1
|
Yamada Y, Wang YC, Liu HP, Gerongano GR, Tseng CY, Liu SC, Liao GR, Chang CC, Liao JW, Wang ML, Chang YY, Lin FY, Hsu WL. Development of attenuated Orf virus as a safe oncolytic viral vector for nasopharyngeal carcinoma treatment. Virol J 2025; 22:50. [PMID: 40001231 PMCID: PMC11863438 DOI: 10.1186/s12985-025-02672-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Orf virus (ORFV) is gaining attention as a promising viral vector for cancer therapy because of its unique properties. Recent studies have shown that ORFV could be effective against various cancers, particularly nasopharyngeal carcinoma. This research explores the ability of wild-type ORFV and recombinant ORFVs, which lack specific virulence factors, to kill NPC cells and modulate the immune response. METHODS Two NPC cell lines, HK1 (from Hong Kong) and TW02 (from Taiwan), were infected with wild-type ORFV and two recombinant ORFVs lacking either vascular endothelial growth factor (VEGF) or chemokine binding protein (CBP) virulence factors. The oncolytic effects were evaluated by assessing cell death pathways, particularly pyroptosis, which was monitored through the cleavage of gasdermin E (GSDME). The activation of survival pathways, such as focal adhesion kinase (FAK) and AKT, was also analyzed. In addition, the influence of ORFV infection on natural killer (NK) cell recruitment and cytotoxicity was investigated. In vivo experiments were conducted in a xenograft mouse model in which HK1 tumors were used to evaluate the antitumor activity of wild-type ORFV and two deletion-mutant ORFVs. RESULTS Wild-type ORFV effectively killed NPC cells, especially HK1 cells. The recombinant ORFVs, despite being attenuated by the loss of VEGF or CBP, retained the ability to infect and cause NPC cell death, with the CBP-deleted virus showing notable effectiveness in HK1 cells. Early ORFV infection led to pyroptosis via GSDME cleavage, causing cell detachment and a reduction in FAK and AKT activation. ORFV also enhanced NK cell recruitment and boosted NK cell-mediated cytotoxicity in infected NPC cells. In the HK1 xenograft model, CBP-deleted ORFV significantly inhibited tumor growth. CONCLUSION ORFV, particularly the wild-type and CBP-deleted variants, has significant potential as an oncolytic viral vector for NPC therapy. It induces cell death via pyroptosis and enhances immune-mediated tumor cell destruction through NK cells. The attenuated CBP-deleted ORFV offers a safer and effective option for cancer treatment, making it a promising candidate for future therapeutic applications.
Collapse
Affiliation(s)
- Yumiko Yamada
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Chih Wang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hao-Ping Liu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Greg Ryan Gerongano
- Department of Pathology, Corazon Locsin Montelibano Memorial Regional Hospital, Bacolod City, Philippines
| | - Ching-Yu Tseng
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Shu-Chen Liu
- Department Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Guan-Ru Liao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chao-Chin Chang
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Mei-Lin Wang
- Department of Microbiology and Immunology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yuan-Yen Chang
- Department of Microbiology and Immunology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Fong-Yuan Lin
- Department of Animal Healthcare, Hungkuang University, Taichung, Taiwan
| | - Wei-Li Hsu
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan.
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
2
|
Zhao D, Shi Y, Zhang M, Li P, Zhang Y, Wang T, Yu D, Zhang K. Genomic Differences and Mutations in Epidemic Orf Virus and Vaccine Strains: Implications for Improving Orf Virus Vaccines. Vet Sci 2024; 11:617. [PMID: 39728957 DOI: 10.3390/vetsci11120617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/28/2024] Open
Abstract
Orf (ORF) is an acute disease caused by the Orf virus (ORFV), and poses a certain threat to animal and human health. Live attenuated vaccines play an important role in the prevention and control of ORF. The effectiveness of the live attenuated Orf virus vaccine is influenced by several factors, including the genomic match between the vaccine strain and circulating epidemic strains. Genomic differences between an ORFV epidemic strain (ORFV-2W) and a vaccine strain (ORFV-1V) were identified in this study via analysis of multiple sequence alignments, phylogenetic trees, and single nucleotide polymorphisms. Phylogenetic analysis revealed that ORFV-2W and ORFV-1V were closely related, with a whole genome homology of 99.8%. Furthermore, a deletion in the non-coding region at the end of the whole genome of ORFV-1V was detected. Such non-essential genes in the terminal regions are usually unnecessary for virus replication but may play important roles in pathogenicity, host and tissue tropism. Single nucleotide polymorphism analysis identified three missense mutations in ORF067, ORF072, and the terminal non-coding region of ORFV-1V. Moreover, a frameshift mutation in ORF102 of ORFV-1V was detected. Mutations in individual genes and deletion of terminal non-coding regions may be related to the attenuation of the vaccine strain. These results provide useful context for improving ORFV vaccines.
Collapse
Affiliation(s)
- Dengshuai Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Yaoxu Shi
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Miaomiao Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Ping Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Yuanhang Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Tianyu Wang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Dixi Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Keshan Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Animal Science and Technology, Foshan University, Foshan 528225, China
| |
Collapse
|
3
|
Coradduzza E, Scarpa F, Rocchigiani AM, Cacciotto C, Lostia G, Fiori MS, Rodriguez Valera Y, De Pascali AM, Brandolini M, Azzena I, Locci C, Casu M, Bechere R, Pintus D, Ligios C, Scagliarini A, Sanna D, Puggioni G. The Global Evolutionary History of Orf Virus in Sheep and Goats Revealed by Whole Genomes Data. Viruses 2024; 16:158. [PMID: 38275968 PMCID: PMC10820850 DOI: 10.3390/v16010158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Orf virus (ORFV) belongs to the genus Parapoxvirus (Poxviridae family). It is the causative agent of contagious ecthyma (CE) that is an economically detrimental disease affecting small ruminants globally. Contagious ecthyma outbreaks are usually reported in intensive breeding of sheep and goats but they have also been reported in wildlife species. Notably, ORFV can infect humans, leading to a zoonotic disease. This study aims to elucidate the global evolutionary history of ORFV genomes in sheep and goats, including the first genomes from Central America in the analyses. In comparison to the last study on ORFV whole genomes, the database now includes 11 more sheep and goat genomes, representing an increase of 42%. The analysis of such a broader database made it possible to obtain a fine molecular dating of the coalescent time for ORFV S and G genomes, further highlighting the genetic structuring between sheep and goat genomes and corroborating their emergence in the latter half of 20th century.
