1
|
Hong J, Guo Z, Huang X, Wu P, Chen X, Liu X, Yang J, Lai Y. Pharmacological mechanisms of probenecid for SARS-CoV-2 and RSV co-infection: findings of system pharmacology, molecular docking, molecular dynamics simulation, and structure-activity relationship. Front Microbiol 2025; 16:1552603. [PMID: 40371107 PMCID: PMC12075369 DOI: 10.3389/fmicb.2025.1552603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/10/2025] [Indexed: 05/16/2025] Open
Abstract
Background The clinical consequences of the co-infection with novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and respiratory syncytial virus (RSV) are not optimistic. Nevertheless, there is currently no approved therapeutic regimen specifically targeting SARS-CoV-2/RSV co-infection, with existing monotherapies showing limited efficacy. According to recent studies, probenecid has both anti-SARS-CoV-2 and anti-RSV effects. Therefore, as one probable molecular candidate for the co-infection with SARS-CoV-2 and RSV, probenecid was researched in this exploration. Methods Using systems pharmacology and bioinformatics, we characterized the targets associated with probenecid for the treatment of SARS-CoV-2/RSV co-infection, focusing on their biological functions, mechanisms and binding activities. To further validate these findings, we conducted molecular docking, MD simulations, electrostatic potential mapping, and SAR analysis to explore the binding interactions between probenecid and the identified core targets. Results We identified 141 targets that overlapped with the co-infection and probenecid, and used these shared targets to construct a protein-protein interaction (PPI) network. Subsequently, we obtained the top 16 hub targets of probenecid for SARS-CoV-2/RSV co-infection, namely, AKT1, ALB, EGFR, CASP3, CTNNB1, SRC, HSP90AA1, and so on. According to the enrichment analysis, probenecid might affect inflammation, immunity, oxidative stress, and virus defenses; Toll-like receptor, TNF, IL-17, NOD-like receptor, cytokine-cytokine receptor, among others. Additionally, based on molecular docking analysis, probenecid is effectively bound to the targets related to the SARS-CoV-2/RSV co-infection. Meanwhile, according to molecular dynamics (MD) simulations and structure-activity relationship (SAR) analysis, we speculated that SRC and HSP90AA1 are more likely to be the target proteins of probenecid than the other proteins. Conclusion Our findings from systems pharmacology and bioinformatics analysis indicate that immune and inflammatory responses play a pivotal role in the therapeutic effects of probenecid. Infectious disease-related pathways also contribute significantly to its effectiveness in treating SARS-CoV-2/RSV co-infection. Further validation was conducted through molecular docking, MD simulations, electrostatic potential mapping, and SAR analysis. These analyses suggest that SRC and HSP90AA1 are the potential binding targets of probenecid. This study provides valuable preliminary insights into the molecular mechanisms of probenecid. It establishes a strong foundation for future research to explore its potential as a therapeutic strategy for SARS-CoV-2/RSV co-infection.
Collapse
Affiliation(s)
- Junbin Hong
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhendong Guo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - XiaoMei Huang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Wu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinying Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyi Liu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinghua Yang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanni Lai
- School of Medicine and Health, Shunde Polytechnic, Foshan, China
| |
Collapse
|
2
|
Wei R, Zhang X, Wang X, Li L, Fu Y, Chen Y, Liu X, Guo C. PDCD4 restricts PRRSV replication in an eIF4A-dependent manner and is antagonized by the viral nonstructural protein 9. J Virol 2024; 98:e0006024. [PMID: 38557170 PMCID: PMC11092367 DOI: 10.1128/jvi.00060-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
As obligate parasites, viruses have evolved multiple strategies to evade the host immune defense. Manipulation of the host proteasome system to degrade specific detrimental factors is a common viral countermeasure. To identify host proteins targeted for proteasomal degradation by porcine reproductive and respiratory syndrome virus (PRRSV), we conducted a quantitative proteomics screen of PRRSV-infected Marc-145 cells under the treatment with proteasome inhibitor MG132. The data revealed that the expression levels of programmed cell death 4 (PDCD4) were strongly downregulated by PRRSV and significantly rescued by MG132. Further investigation confirmed that PRRSV infection induced the translocation of PDCD4 from the nucleus to the cytoplasm, and the viral nonstructural protein 9 (Nsp9) promoted PDCD4 proteasomal degradation in the cytoplasm by activating the Akt-mTOR-S6K1 pathway. The C-terminal domain of Nsp9 was responsible for PDCD4 degradation. As for the role of PDCD4 during PRRSV infection, we demonstrated that PDCD4 knockdown favored viral replication, while its overexpression significantly attenuated replication, suggesting that PDCD4 acts as a restriction factor for PRRSV. Mechanistically, we discovered eukaryotic translation initiation factor 4A (eIF4A) was required for PRRSV. PDCD4 interacted with eIF4A through four sites (E249, D253, D414, and D418) within its two MA3 domains, disrupting eIF4A-mediated translation initiation in the 5'-untranslated region of PRRSV, thereby inhibiting PRRSV infection. Together, our study reveals the antiviral function of PDCD4 and the viral strategy to antagonize PDCD4. These results will contribute to our understanding of the immune evasion strategies employed by PRRSV and offer valuable insights for developing new antiviral targets.IMPORTANCEPorcine reproductive and respiratory syndrome virus (PRRSV) infection results in major economic losses in the global swine industry and is difficult to control effectively. Here, using a quantitative proteomics screen, we identified programmed cell death 4 (PDCD4) as a host protein targeted for proteasomal degradation by PRRSV. We demonstrated that PDCD4 restricts PRRSV replication by interacting with eukaryotic translation initiation factor 4A, which is required for translation initiation in the viral 5'-untranslated region. Additionally, four sites within two MA3 domains of PDCD4 are identified to be responsible for its antiviral function. Conversely, PRRSV nonstructural protein 9 promotes PDCD4 proteasomal degradation in the cytoplasm by activating the Akt-mTOR-S6K1 pathway, thus weakening the anti-PRRSV function. Our work unveils PDCD4 as a previously unrecognized host restriction factor for PRRSV and reveals that PRRSV develops countermeasures to overcome PDCD4. This will provide new insights into virus-host interactions and the development of new antiviral targets.
