluster and one strain (41FR) grouped with recombinant GIII.P1/GIII.2 strains. Compared to reference VP2 sequences, 14 amino acid substitution mutations were found to be unique to our strains. The study confirms that BNoV is currently circulating among diarrheic calves of Egypt and also characterizes its ORF3 (VP2) genetically. The status of BNoV should be continuously evaluated in Egypt for effective prevention and control.
Collapse
Affiliation(s)
- Fakry F Mohamed
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia 44511, Egypt.,Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Gamelat K F Ktob
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia 44511, Egypt
| | - Mohamed E A Ismaeil
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia 44511, Egypt
| | - Ahmed A H Ali
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia 44511, Egypt
| | - Sagar M Goyal
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, University of Minnesota, St. Paul, Minnesota 55108, USA
| |
Collapse
|
7
|
Mauroy A, Taminiau B, Nezer C, Ghurburrun E, Baurain D, Daube G, Thiry E. High-throughput sequencing analysis reveals the genetic diversity of different regions of the murine norovirus genome during in vitro replication. Arch Virol 2016; 162:1019-1023. [PMID: 27942973 DOI: 10.1007/s00705-016-3179-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/16/2016] [Indexed: 01/27/2023]
Abstract
In this study, we report the genetic diversity and nucleotide mutation rates of five representative regions of the murine norovirus genome during in vitro passages. The mutation rates were similar in genomic regions encompassing partial coding sequences for non-structural (NS) 1-2, NS5, NS6, NS7 proteins within open reading frame (ORF) 1. In a region encoding a portion of the major capsid protein (VP1) within ORF2 (also including the ORF4 region) and a portion of the minor structural protein (VP2), the mutation rates were estimated to be at least one order of magnitude higher. The VP2 coding region was found to have the highest mutation rate.
Collapse
Affiliation(s)
- Axel Mauroy
- Veterinary Virology and Animal Viral Diseases, Fundamental and Applied Research for Animal & Health Centre, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| | - Bernard Taminiau
- Food Microbiology, Fundamental and Applied Research for Animal & Health Centre, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | | | - Elsa Ghurburrun
- Veterinary Virology and Animal Viral Diseases, Fundamental and Applied Research for Animal & Health Centre, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Denis Baurain
- Eukaryotic Phylogenomics, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Georges Daube
- Food Microbiology, Fundamental and Applied Research for Animal & Health Centre, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, Fundamental and Applied Research for Animal & Health Centre, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
8
|
Ferragut F, Vega CG, Mauroy A, Conceição-Neto N, Zeller M, Heylen E, Uriarte EL, Bilbao G, Bok M, Matthijnssens J, Thiry E, Badaracco A, Parreño V. Molecular detection of bovine Noroviruses in Argentinean dairy calves: Circulation of a tentative new genotype. INFECTION GENETICS AND EVOLUTION 2016; 40:144-150. [PMID: 26940636 PMCID: PMC7185671 DOI: 10.1016/j.meegid.2016.02.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/11/2016] [Accepted: 02/25/2016] [Indexed: 11/27/2022]
Abstract
Bovine noroviruses are enteric pathogens detected in fecal samples of both diarrheic and non-diarrheic calves from several countries worldwide. However, epidemiological information regarding bovine noroviruses is still lacking for many important cattle producing countries from South America. In this study, three bovine norovirus genogroup III sequences were determined by conventional RT-PCR and Sanger sequencing in feces from diarrheic dairy calves from Argentina (B4836, B4848, and B4881, all collected in 2012). Phylogenetic studies based on a partial coding region for the RNA-dependent RNA polymerase (RdRp, 503 nucleotides) of these three samples suggested that two of them (B4836 and B4881) belong to genotype 2 (GIII.2) while the third one (B4848) was more closely related to genotype 1 (GIII.1) strains. By deep sequencing, the capsid region from two of these strains could be determined. This confirmed the circulation of genotype 1 (B4848) together with the presence of another sequence (B4881) sharing its highest genetic relatedness with genotype 1, but sufficiently distant to constitute a new genotype. This latter strain was shown in silico to be a recombinant: phylogenetic divergence was detected between its RNA-dependent RNA polymerase coding sequence (genotype GIII.2) and its capsid protein coding sequence (genotype GIII.1 or a potential norovirus genotype). According to this data, this strain could be the second genotype GIII.2_GIII.1 bovine norovirus recombinant described in literature worldwide. Further analysis suggested that this strain could even be a potential norovirus GIII genotype, tentatively named GIII.4. The data provides important epidemiological and evolutionary information on bovine noroviruses circulating in South America. Molecular prevalence of bovine Noroviruses in Argentina is reported. Newborn calves positive to Norovirus presented diarrhea. Phylogenetic inferences of the strains detected were performed and genotype–genogroups were determined for each strain. A tentative new genotype is reported. This is the first report of bovine Noroviruses from Argentina, one of the main meat and dairy farming countries worldwide.