Collapse
Affiliation(s)
- Elisabetta Coradduzza
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (G.L.); (M.S.F.); (R.B.); (D.P.); (C.L.); (G.P.)
| | - Fabio Scarpa
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (F.S.); (I.A.); (C.L.)
| | - Angela Maria Rocchigiani
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (G.L.); (M.S.F.); (R.B.); (D.P.); (C.L.); (G.P.)
| | - Carla Cacciotto
- Dipartimento di Medicina Veterinaria, Università di Sassari, 07100 Sassari, Italy; (C.C.); (M.C.)
- Mediterranean Center for Disease Control, 07100 Sassari, Italy
| | - Giada Lostia
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (G.L.); (M.S.F.); (R.B.); (D.P.); (C.L.); (G.P.)
| | - Mariangela Stefania Fiori
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (G.L.); (M.S.F.); (R.B.); (D.P.); (C.L.); (G.P.)
| | | | - Alessandra Mistral De Pascali
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, 40138 Bologna, Italy; (A.M.D.P.); (M.B.); (A.S.)
| | - Martina Brandolini
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, 40138 Bologna, Italy; (A.M.D.P.); (M.B.); (A.S.)
| | - Ilenia Azzena
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (F.S.); (I.A.); (C.L.)
| | - Chiara Locci
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (F.S.); (I.A.); (C.L.)
- Dipartimento di Medicina Veterinaria, Università di Sassari, 07100 Sassari, Italy; (C.C.); (M.C.)
| | - Marco Casu
- Dipartimento di Medicina Veterinaria, Università di Sassari, 07100 Sassari, Italy; (C.C.); (M.C.)
| | - Roberto Bechere
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (G.L.); (M.S.F.); (R.B.); (D.P.); (C.L.); (G.P.)
| | - Davide Pintus
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (G.L.); (M.S.F.); (R.B.); (D.P.); (C.L.); (G.P.)
| | - Ciriaco Ligios
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (G.L.); (M.S.F.); (R.B.); (D.P.); (C.L.); (G.P.)
| | - Alessandra Scagliarini
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, 40138 Bologna, Italy; (A.M.D.P.); (M.B.); (A.S.)
| | - Daria Sanna
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (F.S.); (I.A.); (C.L.)
| | - Giantonella Puggioni
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (G.L.); (M.S.F.); (R.B.); (D.P.); (C.L.); (G.P.)
| |
Collapse
|
4
|
Du G, Wu J, Zhang C, Cao X, Li L, He J, Zhang Y, Shang Y. The whole genomic analysis of the Orf virus strains ORFV-SC and ORFV-SC1 from the Sichuan province and their weak pathological response in rabbits. Funct Integr Genomics 2023; 23:163. [PMID: 37188892 DOI: 10.1007/s10142-023-01079-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023]
Abstract
The Orf virus (ORFV) is a member of the Parapoxvirus genus of the Poxviridae family and can cause contagious diseases in sheep, goats, and wild ungulates. In the present study, two ORFV isolates (ORFV-SC isolated from Sichuan province and ORFV-SC1 produced by 60 passages of ORFV-SC in cells) were sequenced and compared to multiple ORFVs. The two ORFV sequences had entire genome sizes of 14,0707 bp and 141,154 bp, respectively, containing 130 and 131 genes, with a G + C content of 63% for the ORFV-SC sequence and 63.9% for the ORFV-SC1 sequence. Alignment of ORFV-SC and ORFV-SC1 with five other ORFV isolates revealed that ORFV-SC, ORFV-SC1, and NA1/11 shared > 95% nucleotide identity with 109 genes. Five genes (ORF007, ORF20, ORF080, ORF112, ORF116) have low amino acids identity between ORFV-SC and ORFV-SC1. Mutations in amino acids result in changes in the secondary and tertiary structure of ORF007, ORF020, and ORF112 proteins. The phylogenetic tree based on the complete genome sequence and 37 single genes revealed that the two ORFV isolates originated from sheep. Finally, animal experiments demonstrated that ORFV-SC1 is less harmful to rabbits than ORFV-SC. The exploration of two full-length viral genome sequences provides valuable information in ORFV biology and epidemiology research. Furthermore, ORFV-SC1 demonstrated an acceptable safety profile following animal vaccination, indicating its potential as a live ORFV vaccine.
Collapse
Affiliation(s)
- Guoyu Du
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730046, China
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Jinyan Wu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Cheng Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Institute of Veterinary Research (CAAS) Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Xiaoan Cao
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Lingxia Li
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Jijun He
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730046, China.
| | - Youjun Shang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
5
|
Wang R, Mo J, Luo X, Zhang G, Liu F, Luo S. ORFV infection enhances CXCL16 secretion and causes oncolysis of lung cancer cells through immunogenic apoptosis. Front Cell Infect Microbiol 2022; 12:910466. [PMID: 35959371 PMCID: PMC9358046 DOI: 10.3389/fcimb.2022.910466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Oncolytic viruses have been emerging as a promising therapeutic option for cancer patients, including lung cancer. Orf virus (ORFV), a DNA parapoxvirus, can infect its natural ungulate hosts and transmit into humans. Moreover, the ORFV has advantages of low toxicity, high targeted, self-amplification and can induce potent Th1-like immunity. This study explored the therapeutic potential of ORFV infection for human lung cancer therapy and investigated the molecular mechanisms. We used a previously described ORFV NA1/11 strain and tested the oncolysis of ORFV NA1/11 in two lines of lung cancer cells in vitro and in vivo. Treatment of both cell lines with ORFV NA1/11 resulted in a decrease in cell viability by inducing cell cycle arrest in G2/M phase, suppressing cyclin B1 expression and increasing their apoptosis in a caspase-dependent manner. The ORFV NA1/11-infected lung cancer cells were highly immunogenic. Evidently, ORFV NA1/11 infection of lung cancer cells induced oncolysis of tumor cells to release danger-associated molecular patterns, and promoted dendritic cell maturation, and CD8 T cell infiltration in the tumors by enhancing CXCL16 secretion. These findings may help to understand the molecular mechanisms of ORFV oncolysis and aid in the development of novel therapies for lung cancer.