Collapse
Affiliation(s)
- Ruiping Wei
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoxiao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoying Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lu Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yajie Fu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chunhe Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Wu WY, Jiao X, Song WX, Wu P, Xiao PQ, Huang XF, Wang K, Zhan SF. Network pharmacology and bioinformatics analysis identifies potential therapeutic targets of Naringenin against COVID-19/LUSC. Front Endocrinol (Lausanne) 2023; 14:1187882. [PMID: 37347115 PMCID: PMC10281056 DOI: 10.3389/fendo.2023.1187882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) is a highly contagious respiratory disease that has posed a serious threat to people's daily lives and caused an unprecedented challenge to public health and people's health worldwide. Lung squamous cell carcinoma (LUSC) is a common type of lung malignancy with a highly aggressive nature and poor prognosis. Patients with LUSC could be at risk for COVID-19, We conducted this study to examine the potential for naringenin to develop into an ideal medicine and investigate the underlying action mechanisms of naringenin in COVID-19 and LUSC due to the anti-viral, anti-tumor, and anti-inflammatory activities of naringenin. Methods LUSC related genes were obtained from TCGA, PharmGKB, TTD,GeneCards and NCBI, and then the transcriptome data for COVID-19 was downloaded from GEO, DisGeNET, CTD, DrugBank, PubChem, TTD, NCBI Gene, OMIM. The drug targets of Naringenin were revealed through CTD, BATMAN, TCMIP, SymMap, Chemical Association Networks, SwissTargetPrediction, PharmMapper, ECTM, and DGIdb. The genes related to susceptibility to COVID-19 in LUSC patients were obtained through differential analysis. The interaction of COVID-19/LUSC related genes was evaluated and demonstrated using STRING to develop a a COX risk regression model to screen and evaluate the association of genes with clinical characteristics. To investigate the related functional and pathway analysis of the common targets of COVID-19/LUSC and Naringenin, KEGG and GO enrichment analysis were employed to perform the functional analysis of the target genes. Finally, The Hub Gene was screened and visualized using Cytoscape, and molecular docking between the drug and the target was performed using Autodock. Results We discovered numerous COVID-19/LUSC target genes and examined their prognostic value in LUSC patients utilizing a variety of bioinformatics and network pharmacology methods. Furthermore, a risk score model with strong predictive performance was developed based on these target genes to assess the prognosis of LUSC patients with COVID-19. We intersected the therapeutic target genes of naringenin with the LUSC, COVID-19-related targets, and identified 354 common targets, which could be used as potential target genes for naringenin to treat COVID-19/LUSC. The treatment of COVID-19/LUSC with naringenin may involve oxidative stress, anti-inflammatory, antiviral, antiviral, apoptosis, immunological, and multiple pathways containing PI3K-Akt, HIF-1, and VEGF, according to the results of the GO and KEGG enrichment analysis of these 354 common targets. By constructing a PPI network, we ascertained AKT1, TP53, SRC, MAPK1, MAPK3, and HSP90AA1 as possible hub targets of naringenin for the treatment of COVID-19/LUSC. Last but not least, molecular docking investigations showed that naringenin has strong binding activity in COVID-19/LUSC. Conclusion We revealed for the first time the pharmacological targets and potential molecular processes of naringenin for the treatment of COVID-19/LUSC. However, these results need to be confirmed by additional research and validation in real LUSC patients with COVID-19.