Collapse
Affiliation(s)
- Fátima Ferragut
- Enteric Viruses Section, Virology Institute, Veterinary and Agronomic Research Centre, National Institute of Agricultural Technology (INTA), Castelar CC25 (CP 1712), Buenos Aires, Argentina
| | - Celina G Vega
- Enteric Viruses Section, Virology Institute, Veterinary and Agronomic Research Centre, National Institute of Agricultural Technology (INTA), Castelar CC25 (CP 1712), Buenos Aires, Argentina
| | - Axel Mauroy
- Veterinary Virology and Animal Viral Diseases, Fundamental and Applied Research for Animal and Health Centre, Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| | - Nádia Conceição-Neto
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, B-3000, Leuven, Belgium
| | - Mark Zeller
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, B-3000, Leuven, Belgium
| | - Elisabeth Heylen
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, B-3000, Leuven, Belgium
| | - Enrique Louge Uriarte
- Animal Health Section, Animal Production Area, EEA INTA Balcarce, Balcarce CP 7620, Buenos Aires, Argentina
| | - Gladys Bilbao
- Veterinary College, UNCPBA, Tandil CP 7000, Buenos Aires, Argentina
| | - Marina Bok
- Enteric Viruses Section, Virology Institute, Veterinary and Agronomic Research Centre, National Institute of Agricultural Technology (INTA), Castelar CC25 (CP 1712), Buenos Aires, Argentina
| | - Jelle Matthijnssens
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, B-3000, Leuven, Belgium
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, Fundamental and Applied Research for Animal and Health Centre, Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| | - Alejandra Badaracco
- Enteric Viruses Section, Virology Institute, Veterinary and Agronomic Research Centre, National Institute of Agricultural Technology (INTA), Castelar CC25 (CP 1712), Buenos Aires, Argentina
| | - Viviana Parreño
- Enteric Viruses Section, Virology Institute, Veterinary and Agronomic Research Centre, National Institute of Agricultural Technology (INTA), Castelar CC25 (CP 1712), Buenos Aires, Argentina.
| |
Collapse
|
9
|
Di Felice E, Mauroy A, Pozzo FD, Thiry D, Ceci C, Di Martino B, Marsilio F, Thiry E. Bovine noroviruses: A missing component of calf diarrhoea diagnosis. Vet J 2015; 207:53-62. [PMID: 26631944 PMCID: PMC7110452 DOI: 10.1016/j.tvjl.2015.10.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 05/27/2015] [Accepted: 10/08/2015] [Indexed: 01/05/2023]
Abstract
Noroviruses are RNA viruses that belong to the Genus Norovirus, Family Caliciviridae, and infect human beings and several animal species, including cattle. Bovine norovirus infections have been detected in cattle of a range of different ages throughout the world. Currently there is no suitable cell culture system for these viruses and information on their pathogenesis is limited. Molecular and serological tests have been developed, but are complicated by the high genetic and antigenic diversity of bovine noroviruses. Bovine noroviruses can be detected frequently in faecal samples of diarrhoeic calves, either alone or in association with other common enteric pathogens, suggesting a role for these viruses in the aetiology of calf enteritis.
Collapse
Affiliation(s)
| | - Axel Mauroy
- Faculty of Veterinary Medicine and Fundamental and Applied Research on Animal and Health Center, University of Liège, B-4000 Liège, Belgium.
| | - Fabiana Dal Pozzo
- Faculty of Veterinary Medicine and Fundamental and Applied Research on Animal and Health Center, University of Liège, B-4000 Liège, Belgium
| | - Damien Thiry
- Faculty of Veterinary Medicine and Fundamental and Applied Research on Animal and Health Center, University of Liège, B-4000 Liège, Belgium
| | - Chiara Ceci
- Faculty of Veterinary Medicine, Università degli studi di Teramo, Teramo, Italy
| | - Barbara Di Martino
- Faculty of Veterinary Medicine, Università degli studi di Teramo, Teramo, Italy
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università degli studi di Teramo, Teramo, Italy
| | - Etienne Thiry
- Faculty of Veterinary Medicine and Fundamental and Applied Research on Animal and Health Center, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|