Collapse
Affiliation(s)
- Ruixue Wang
- Department of Basic Medical Sciences, School of Medicine, Foshan University, Foshan, China
| | - Jingying Mo
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, China
| | - Xiaoshan Luo
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, China
| | - Guixian Zhang
- Department of Basic Medical Sciences, School of Medicine, Foshan University, Foshan, China
| | - Fang Liu
- Department of Basic Medical Sciences, School of Medicine, Foshan University, Foshan, China
| | - Shuhong Luo
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, China
- *Correspondence: Shuhong Luo,
| |
Collapse
|
6
|
Mangga HK, Bala JA, Balakrishnan KN, Bukar AM, Lawan Z, Gambo A, Jesse FFA, Noordin MM, Mohd-Azmi ML. Genome-Wide Analysis and Molecular Characterization of Orf Virus Strain UPM/HSN-20 Isolated From Goat in Malaysia. Front Microbiol 2022; 13:877149. [PMID: 35898905 PMCID: PMC9309513 DOI: 10.3389/fmicb.2022.877149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/10/2022] [Indexed: 12/03/2022] Open
Abstract
Contagious ecthyma commonly known as Orf is a globally important, highly contagious zoonotic, transboundary disease that affects domestic and wild ruminants. The disease is of great economic significance causing an immense impact on animal health, welfare, productivity, and trade. Detailed analysis of the viral genome is crucial to further elucidate the molecular mechanism of Orf virus (ORFV) pathogenesis. In the present study, a confluent monolayer of lamb testicle cells was infected with the processed scab sample obtained from an infected goat. The presence of the virus was confirmed using polymerase chain reaction and electron microscopy, while its genome was sequenced using next-generation sequencing technology. The genome sequence of Malaysian ORFV strain UPM/HSN-20 was found to contain 132,124 bp with a G + C content of 63.7%. The homology analysis indicates that UPM/HSN-20 has a high level of identity 97.3–99.0% with the other reference ORFV strain. Phylogenetic analysis revealed that ORFV strain UPM/HSN-20 is genetically more closely related to ORFV strain XY and NP from China. The availability of the genome-wide analysis of ORFV UPM/HSN-20 strain from Malaysia will serve as a good platform for further understanding of genetic diversity, ORFV infection, and strategic development for control measures.
Collapse
Affiliation(s)
- Hassana Kyari Mangga
- Virology Unit, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Microbiology, Faculty of Science, University of Maiduguri, Maiduguri, Nigeria
- *Correspondence: Hassana Kyari Mangga,
| | - Jamilu Abubakar Bala
- Virology Unit, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Bayero University Kano, Kano, Nigeria
| | - Krishnan Nair Balakrishnan
- Virology Unit, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Alhaji Modu Bukar
- Virology Unit, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Science Laboratory Technology, Ramat Polytechnic Maiduguri, Maiduguri, Nigeria
| | - Zaharaddeen Lawan
- Department of Agricultural Technology, College of Agriculture, Hussaini Adamu Federal Polytechnic, Kazaure, Nigeria
| | - Auwal Gambo
- Virology Unit, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Microbiology, Faculty of Science, Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
| | - Faez Firdaus Abdullah Jesse
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mustapha M. Noordin
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd-Lila Mohd-Azmi
- Virology Unit, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
- Mohd-Lila Mohd-Azmi,
| |
Collapse
|
7
|
Coradduzza E, Sanna D, Scarpa F, Azzena I, Fiori MS, Scivoli R, Rocchigiani AM, Bechere R, Dettori MA, Pintus D, Evangelista E, Casu M, Ligios C, Puggioni G. A Deeper Insight into Evolutionary Patterns and Phylogenetic History of ORF Virus through the Whole Genome Sequencing of the First Italian Strains. Viruses 2022; 14:v14071473. [PMID: 35891452 PMCID: PMC9318404 DOI: 10.3390/v14071473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Orf virus (ORFV) is distributed worldwide and is the causative agent of contagious ecthyma that mainly occurs in sheep and goats. This disease was reported for the first time at the end of 18th century in Europe but very little is currently known about the temporal and geographic origins of this virus. In the present study, the use of new Italian whole genomes allowed for better inference on the evolutionary history of ORFV. In accordance with previous studies, two genome types (S and G) were described for infection of sheep and goats, respectively. These two well-differentiated groups of genomes originated for evolutive convergence in the late 1800s in two different areas of the world (Europe for S type and Asia for G type), but it was only in the early 1900s that the effective size of ORFV increased among hosts and the virus spread across the whole European continent. The Italian strains which were sequenced in the present study were isolated on the Mediterranean island of Sardinian and showed to be exclusive to this geographic area. One of them is likely representative of the early European forms of ORFV which infected sheep and became extinct about one century ago. Such an ancient Sardinian strain may have reached the island simple by chance, where it quickly adapted to the new habitat.
Collapse
Affiliation(s)
- Elisabetta Coradduzza
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (M.S.F.); (R.S.); (A.M.R.); (R.B.); (M.A.D.); (D.P.); (C.L.); (G.P.)
| | - Daria Sanna
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (F.S.); (I.A.)
- Correspondence:
| | - Fabio Scarpa
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (F.S.); (I.A.)
| | - Ilenia Azzena
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (F.S.); (I.A.)