Collapse
Affiliation(s)
- Wen-yu Wu
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Jiao
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen-xin Song
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Wu
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pei-qi Xiao
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiu-fang Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai Wang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shao-feng Zhan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Chen Y, Zhang C, Wang N, Feng Y. Deciphering suppressive effects of Lianhua Qingwen Capsule on COVID-19 and synergistic effects of its major botanical drug pairs. Chin J Nat Med 2023; 21:383-400. [PMID: 37245876 PMCID: PMC10214843 DOI: 10.1016/s1875-5364(23)60455-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Indexed: 05/30/2023]
Abstract
The COVID-19 pandemic has resulted in excess deaths worldwide. Conventional antiviral medicines have been used to relieve the symptoms, with limited therapeutic effect. In contrast, Lianhua Qingwen Capsule is reported to exert remarkable anti-COVID-19 effect. The current review aims to: 1) uncover the main pharmacological actions of Lianhua Qingwen Capsule for managing COVID-19; 2) verify the bioactive ingredients and pharmacological actions of Lianhua Qingwen Capsule by network analysis; 3) investigate the compatibility effect of major botanical drug pairs in Lianhua Qingwen Capsule; and 4) clarify the clinical evidence and safety of the combined therapy of Lianhua Qingwen Capsule and conventional drugs. Numerous bioactive ingredients in Lianhu Qingwen, such as quercetin, naringenin, β-sitosterol, luteolin, and stigmasterol, were identified to target host cytokines, and to regulate the immune defence in response to COVID-19. Genes including androgen receptor (AR), myeloperoxidase (MPO), epidermal growth factor receptor (EGFR), insulin (INS), and aryl hydrocarbon receptor (AHR) were found to be significantly involved in the pharmacological actions of Lianhua Qingwen Capsule against COVID-19. Four botanical drug pairs in Lianhua Qingwen Capsule were shown to have synergistic effect for the treatment of COVID-19. Clinical studies demonstrated the medicinal effect of the combined use of Lianhua Qingwen Capsule and conventional drugs against COVID-19. In conclusion, the four main pharmacological mechanisms of Lianhua Qingwen Capsule for managing COVID-19 are revealed. Therapeutic effect has been noted against COVID-19 in Lianhua Qingwen Capsule.
Collapse
Affiliation(s)
- Yuanyuan Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
5
|
Bioinformatics analysis reveals molecular connections between non-alcoholic fatty liver disease (NAFLD) and COVID-19. J Cell Commun Signal 2022; 16:609-619. [PMID: 35525888 PMCID: PMC9078374 DOI: 10.1007/s12079-022-00678-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 has devastatingly impacted people's lives. Non-alcoholic fatty liver disease (NAFLD) is fatal comorbidity of COVID-19 seen with potential risk factors to develop severe symptoms. This research focuses on determining and elucidating the molecular factors and connections that might contribute to the severity of SARS-CoV-2 infection in NAFLD patients. Here, we comprehensively inspected the genes involved in NAFLD and SARS-CoV-2 entry factors (SCEFs) found by searching through the DisGeNet database and literature review, respectively. Further, we identified the SCEFs-related proteins through protein-protein interaction (PPI) network construction, MCODE, and Cytohubba. Next, the shared genes involved in NAFLD and SARS-CoV-2 entry, and hub gene were determined, followed by the GO and KEGG pathways analysis. X2K database was used to construct the upstream regulatory network of hub genes, as well as to identify the top ten candidates of transcription factors (TFs) and protein kinases (PKs). PPI analysis identified connections between 4 top SCEFs, including ACE, ADAM17, DPP4, and TMPRSS2 and NAFLD-related genes such as ACE, DPP4, IL-10, TNF, and AKT1. GO and KEGG analysis revealed the top ten biological processes and pathways, including cytokine-mediated signaling, PI3K-Akt, AMPK, and mTOR signaling pathways. The upstream regulatory network revealed that AKT1 and MAPK14 as important PKs and HIF1A and SP1 as important TFs associated with AKT1, IL-10, and TNF. The molecular connections identified between COVID-19 and NAFLD may shed light on discovering the causes of the severity of SARS-CoV-2 infected NAFLD patients.
Collapse
|
6
|
Cao JF, Hu X, Xiong L, Wu M, Yang X, Wang C, Chen S, Xu H, Chen H, Ma X, Mi Y, Zhang X. Interference of Interleukin-1 β Mediated by Lentivirus Promotes Functional Recovery of Spinal Cord Contusion Injury in Rats via the PI3K/AKT1 Signaling Pathway. Mediators Inflamm 2022; 2022:6285099. [PMID: 39262872 PMCID: PMC11390212 DOI: 10.1155/2022/6285099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/30/2022] [Indexed: 09/13/2024] Open
Abstract
Purpose Inflammation and apoptosis after spinal cord contusion (SCC) are important causes of irreversible spinal cord injury. Interleukin-1β (IL-1β) is a key inflammatory factor that promotes the aggravation of spinal cord contusion. However, the specific role and regulatory mechanism of IL-1β in spinal cord contusion is still unclear. Therefore, this study applied bioinformatics to analyze and mine potential gene targets interlinked with IL-1β, animal experiments and lentiviral interference technology were used to explore whether IL-1β affected the recovery of motor function in spinal cord contusion by interfering with PI3K/AKT1 signaling pathway. Method This study used bioinformatics to screen and analyze gene targets related to IL-1β. The rat SCC animal model was established by the Allen method, and the Basso Beattie Bresnahan (BBB) score was used to evaluate the motor function of the spinal cord-injured rats. Immunohistochemistry and immunofluorescence were used to localize the expression of IL-1β and AKT1 proteins in spinal cord tissue. Quantitative polymerase chain reaction and Western blot were used to detect the gene and protein expressions of IL-1β, PI3K, and AKT1. RNAi technology was used to construct lentivirus to inhibit the expression of IL-1β, lentiviral interference with IL-1β was used to investigate the effect of IL-1β and AKT1 on the function of spinal cord contusion and the relationship among IL-1β, AKT1, and downstream signaling pathways. Results Bioinformatics analysis suggested a close relationship between IL-1β and AKT1. Animal experiments have confirmed that IL-1β is closely related to the functional recovery of spinal cord contusion. Firstly, from the phenomenological level, the BBB score decreased after SCC, IL-1β and AKT1 were located in the cytoplasm of neurons in the anterior horn of the spinal cord, and the expression levels of IL-1β gene and protein in the experimental group were higher than those in the sham operation group. At the same time, the expression of AKT1 gene decreased, the results suggested that the increase of IL-1β affected the functional recovery of spinal cord contusion. Secondly, from the functional level, after inhibiting the expression of IL-1β with a lentivirus-mediated method, the BBB score was significantly increased, and the motor function of the spinal cord was improved. Thirdly, from the mechanistic level, bioinformatics analysis revealed the relationship between IL-1β and AKT1. In addition, the experiment further verified that in the PI3K/AKT1 signaling pathway, inhibition of IL-1β expression upregulated AKT1 gene expression, but PI3K expression was unchanged. Conclusion Inhibition of IL-1β promotes recovery of motor function after spinal cord injury in rats through upregulation of AKT1 expression in the PI3K/AKT1 signaling pathway. Bioinformatics analysis suggested that IL-1β may affect apoptosis and regeneration by inhibiting the expression of AKT1 in the PI3K/AKT1 signaling pathway to regulate the downstream FOXO, mTOR, and GSK3 signaling pathways; thereby hindering the recovery of motor function in rats after spinal cord contusion. It provided a new perspective for clinical treatment of spinal cord contusion in the future.