- Dipartimento di Medicina Veterinaria, Università di Sassari, 07100 Sassari, Italy;
| | - Mariangela S. Fiori
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (M.S.F.); (R.S.); (A.M.R.); (R.B.); (M.A.D.); (D.P.); (C.L.); (G.P.)
| | - Rosario Scivoli
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (M.S.F.); (R.S.); (A.M.R.); (R.B.); (M.A.D.); (D.P.); (C.L.); (G.P.)
| | - Angela M. Rocchigiani
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (M.S.F.); (R.S.); (A.M.R.); (R.B.); (M.A.D.); (D.P.); (C.L.); (G.P.)
| | - Roberto Bechere
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (M.S.F.); (R.S.); (A.M.R.); (R.B.); (M.A.D.); (D.P.); (C.L.); (G.P.)
| | - Maria A. Dettori
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (M.S.F.); (R.S.); (A.M.R.); (R.B.); (M.A.D.); (D.P.); (C.L.); (G.P.)
| | - Davide Pintus
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (M.S.F.); (R.S.); (A.M.R.); (R.B.); (M.A.D.); (D.P.); (C.L.); (G.P.)
| | - Eloisa Evangelista
- Ames Polydiagnostic Group Center SRL, Casalnuovo di Napoli, 80013 Naples, Italy;
| | - Marco Casu
- Dipartimento di Medicina Veterinaria, Università di Sassari, 07100 Sassari, Italy;
| | - Ciriaco Ligios
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (M.S.F.); (R.S.); (A.M.R.); (R.B.); (M.A.D.); (D.P.); (C.L.); (G.P.)
| | - Giantonella Puggioni
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (M.S.F.); (R.S.); (A.M.R.); (R.B.); (M.A.D.); (D.P.); (C.L.); (G.P.)
| |
Collapse
|
8
|
Zhou Y, Guan J, Lv L, Cui H, Xu M, Wang S, Yu Z, Zhen R, He S, Fang Z, Zhong J, Cui S, Yu S, Song D, He W, Gao F, Zhao K. Complete genomic sequences and comparative analysis of two Orf virus isolates from Guizhou Province and Jilin Province, China. Virus Genes 2022; 58:403-413. [PMID: 35780442 DOI: 10.1007/s11262-022-01918-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 05/26/2022] [Indexed: 10/17/2022]
Abstract
Orf virus (ORFV, species Orf virus) belongs to the typical species of the Parapoxvirus genus of the family Poxviridae, which infects sheep, goats, and humans with worldwide distribution. Although outbreaks of Orf have been reported sequentially in several Chinese provinces, the epidemiology of Orf and genetic diversity of ORFV strains still needs to be further characterized. To further reveal the genomic organization of the ORFV-GZ18 and ORFV-CL18 isolates, the complete genome sequences of two recently obtained ORFV isolates were sequenced using the next-generation sequencing technology and analyzed, which had been deposited in the GenBank database under accession number MN648218 and MN648219, respectively. The complete genomic sequence of ORFV-CL18 was 138,495 bp in length, including 131 potential open reading frames (ORFs) flanked by inverted terminal repeats (ITRs) of 3481 bp at both ends, which has genomic structure typical Parapoxviruses. The overall genomic organization of the fully sequenced genome of ORFV-GZ18 was consistent with ORFV-CL18 genome, with a complete genome size of 138,446 nucleotides, containing 131 ORFs flanked by ITRs of 3469 bp. Additionally, the overall G + C contents of ORFV-GZ18 and ORFV-CL18 genome sequences were about 63.9% and 63.8%, respectively. The phylogenetic analysis showed that both ORFV-GZ18 and ORFV-CL18 were genetically closely related to ORFV-SY17 derived from sheep. In summary, the complete genomic sequences of ORFV-GZ18 and ORFV-CL18 are reported, with the hope it will be useful to investigate the host range, geographic distribution, and genetic evolution of the virus in Southern West and Northern East China.
Collapse
Affiliation(s)
- Yanlong Zhou
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Lijun Lv
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Huan Cui
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Mengshi Xu
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Shuai Wang
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Zhaohui Yu
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Ruixue Zhen
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Shishi He
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Ziyu Fang
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Jiawei Zhong
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Shanshan Cui
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Shiying Yu
- Liupanshui Agriculture Bureau, Liupanshui, Guizhou, China
| | - Deguang Song
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Wenqi He
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Feng Gao
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China.,Key Laboratory of Zoonosis, Institute of Zoonosis, Jilin University, Ministry of Education, Changchun, China
| | - Kui Zhao
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China.
| |
Collapse
|
9
|
Huang Y, Gong K, Chen J, Deng H, Weng K, Wu H, Li K, Xiao B, Luo S, Hao W. Preclinical efficacy and involvement of mTOR signaling in the mechanism of Orf virus against nasopharyngeal carcinoma cells. Life Sci 2022; 291:120297. [PMID: 35007565 DOI: 10.1016/j.lfs.2021.120297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/17/2021] [Accepted: 12/31/2021] [Indexed: 12/24/2022]
Abstract
AIMS Orf virus (ORFV) is a parapoxvirus causing contagious ecthyma in sheep and goats. With inhibitory role of ORFV reported by previous studies, ORFV can be a candidate of oncolytic virus. However, few studies reported the application and mechanism of ORFV in nasopharyngeal carcinoma (NPC). We aimed to elucidate the anti-tumor mechanism of ORFV against NPC cells. MATERIALS AND METHODS The anti-tumor effect of ORFV in NPC cells was confirmed by cell counting kit 8 (CCK-8) assay, flow cytometry and Western blot. In vitro and in vivo experiments were adopted to evaluate the inhibitory effect of ORFV in NPC cells. Western blot was used to determine the down-regulation of rapamycin (mTOR) signaling and autophagy enhancement induced by ORFV. To explore the mechanism of ORFV on NPC cells, mTOR signaling agonist and autophagy inhibitors were used to rescue the effects of ORFV. KEY FINDINGS The results indicated that ORFV replicates in NPC cells, thus induces the apoptosis of NPC cells. Moreover, ORFV can effectively inhibit NPC cell growth in vivo. ORFV infection in NPC cells leads to the mTOR signaling inhibition and up-regulated autophagy, which might be the specific mechanism of ORFV in killing tumor cells. As to safety confirmation, normal nasopharyngeal epithelial cells NP69 are insensitive to ORFV. More importantly, ORFV would not cause organ damage in vivo. SIGNIFICANCES Our data clarified that ORFV induces autophagy of NPC cells via inhibiting mTOR signaling, thus further inducing apoptosis. The anti-tumor role of ORFV might provide a preclinical strategy for NPC treatment.
Collapse
Affiliation(s)
- Yinger Huang
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong, PR China; Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Kunxiang Gong
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong, PR China; Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, Southern Medical University, Guangzhou 510515, Guangdong, PR China; Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou 510000, Guangdong, PR China
| | - Jialing Chen
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong, PR China; Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Hao Deng
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong, PR China; Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, Southern Medical University, Guangzhou 510515, Guangdong, PR China; Stem Cell Clinical Transformation and Application Center, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen 518000,Guangdong, PR China
| | - Kongyan Weng
- Department of Transfusion Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, PR China
| | - Hongfeng Wu
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong, PR China; Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Kun Li
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong, PR China; Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Bin Xiao
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511500, PR China
| | - Shuhong Luo
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong, PR China; Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, Southern Medical University, Guangzhou 510515, Guangdong, PR China; Department of Laboratory Medicine, School of Stomatology and Medicine, Foshan University, Foshan 528000, PR China.
| | - Wenbo Hao
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong, PR China; Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, Southern Medical University, Guangzhou 510515, Guangdong, PR China.
| |
Collapse
|
10
|
Coradduzza E, Sanna D, Rocchigiani AM, Pintus D, Scarpa F, Scivoli R, Bechere R, Dettori MA, Montesu MA, Marras V, Lobrano R, Ligios C, Puggioni G. Molecular Insights into the Genetic Variability of ORF Virus in a Mediterranean Region (Sardinia, Italy). Life (Basel) 2021; 11:416. [PMID: 34064326 PMCID: PMC8147818 DOI: 10.3390/life11050416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 11/22/2022] Open
Abstract
Orf virus (ORFV) represents the causative agent of contagious ecthyma, clinically characterized by mild papular and pustular to severe proliferative lesions, mainly occurring in sheep and goats. In order to provide hints on the evolutionary history of this virus, we carried out a study aimed to assess the genetic variation of ORFV in Sardinia that hosts a large affected small ruminant population. We also found a high worldwide mutational viral evolutionary rate, which resulted, in turn, higher than the rate we detected for the strains isolated in Sardinia. In addition, a well-supported genetic divergence was found between the viral strains isolated from sheep and those from goats, but no relevant connection was evidenced between the severity of lesions produced by ORFV and specific polymorphic patterns in the two species of hosts. Such a finding suggests that ORFV infection-related lesions are not necessarily linked to the expression of one of the three genes here analyzed and could rather be the effect of the expression of other genes or rather represents a multifactorial character.
Collapse
Affiliation(s)
- Elisabetta Coradduzza
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (D.P.); (R.S.); (R.B.); (M.A.D.); (C.L.); (G.P.)
| | - Daria Sanna
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy
| | - Angela M. Rocchigiani
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (D.P.); (R.S.); (R.B.); (M.A.D.); (C.L.); (G.P.)
| | - Davide Pintus
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (D.P.); (R.S.); (R.B.); (M.A.D.); (C.L.); (G.P.)
| | - Fabio Scarpa
- Dipartimento di Medicina Veterinaria, Università di Sassari, 07100 Sassari, Italy;
| | - Rosario Scivoli
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (D.P.); (R.S.); (R.B.); (M.A.D.); (C.L.); (G.P.)
| | - Roberto Bechere
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (D.P.); (R.S.); (R.B.); (M.A.D.); (C.L.); (G.P.)
| | - Maria A. Dettori
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (D.P.); (R.S.); (R.B.); (M.A.D.); (C.L.); (G.P.)
| | - Maria A. Montesu
- Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università di Sassari, 07100 Sassari, Italy; (M.A.M.); (V.M.); (R.L.)
| | - Vincenzo Marras
- Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università di Sassari, 07100 Sassari, Italy; (M.A.M.); (V.M.); (R.L.)
| | - Renato Lobrano
- Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università di Sassari, 07100 Sassari, Italy; (M.A.M.); (V.M.); (R.L.)
| | - Ciriaco Ligios
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (D.P.); (R.S.); (R.B.); (M.A.D.); (C.L.); (G.P.)
| | - Giantonella Puggioni
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (D.P.); (R.S.); (R.B.); (M.A.D.); (C.L.); (G.P.)
| |
Collapse
|
11
|
Yu Y, Duan X, Liu Y, Ma J, Song B, Lian Z, Cui Y. Laboratory Diagnosis of a NZ7-like Orf Virus Infection and Pathogen Genetic Characterization, Particularly in the VEGF Gene. Front Vet Sci 2020; 7:538. [PMID: 33094105 PMCID: PMC7527421 DOI: 10.3389/fvets.2020.00538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/10/2020] [Indexed: 11/13/2022] Open
Abstract
Orf is a widespread contagious epithelial viral disease found particularly in most sheep breeding countries in the world. Recently, an orf virus (ORFV) strain OV-HLJ05 was isolated from an outbreak in northeast China. Three genes of interest including ORFV011 (B2L), ORFV059 (F1L), and ORFV132 (VEGF) of ORFV, were recruited to identify and genetically characterize this newly isolated virus. Amino acid (aa) sequence compared with the ORFV references listed in GenBank, both B2L and F1L of OV-HLJ05 showed less microheterogeneity from their references. In contrast, the VEGF gene was included in the NZ7-VEGF like group as previously considered by Mercer in 2002. Unexpectedly, further multiple VEGF matches were made, using 34 published sequences from China and India, resulting in 27 strains of the NZ7 members. Based on Karki's report in 2020, NZ7-VEGF like viruses are emerging more and more frequently in these two countries, damaging the Asian sheep industry. Obvious heterogeneity with the NZ2, insertion of two oligopeptides TATI(L)QVVVAI(L) and SSSS(S) motif were found in the NZ7-like VEGF protein. These VEGFs are divided mainly into two types and a significant increase in the number of hydrogen bonds within the NZ7-like VEGF dimers was observed. The NZ7-like ORFV apparently favors the goat as a host and an emphasis on this in future epidemiological and pathological studies should be considered, focusing on the NZ7-like virus.