Collapse
Affiliation(s)
- Jun-Feng Cao
- Clinical Medical College of Chengdu Medical College, Chengdu, China
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xi Hu
- Taikang Tongji Wuhan Hospital, Wuhan, China
| | - Li Xiong
- Clinical Medical College of Chengdu Medical College, Chengdu, China
| | - Mei Wu
- Clinical Medical College of Chengdu Medical College, Chengdu, China
| | - Xingyu Yang
- Clinical Medical College of Chengdu Medical College, Chengdu, China
| | - Chaochao Wang
- Clinical Medical College of Chengdu Medical College, Chengdu, China
| | - Shengyan Chen
- Clinical Medical College of Chengdu Medical College, Chengdu, China
| | - Hengxiang Xu
- Clinical Medical College of Chengdu Medical College, Chengdu, China
| | - Huanyu Chen
- Basic Medical College of Chengdu Medical College, Chengdu, China
| | - Xuntai Ma
- Clinical Medical College of Chengdu Medical College, Chengdu, China
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yongjie Mi
- Clinical Medical College of Chengdu Medical College, Chengdu, China
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- National Demonstration Center for Experimental Clinical Medicine Education of Chengdu Medical College, Chengdu, China
| | - Xiao Zhang
- Clinical Medical College of Chengdu Medical College, Chengdu, China
- Basic Medical College of Chengdu Medical College, Chengdu, China
- National Demonstration Center for Experimental Clinical Medicine Education of Chengdu Medical College, Chengdu, China
| |
Collapse
|
7
|
Peng J, Zhang K, Wang L, Peng F, Zhang C, Long K, Chen J, Zhou X, Gao P, Fan G. Integrating network pharmacology and molecular docking to explore the potential mechanism of Xinguan No. 3 in the treatment of COVID-19. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Xinguan No. 3 has been recommended for the treatment of coronavirus disease 2019 (COVID-19); however, its potential mechanisms are unclear. This study aims to explore the mechanisms of Xinguan No. 3 against COVID-19 through network pharmacology and molecular docking. We first searched the ingredients of Xinguan No. 3 in three databases (Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, Traditional Chinese Medicines Integrated Database, and The Encyclopedia of Traditional Chinese Medicine). The active components and their potential targets were predicted through the SwissTargetPrediction website. The targets of COVID-19 can be found on the GeneCards website. Protein interaction analysis, screening of key targets, functional enrichment of key target genes, and signaling pathway analysis were performed through Search Tool for the Retrieval of Interacting Genes databases, Metascape databases, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway databases. Finally, the affinity of the key active components with the core targets was verified by molecular docking. The results showed that five core targets had been screened, including MAPK1, NF-κB1, RELA, AKT1, and MAPK14. Gene ontology enrichment analysis revealed that the key targets were associated with inflammatory responses and responses to external stimuli. KEGG enrichment analysis indicated that the main pathways were influenza A, hepatitis B, Toll-like receptor signaling pathway, NOD-like receptor signaling pathway, and TNF signaling pathway. Therefore, Xinguan No. 3 might play a role in treating COVID-19 through anti-inflammatory, immune responses, and regulatory responses to external stimuli.
Collapse
Affiliation(s)
- Jiayan Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , P. R. China
| | - Kun Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , P. R. China
| | - Lijie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , P. R. China
| | - Fang Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , P. R. China
| | - Chuantao Zhang
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine , Chengdu 611130 , P. R. China
| | - Kunlan Long
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine , Chengdu 611130 , P. R. China
| | - Jun Chen
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine , Chengdu 611130 , P. R. China
| | - Xiujuan Zhou
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine , Chengdu 611130 , P. R. China
| | - Peiyang Gao
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine , Chengdu 611130 , P. R. China
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , P. R. China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , P. R. China
| |
Collapse
|
8
|
Xie YZ, Peng CW, Su ZQ, Huang HT, Liu XH, Zhan SF, Huang XF. A Practical Strategy for Exploring the Pharmacological Mechanism of Luteolin Against COVID-19/Asthma Comorbidity: Findings of System Pharmacology and Bioinformatics Analysis. Front Immunol 2022; 12:769011. [PMID: 35069542 PMCID: PMC8777084 DOI: 10.3389/fimmu.2021.769011] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Asthma patients may increase their susceptibility to SARS-CoV-2 infection and the poor prognosis of coronavirus disease 2019 (COVID-19). However, anti-COVID-19/asthma comorbidity approaches are restricted on condition. Existing evidence indicates that luteolin has antiviral, anti-inflammatory, and immune regulation capabilities. We aimed to evaluate the possibility of luteolin evolving into an ideal drug and explore the underlying molecular mechanisms of luteolin against COVID-19/asthma comorbidity. We used system pharmacology and bioinformatics analysis to assess the physicochemical properties and biological activities of luteolin and further analyze the binding activities, targets, biological functions, and mechanisms of luteolin against COVID-19/asthma comorbidity. We found that luteolin may exert ideal physicochemical properties and bioactivity, and molecular docking analysis confirmed that luteolin performed effective binding activities in COVID-19/asthma comorbidity. Furthermore, a protein–protein interaction network of 538 common targets between drug and disease was constructed and 264 hub targets were obtained. Then, the top 6 hub targets of luteolin against COVID-19/asthma comorbidity were identified, namely, TP53, AKT1, ALB, IL-6, TNF, and VEGFA. Furthermore, the enrichment analysis suggested that luteolin may exert effects on virus defense, regulation of inflammation, cell growth and cell replication, and immune responses, reducing oxidative stress and regulating blood circulation through the Toll-like receptor; MAPK, TNF, AGE/RAGE, EGFR, ErbB, HIF-1, and PI3K–AKT signaling pathways; PD-L1 expression; and PD-1 checkpoint pathway in cancer. The possible “dangerous liaison” between COVID-19 and asthma is still a potential threat to world health. This research is the first to explore whether luteolin could evolve into a drug candidate for COVID-19/asthma comorbidity. This study indicated that luteolin with superior drug likeness and bioactivity has great potential to be used for treating COVID-19/asthma comorbidity, but the predicted results still need to be rigorously verified by experiments.
Collapse
Affiliation(s)
- Yi-Zi Xie
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chen-Wen Peng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zu-Qing Su
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui-Ting Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Hong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shao-Feng Zhan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiu-Fang Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
Almutairy BK, Alshetaili A, Anwer MK, Ali N. In silico identification of MicroRNAs targeting the key nucleator of stress granules, G3BP: Promising therapeutics for SARS-CoV-2 infection. Saudi J Biol Sci 2021; 28:7499-7504. [PMID: 34456603 PMCID: PMC8381622 DOI: 10.1016/j.sjbs.2021.08.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 11/05/2022] Open
Abstract
Stress granules (SGs) are non-membrane ribonucleoprotein condensates formed in response to environmental stress conditions via liquid–liquid phase separation (LLPS). SGs are involved in the pathogenesis of aging and aging-associated diseases, cancers, viral infection, and several other diseases. GTPase-activating protein (SH3 domain)-binding protein 1 and 2 (G3BP1/2) is a key component and commonly used marker of SGs. Recent studies have shown that SARS-CoV-2 nucleocapsid protein via sequestration of G3BPs inhibits SGs formation in the host cells. In this study, we have identified putative miRNAs targeting G3BP in search of modulators of the G3BP expression. These miRNAs could be considered as new therapeutic targets against COVID-19 infection via the regulation of SG assembly and dynamics.
Collapse
Affiliation(s)
- Bjad K Almutairy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Tianyu Z, Liying G. Identifying the molecular targets and mechanisms of xuebijing injection for the treatment of COVID-19 via network parmacology and molecular docking. Bioengineered 2021; 12:2274-2287. [PMID: 34077310 PMCID: PMC8806894 DOI: 10.1080/21655979.2021.1933301] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Xuebijing Injection have been found to improve the clinical symptoms of COVID-19 and alleviate disease severity, but the mechanisms are currently unclear. This study aimed to investigate the potential molecular targets and mechanisms of the Xuebijing injection in treating COVID-19 via network pharmacology and molecular docking analysis. The main active ingredients and therapeutic targets of the Xuebijing injection, and the pathogenic targets of COVID-19 were screened using the TCMSP, UniProt, and GeneCard databases. According to the ‘Drug-Ingredients-Targets-Disease’ network built by STRING and Cytoscape, AKT1 was identified as the core target, and baicalein, luteolin, and quercetin were identified as the active ingredients of the Xuebijing injection in connection with AKT1. R language was used for enrichment analysis that predict the mechanisms by which the Xuebijing injection may inhibit lipopolysaccharide-mediated inflammatory response, modulate NOS activity, and regulate the TNF signal pathway by affecting the role of AKT1. Based on the results of network pharmacology, a molecular docking was performed with AKT1 and the three active ingredients, the results indicated that all three active ingredients could stably bind with AKT1. These findings identify potential molecular mechanisms by which Xuebijing Injection inhibit COVID-19 by acting on AKT1.