Collapse
Affiliation(s)
- Yongzhong Yu
- College of Biological Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Yongzhong Yu
| | - Xuyang Duan
- College of Biological Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuanyuan Liu
- College of Biological Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jinzhu Ma
- College of Biological Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Baifen Song
- College of Biological Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhengxing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- Zhengxing Lian
| | - Yudong Cui
- College of Biological Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
- Yudong Cui
| |
Collapse
|
12
|
Shimizu K, Takaiwa A, Takeshima SN, Okada A, Inoshima Y. Genetic Variability of 3'-Proximal Region of Genomes of Orf Viruses Isolated From Sheep and Wild Japanese Serows ( Capricornis crispus) in Japan. Front Vet Sci 2020; 7:188. [PMID: 32391386 PMCID: PMC7193945 DOI: 10.3389/fvets.2020.00188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/23/2020] [Indexed: 12/04/2022] Open
Abstract
Orf virus is a prototype species of the genus Parapoxvirus, subfamily Chordopoxvirinae, family Poxviridae. Japanese orf viruses, infecting sheep and wild Japanese serows (Capricornis crispus), have been considered to be genetically closely related based on the sequence identities of the open reading frames (ORFs) 11, 20, and 132 in their genomes. However, since the genome size of orf viruses is about 140 kbp long, genetic variation among Japanese orf viruses remains unclear. In this study, we analyzed the sequences of ORFs 117, 119, 125, and 127 located in the 3′-proximal region of the viral genome using two strains from sheep and three strains from Japanese serows isolated from 1970 to 2007, and compared them with the corresponding sequences of reference orf viruses from other countries. Sequence analysis revealed that ORFs 125 and 127, which encode the inhibitor of apoptosis and viral interleukin (IL)-10, respectively, were highly conserved among the five Japanese orf viruses. However, high genetic variability with deletions or duplications was observed in ORFs 117 and 119, which encode granulocyte macrophage colony-stimulating factor and IL-2 inhibition factor (GIF), and inducer of cell apoptosis, respectively, in one strain from sheep and two strains from Japanese serows. Our results suggest that genetic variability exists in Japanese orf viruses even in the same host species. This is the first report of genetic variability of orf viruses in Japan.
Collapse
Affiliation(s)
- Kaori Shimizu
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Gifu University, Gifu, Japan
| | - Asari Takaiwa
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Gifu University, Gifu, Japan
| | | | - Ayaka Okada
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Gifu University, Gifu, Japan.,Education and Research Center for Food Animal Health, Gifu University (GeFAH), Gifu, Japan
| | - Yasuo Inoshima
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Gifu University, Gifu, Japan.,Education and Research Center for Food Animal Health, Gifu University (GeFAH), Gifu, Japan.,The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan.,Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
13
|
Karki M, Kumar A, Arya S, Venkatesan G. Circulation of orf viruses containing the NZ7-like vascular endothelial growth factor (VEGF-E) gene type in India. Virus Res 2020; 281:197908. [PMID: 32126295 DOI: 10.1016/j.virusres.2020.197908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
Orf, a poxviral skin infection of small ruminants is caused by orf virus (ORFV) of the genus Parapoxvirus of the Poxviridae family. Vascular endothelial growth factor (VEGF) is an important virulence factor that is responsible for proliferative lesions in parapoxviral infections. VEGF gene shows high intra- and inter-species variability. Two variants of VEGF have been described globally in ORFV, viz. NZ2- and NZ7-like. In the present study, ORFV isolates of different geographic regions of India were analysed on the basis of the VEGF gene. Indian ORFV isolates showed 95.7-100 % nucleotide (nt) and 78.4-99.3 % amino acid (aa) identity with each other, except ORFV-Assam/LK/14 and ORFV-Meghalaya/03 which shared 85.1-88.35 % and 79.1-81.8 % identity, at nt and aa levels, respectively with other Indian ORFV isolates. All Indian ORFVs under the study demonstrated 83.5-99.1 % nt and 80.5-97.9 % aa identity with NZ7-like VEGF as compared to 41.2-44.8 % nt and 30.7-38.4 % aa identity with NZ2-like VEGF on comparison with global ORFV strains. Phylogenetic analysis based on the VEGF gene showed two clusters of ORFV in which the Indian ORFVs clustered with NZ7-like VEGF from global ORFV strains, mostly from China. Despite the considerable variation, VEGF protein from Indian ORFV strains showed conserved VEGF homology domain with eight cysteine residues. Homology modeling of Indian ORFV strains predicted the presence of extended Loop 3 similar to NZ7-like VEGF. Therefore, the present study showed the circulation of ORFV strains with comparatively less variable NZ7-like VEGF in India which implicates its importance in the epidemiology of ORFV infections in the country.