Collapse
Affiliation(s)
- Zhao Tianyu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, People's Republic of China
| | - Guan Liying
- Department of Pharmacy, China-Japan Union Hospital, Jilin University; Changchun City, Jilin Province, People's Republic of China
| |
Collapse
|
11
|
Xia QD, Xun Y, Lu JL, Lu YC, Yang YY, Zhou P, Hu J, Li C, Wang SG. Network pharmacology and molecular docking analyses on Lianhua Qingwen capsule indicate Akt1 is a potential target to treat and prevent COVID-19. Cell Prolif 2020; 53:e12949. [PMID: 33140889 PMCID: PMC7705900 DOI: 10.1111/cpr.12949] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Objectives Coronavirus disease 2019 (COVID‐19) is rapidly spreading worldwide. Lianhua Qingwen capsule (LQC) has shown therapeutic effects in patients with COVID‐19. This study is aimed to discover its molecular mechanism and provide potential drug targets. Materials and Methods An LQC target and COVID‐19–related gene set was established using the Traditional Chinese Medicine Systems Pharmacology database and seven disease‐gene databases. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and protein‐protein interaction (PPI) network were performed to discover the potential mechanism. Molecular docking was performed to visualize the patterns of interactions between the effective molecule and targeted protein. Results A gene set of 65 genes was generated. We then constructed a compound‐target network that contained 234 nodes of active compounds and 916 edges of compound‐target pairs. The GO and KEGG indicated that LQC can act by regulating immune response, apoptosis and virus infection. PPI network and subnetworks identified nine hub genes. The molecular docking was conducted on the most significant gene Akt1, which is involved in lung injury, lung fibrogenesis and virus infection. Six active compounds of LQC can enter the active pocket of Akt1, namely beta‐carotene, kaempferol, luteolin, naringenin, quercetin and wogonin, thereby exerting potential therapeutic effects in COVID‐19. Conclusions The network pharmacological strategy integrates molecular docking to unravel the molecular mechanism of LQC. Akt1 is a promising drug target to reduce tissue damage and help eliminate virus infection.
Collapse
Affiliation(s)
- Qi-Dong Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Xun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Lin Lu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Chao Lu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan-Yuan Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Gang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Molecular and Cellular Mechanisms for PRRSV Pathogenesis and Host Response to Infection. Virus Res 2020; 286:197980. [PMID: 32311386 PMCID: PMC7165118 DOI: 10.1016/j.virusres.2020.197980] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
Abstract
PRRSV has evolved to arm with various strategies to modify host antiviral response. Viral modulation of homeostatic cellular processes provides favorable conditions for PRRSV survival during infection. PRRSV modulation of cellular processes includes pathways for interferons, apoptosis, microRNAs, cytokines, autophagy, and viral genome recombination.
Porcine reproductive and respiratory syndrome virus (PRRSV) has caused tremendous amounts of economic losses to the swine industry for more than three decades, but its control is still unsatisfactory. A significant amount of information is available for host cell-virus interactions during infection, and it is evident that PRRSV has evolved to equip various strategies to disrupt the host antiviral system and provide favorable conditions for survival. The current study reviews viral strategies for modulations of cellular processes including innate immunity, apoptosis, microRNAs, inflammatory cytokines, and other cellular pathways.
Collapse
|
13
|
Xie L, Xie Z, Wang S, Deng X, Xie Z. Study of the activation of the PI3K/Akt pathway by the motif of σA and σNS proteins of avian reovirus. Innate Immun 2019; 26:312-318. [PMID: 31779497 PMCID: PMC7251792 DOI: 10.1177/1753425919890648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present study was conducted to determine whether avian reovirus (ARV)
activates the phosphatidylinositol 3-kinase-dependent Akt (PI3K/Akt) pathway
according to the PXXP or YXXXM motifs of σA and σNS proteins. Gene splicing by
overlap extension PCR was used to change the PXXP or YXXXM motifs of the σA and
σNS genes. Plasmid constructs that contain mutant σA and σNS genes were
generated and transfected into Vero cells, and the expression levels of the
corresponding genes were quantified according to immunofluorescence and Western
blot analyses. The Akt phosphorylation (P-Akt) profile of the transfected Vero
cells was examined by flow cytometry and Western blot. The results showed that
the σA and σNS genes were expressed in the Vero cells, and P-Akt expression in
the σA mutant groups (amino acids 110–114 and 114–117) was markedly decreased.
The results indicated that the σA protein of ARV activates the PI3K/Akt pathway
via the PXXP motif. The results of this study reveal the mechanisms by which ARV
manipulates the cellular signal transduction pathways, which may provide new
ideas for novel drug targets.
Collapse
Affiliation(s)
- Liji Xie
- Department of Biotechnology, Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, PR China
| | - Zhixun Xie
- Department of Biotechnology, Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, PR China
| | - Sheng Wang
- Department of Biotechnology, Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, PR China
| | - Xianwen Deng
- Department of Biotechnology, Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, PR China
| | - Zhiqin Xie
- Department of Biotechnology, Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, PR China
| |
Collapse
|
14
|
Fan L. Signaling pathways involved in regulating apoptosis induction in host cells upon PRRSV infection. Virus Genes 2019; 55:433-439. [PMID: 31004277 DOI: 10.1007/s11262-019-01665-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/14/2019] [Indexed: 12/11/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the etiologic agent of porcine reproductive and respiratory syndrome (PRRS), a devastating disease of swine that poses a serious threat to the swine industry worldwide. The induction of apoptosis in host cells is suggested to be the key cellular mechanism that contributes to the pathogenesis of PRRS. Various signaling pathways have been identified to be involved in regulating PRRSV-induced apoptosis. In this review, we summarize the potential signaling pathways that contribute to PRRSV-induced apoptosis, and propose the issues that need to be addressed in future studies for a better understanding of the molecular basis underlying the pathogenesis of PRRS.
Collapse
Affiliation(s)
- Lihong Fan
- Department of Preventive Medicine, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
15
|
Pan Y, Li P, Jia R, Wang M, Yin Z, Cheng A. Regulation of Apoptosis During Porcine Circovirus Type 2 Infection. Front Microbiol 2018; 9:2086. [PMID: 30233552 PMCID: PMC6131304 DOI: 10.3389/fmicb.2018.02086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/15/2018] [Indexed: 12/19/2022] Open
Abstract
Apoptosis, an indispensable innate immune mechanism, regulates cellular homeostasis by removing unnecessary or damaged cells. It contains three signaling pathways: the mitochondria-mediated pathway, the death receptor pathway and the endoplasmic reticulum pathway. The importance of apoptosis in host defenses is stressed by the observation that multiple viruses have evolved various strategies to inhibit apoptosis, thereby blunting the host immune responses and promoting viral propagation. Porcine Circovirus type 2 (PCV2) utilizes various strategies to induce or inhibit programmed cell death. In this article, we review the latest research progress of the apoptosis mechanisms during infection with PCV2, including several proteins of PCV2 regulate apoptosis via interacting with host proteins and multiple signaling pathways involved in PCV2-induced apoptosis, which provides scientific basis for the pathogenesis and prevention of PCV2.
Collapse
Affiliation(s)
- Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Pengfei Li
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
16
|
Guo J, Zhou M, Liu X, Pan Y, Yang R, Zhao Z, Sun B. Porcine IFI30 inhibits PRRSV proliferation and host cell apoptosis in vitro. Gene 2018; 649:93-98. [DOI: 10.1016/j.gene.2018.01.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/20/2017] [Accepted: 01/19/2018] [Indexed: 02/05/2023]
|
17
|
Wang HM, Liu TX, Wang TY, Wang G, Liu YG, Liu SG, Tang YD, Cai XH. Isobavachalcone inhibits post-entry stages of the porcine reproductive and respiratory syndrome virus life cycle. Arch Virol 2018; 163:1263-1270. [PMID: 29411137 PMCID: PMC7086980 DOI: 10.1007/s00705-018-3755-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 01/15/2018] [Indexed: 12/04/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a pathogen of great economic significance that impacts the swine industry globally. Since the first report of a porcine reproductive and respiratory syndrome (PRRS) outbreak, tremendous efforts to control this disease, including various national policies and plans incorporating the use of multiple modified live-virus vaccines, have been made. However, PRRSV is still a significant threat to the swine industry, and new variants continually emerge as a result of PRRSV evolution. Several studies have shown that pandemic PRRSV strains have enormous genetic diversity and that commercial vaccines can only provide partial protection against these strains. Therefore, effective anti-PRRSV drugs may be more suitable and reliable for PRRSV control. In this study, we observed that isobavachalcone (IBC), which was first isolated from Psoralea corylifolia, had potent anti-PRRSV activity in vitro. Although many biological activities of IBC have been reported, this is the first report describing the antiviral activity of IBC. Furthermore, after a systematic investigation, we demonstrated that IBC inhibits PRRSV replication at the post-entry stage of PRRSV infection. Thus, IBC may be a candidate for further evaluation as a therapeutic agent against PRRSV infection of swine in vivo.
Collapse
Affiliation(s)
- Hai-Ming Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Tian-Xin Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Tong-Yun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Yong-Gang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Si-Guo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Xue-Hui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| |
Collapse
|
18
|
The integrity of PRRSV nucleocapsid protein is necessary for up-regulation of optimal interleukin-10 through NF-κB and p38 MAPK pathways in porcine alveolar macrophages. Microb Pathog 2017; 109:319-324. [PMID: 28457899 DOI: 10.1016/j.micpath.2017.04.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 12/30/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS), a highly contagious disease, has been constantly causing huge economic losses all over the world. PRRS virus (PRRSV) infection results in immunosuppression and IL-10 up-regulation. The relationship between them is still in dispute. Previous studies demonstrated the protein of PRRSV nucleocapsid (N) protein is able to up-regulate IL-10, yet the underlying molecular mechanisms remain unknown. In this study, the expression kinetics of IL-10 up-regulation induced by PRRSV N protein were analyzed in immortalized porcine alveolar macrophages (PAMs). N protein induced IL-10 expression in a time- and dose-dependent manner. Inhibition experiments of signaling pathways suggested NF-κB and p38 MAPK pathways are both involved in N protein-induced IL-10 up-regulation. Besides, the integrity of N protein is essential for significant IL-10 up-regulation. This research is beneficial for further understanding of the interplay between PRRSV and host immune system.