Collapse
Affiliation(s)
- Monu Karki
- Division of Virology, ICAR- Indian Veterinary Research Institute, Mukteswar, Uttarakhand, India
| | - Amit Kumar
- Division of Virology, ICAR- Indian Veterinary Research Institute, Mukteswar, Uttarakhand, India
| | - Sargam Arya
- Division of Virology, ICAR- Indian Veterinary Research Institute, Mukteswar, Uttarakhand, India
| | - Gnanavel Venkatesan
- Division of Virology, ICAR- Indian Veterinary Research Institute, Mukteswar, Uttarakhand, India.
| |
Collapse
|
14
|
Zhong J, Guan J, Zhou Y, Cui S, Wang Z, Zhou S, Xu M, Wei X, Gao Y, Zhai S, Song D, He W, Gao F, Zhao K. Genomic characterization of two Orf virus isolates from Jilin province in China. Virus Genes 2019; 55:490-501. [PMID: 31030330 DOI: 10.1007/s11262-019-01666-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 04/17/2019] [Indexed: 02/02/2023]
Abstract
Orf virus (ORFV), a typical member of the Parapoxvirus genus within the family Poxviridae, which is the causative agent of Orf, a common epitheliotropic viral disease of sheep, goats, wild ruminants, and humans. In the present study, we sequenced the complete genomic sequences of two ORFV strains (ORFV-SY17, isolated from sheep, and ORFV-NA17, isolated from goat) and conducted the comparative analysis of multiple ORFVs. The complete genomic sequence of ORFV-SY17 was at length of 140,413 bp, including 131 potential open reading frames (ORFs) flanked by inverted terminal repeats (ITRs) of 4267 bp at both ends. The ORFV-NA17 strain displayed the similar genome structure with ORFV-SY17. The whole genomic sequence of ORFV-NA17 strain was 139,287 bp in length and contained 132 ORFs flanked by ITRs of 3974 bp. The overall G+C contents of ORFV-SY17 and ORFV-NA17 genome sequences were about 63.8% and 63.7%, respectively. The ITR sequences analysis showed that ORFV-SY17 and ORFV-NA17 contained the terminal BamHI sites and conserved telomere resolution sequences at both ends of their genome. In addition, comparative analysis of ORFs among ORFV-SY17, ORFV-NA17, and other ORFV strains revealed several sequence variations caused by insertions or deletions, especially in ORFs 005 and 116, which were very likely associated with host species. Phylogenetic analysis based on the complete genome sequences revealed that ORFV-SY17 was genetically closely related to NA1/11 and HN3/12 strains derived from sheep, while ORFV-NA17 was closely related to YX strain derived from goat. The multiple alignment of deduced amino acid sequences further revealed the genetic relationship between host species and genetic variations of ORFV strains. Taken together, the availability of genomic sequences of ORFV-SY17 and ORFV-NA17 strains from Jilin Province will aid in our understanding of the genetic diversity and evolution of ORFV strains in this region and can assist in distinguishing between ORFV strains that originate in sheep and goats.
Collapse
Affiliation(s)
- Jiawei Zhong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yanlong Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shanshan Cui
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhenzhen Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shuaishuai Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Mengshi Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinyu Wei
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yu Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shaohua Zhai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.,College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Deguang Song
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenqi He
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Feng Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Kui Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
15
|
Karki M, Kumar A, Arya S, Ramakrishnan MA, Venkatesan G. Poxviral E3L ortholog (Viral Interferon resistance gene) of orf viruses of sheep and goats indicates species-specific clustering with heterogeneity among parapoxviruses. Cytokine 2019; 120:15-21. [PMID: 30991229 DOI: 10.1016/j.cyto.2019.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 03/19/2019] [Accepted: 04/04/2019] [Indexed: 11/15/2022]
Abstract
Orf is a contagious disease posing a serious threat to animal and human health. E3L is one of the evolutionarily acquired immunomodulatory proteins present in orf virus (ORFV) and is responsible for conferring resistance to interferons among poxviruses. Genetic analysis of ORFV isolates of different geographical regions including Indian subcontinent targeting viral interferon resistance (VIR) gene (a homolog of vaccinia virus E3L gene) revealed a high percentage of identity among themselves and other ORFV isolates at both nt and aa levels as compared to low identity among parapoxviruses (PPVs). Phylogenetic analysis showed species-specific clustering among PPVs along with sub-clusters based on host species of origin among ORFVs infecting sheep and goats. Conserved amino acids in N-terminal Z-DNA binding domain and C-terminal ds RNA binding domain of VIR proteins of PPVs corresponding to ORFV VIR positions namely N37, Y41, P57, and W59 (necessary for Z-DNA binding) and E116, F127, F141, and K160 (necessary for dsRNA binding) were found. Further, the predicted protein characteristics and homology model of VIR protein of ORFV showed high structural conservation among poxviruses. This study on E3L genetic analysis of ORFV isolates may provide a better understanding of the molecular epidemiology of circulating strains in India and neighboring countries. Also, E3L deleted or mutated ORFV may be an as vaccine candidate and/or compounds blocking E3L may prove as an effective method for treating broad spectrum poxviral infections, suggesting a wider application in control of poxvirus infections.
Collapse
Affiliation(s)
- Monu Karki
- Division of Virology, ICAR-IVRI, Mukteswar 263 138, Nainital, Uttarakhand, India
| | - Amit Kumar
- Division of Virology, ICAR-IVRI, Mukteswar 263 138, Nainital, Uttarakhand, India
| | - Sargam Arya
- Division of Virology, ICAR-IVRI, Mukteswar 263 138, Nainital, Uttarakhand, India
| | - M A Ramakrishnan
- Division of Virology, ICAR-IVRI, Mukteswar 263 138, Nainital, Uttarakhand, India
| | - G Venkatesan
- Division of Virology, ICAR-IVRI, Mukteswar 263 138, Nainital, Uttarakhand, India.
| |
Collapse
|
16
|
Genomic Characterization of Orf Virus Strain D1701-V ( Parapoxvirus) and Development of Novel Sites for Multiple Transgene Expression. Viruses 2019; 11:v11020127. [PMID: 30704093 PMCID: PMC6409557 DOI: 10.3390/v11020127] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 02/06/2023] Open
Abstract
The Orf virus (ORFV; Parapoxvirus) strain D1701 with an attenuated phenotype and excellent immunogenic capacity is successfully used for the generation of recombinant vaccines against different viral infections. Adaption for growth in Vero cells was accompanied by additional major genomic changes resulting in ORFV strain variant D1701-V. In this study, restriction enzyme mapping, blot hybridization and DNA sequencing of the deleted region s (A, AT and D) in comparison to the predecessor strain D1701-B revealed the loss of 7 open reading frames (ORF008, ORF101, ORF102, ORF114, ORF115, ORF116, ORF117). The suitability of deletion site D for expression of foreign genes is demonstrated using novel synthetic early promoter eP1 and eP2. Comparison of promoter strength showed that the original vegf-e promoter Pv as well as promoter eP2 display an up to 11-fold stronger expression than promoter eP1, irrespective of the insertion site. Successful integration and expression of the fluorescent marker genes is demonstrated by gene- and insertion-site specific PCR assays, fluorescence microscopy and flow cytometry. For the first time ORFV recombinants are generated simultaneously expressing transgenes in two different insertion loci. That allows production of polyvalent vaccines containing several antigens against one or different pathogens in a single vectored ORFV vaccine.