Collapse
|
19
|
Xie L, Xie Z, Huang L, Fan Q, Luo S, Huang J, Deng X, Xie Z, Zeng T, Zhang Y, Wang S. Avian reovirus σA and σNS proteins activate the phosphatidylinositol 3-kinase-dependent Akt signalling pathway. Arch Virol 2016; 161:2243-8. [PMID: 27233800 DOI: 10.1007/s00705-016-2908-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/19/2016] [Indexed: 11/26/2022]
Abstract
The present study was conducted to identify avian reovirus (ARV) proteins that can activate the phosphatidylinositol 3-kinase (PI3K)-dependent Akt pathway. Based on ARV protein amino acid sequence analysis, σA, σNS, μA, μB and μNS were identified as putative proteins capable of mediating PI3K/Akt pathway activation. The recombinant plasmids σA-pcAGEN, σNS-pcAGEN, μA-pcAGEN, μB-pcAGEN and μNS-pcAGEN were constructed and used to transfect Vero cells, and the expression levels of the corresponding genes were quantified by immunofluorescence and Western blot analysis. Phosphorylated Akt (P-Akt) levels in the transfected cells were measured by flow cytometry and Western blot analysis. The results showed that the σA, σNS, μA, μB and μNS genes were expressed in Vero cells. σA-expressing and σNS-expressing cells had higher P-Akt levels than negative control cells, pcAGEN-expressing cells and cells designed to express other proteins (i.e., μA, μB and μNS). Pre-treatment with the PI3K inhibitor LY294002 inhibited Akt phosphorylation in σA- and σNS-expressing cells. These results indicate that the σA and σNS proteins can activate the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Liji Xie
- Department of Biotechnology, Guangxi Key Laboratory of Animal Epidemic Etiology and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China
| | - Zhixun Xie
- Department of Biotechnology, Guangxi Key Laboratory of Animal Epidemic Etiology and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China.
| | - Li Huang
- Department of Biotechnology, Guangxi Key Laboratory of Animal Epidemic Etiology and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China
| | - Qing Fan
- Department of Biotechnology, Guangxi Key Laboratory of Animal Epidemic Etiology and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China
| | - Sisi Luo
- Department of Biotechnology, Guangxi Key Laboratory of Animal Epidemic Etiology and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China
| | - Jiaoling Huang
- Department of Biotechnology, Guangxi Key Laboratory of Animal Epidemic Etiology and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China
| | - Xianwen Deng
- Department of Biotechnology, Guangxi Key Laboratory of Animal Epidemic Etiology and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China
| | - Zhiqin Xie
- Department of Biotechnology, Guangxi Key Laboratory of Animal Epidemic Etiology and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China
| | - Tingting Zeng
- Department of Biotechnology, Guangxi Key Laboratory of Animal Epidemic Etiology and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China
| | - Yanfang Zhang
- Department of Biotechnology, Guangxi Key Laboratory of Animal Epidemic Etiology and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China
| | - Sheng Wang
- Department of Biotechnology, Guangxi Key Laboratory of Animal Epidemic Etiology and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China
| |
Collapse
|
20
|
Yang T, Wilkinson J, Wang Z, Ladinig A, Harding J, Plastow G. A genome-wide association study of fetal response to type 2 porcine reproductive and respiratory syndrome virus challenge. Sci Rep 2016; 6:20305. [PMID: 26846722 PMCID: PMC4742883 DOI: 10.1038/srep20305] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/30/2015] [Indexed: 01/22/2023] Open
Abstract
Control of porcine reproductive and respiratory syndrome (PRRS) is economically important for the swine industry worldwide. As current PRRS vaccines do not completely protect against heterologous challenge, alternative means of control, including enhanced genetic resilience, are needed. For reproductive PRRS, the genetic basis of fetal response to PRRS virus (PRRSV) infection is poorly understood. Genome-wide association studies (GWAS) were done here using data from 928 fetuses from pregnant gilts experimentally challenged with type 2 PRRSV. Fetuses were assessed for viral load in thymus (VLT), viral load in endometrium (VLE), fetal death (FD) and fetal viability (FV), and genotyped at a medium density. Collectively, 21 candidate genomic regions were found associated with these traits, seven of which overlap with previously reported QTLs for pig health and reproduction. A comparison with ongoing and related transcriptomic analyses of fetal response to PRRSV infection found differentially expressed genes within 18 candidate regions. Some of these genes have immune system functions, and have been reported to contribute to host response to PRRSV infection. The results provide new evidence about the genetic basis of fetal response to PRRSV challenge, and may ultimately lead to alternative control strategies to reduce the impact of reproductive PRRS.
Collapse
Affiliation(s)
- Tianfu Yang
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - James Wilkinson
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Zhiquan Wang
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Andrea Ladinig
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna 1210, Austria
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - John Harding
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Graham Plastow
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
21
|
Wang X, Zhang H, Abel AM, Nelson E. Protein kinase R (PKR) plays a pro-viral role in porcine reproductive and respiratory syndrome virus (PRRSV) replication by modulating viral gene transcription. Arch Virol 2015; 161:327-33. [DOI: 10.1007/s00705-015-2671-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/31/2015] [Indexed: 01/01/2023]
|
22
|
Pujhari S, Kryworuchko M, Zakhartchouk AN. Role of phosphatidylinositol-3-kinase (PI3K) and the mammalian target of rapamycin (mTOR) signalling pathways in porcine reproductive and respiratory syndrome virus (PRRSV) replication. Virus Res 2014; 194:138-44. [DOI: 10.1016/j.virusres.2014.09.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 01/28/2023]
|