Collapse
|
17
|
Wang R, Wang Y, Liu F, Luo S. Orf virus: A promising new therapeutic agent. Rev Med Virol 2018; 29:e2013. [PMID: 30370570 DOI: 10.1002/rmv.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 12/12/2022]
Abstract
The orf virus (ORFV) is a zoonotic, epitheliotropic, DNA parapoxvirus that infects principally sheep and goats. Exposure of animals to the virus or immunization by an ORFV preparation can accentuate the severity of disease, which has provoked an interest in the underlying cellular, virological, and molecular mechanisms. The identified ORFV virulence genes and the fact that the virus can repeatedly infect a host, owing to its evasive mechanisms, contribute to the development of potent immune modulators in various animal species. ORFV has been developed as a vaccine in veterinary medicine. The unique host immune-evasion ability of ORFV has made it an important candidate for vaccine vectors and biological agents (as an oncolytic virus). Genetic modifications using ORFV to obtain safe and efficient preparations and mechanistic studies are improvements to the currently available methods for disease treatment.
Collapse
Affiliation(s)
- Ruixue Wang
- Department of Laboratory Medicine, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong Province, China.,Department of Basic Medical Sciences, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong Province, China
| | - Yong Wang
- Department of Laboratory Medicine, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong Province, China
| | - Fang Liu
- Department of Basic Medical Sciences, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong Province, China
| | - Shuhong Luo
- Department of Laboratory Medicine, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong Province, China
| |
Collapse
|
18
|
Li W, Chen H, Deng H, Kuang Z, Long M, Chen D, Liao X, Li M, Rock DL, Luo S, Hao W. Orf Virus Encoded Protein ORFV119 Induces Cell Apoptosis Through the Extrinsic and Intrinsic Pathways. Front Microbiol 2018; 9:1056. [PMID: 29896166 PMCID: PMC5986898 DOI: 10.3389/fmicb.2018.01056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/03/2018] [Indexed: 12/15/2022] Open
Abstract
Apoptosis, a significant form of cell death, has a leading role in the host cell defense against virus infection. Viruses have evolved a series of strategies that block apoptosis during the early stage of viral infection to enhance viral replication, and induce apoptosis in the late stages to facilitate viral particle release from the cells. Here we show that orf virus (ORFV), the causative agent of orf, encodes an apoptosis-inducing protein ORFV119. ORFV119 targets the mitochondria in host cells, inhibits cell proliferation, and induces cell apoptosis. Protein array data indicated that ORFV119 could induce apoptosis via up-regulation of Smac, Bak, and Bax and down-regulation of anti-apoptotic proteins Bcl-2 and cIAP-2. Activation of caspase-9 and caspase-3, and consequent PARP cleavage, ultimately lead to apoptosis. ORFV119 could also directly activate caspase-8 and induce Bid, involved in the extrinsic pathway, to achieve cell death. Furthermore, sequence analysis and experiments with mutants of ORFV119 introduced revealed that ORFV119 contains a key N-terminal domain that is necessary and sufficient to direct the protein to the mitochondria. Together, we report, for the first time, the identification of the novel apoptosis-inducing protein ORFV119 encoded by a parapoxvirus. This provides an important reference for the study of pathogenesis, identification of immunomodulation mechanisms of ORFV, and may lead to new strategies for orf disease control.
Collapse
Affiliation(s)
- Wei Li
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Huiqin Chen
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Hao Deng
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Zhenzhan Kuang
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Mingjian Long
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Daxiang Chen
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xiaoqing Liao
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Ming Li
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Daniel L Rock
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Champaign-Urbana, Urbana, IL, United States
| | - Shuhong Luo
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Department of Laboratory Medicine, School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Wenbo Hao
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Chen H, Li W, Kuang Z, Chen D, Liao X, Li M, Luo S, Hao W. The whole genomic analysis of orf virus strain HN3/12 isolated from Henan province, central China. BMC Vet Res 2017; 13:260. [PMID: 28821255 PMCID: PMC5562994 DOI: 10.1186/s12917-017-1178-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 08/10/2017] [Indexed: 01/23/2023] Open
Abstract
Background The Orf virus (ORFV) is the causative agent of orf, a globally-occurring, acute, pustular, contagious disease affecting sheep, goats and humans with a worldwide distribution. Currently, the genomic analysis of four ORFV strains from the Fujian province in southern China and a NA1/11 strain isolated from the Jilin province in northeast China have been reported. However, little is known about the genomic information of ORFV strains from central China. Results From a recent outbreak in a sheep herd in the Henan province of central China, a novel ORFV strain (HN3/12) was isolated and cultured in ovine fetal turbinate (OFTu) cells. The strain was identified as HN3/12 and verified by PCR based on the DNA sequences of 011 and 059 genes. The whole genomic sequence of this isolate was determined by Next Generation Sequencing technology. To determine the genetic characteristics of the HN3/12 strain, phylogenetic analysis of the 011 and 059 genes and amino acid sequence alignment of the HN3/12 strain were performed and compared with reference parapoxvirus strains. Conclusions The HN3/12 genome is 136,643 bp in length, contains 63.67% G + C and encodes 132 putative genes. Phylogenetic analysis of the 011 and 059 nucleotide sequences showed that this viral strain was similar to the NA1/11 isolate. The homology analysis indicates that HN3/12 has 93% to 98% identity with published ORFV strains at amino acid level. When open reading frames (ORFs) were aligned among the HN3/12 and four Fujian ORFV strains, most of them have identities greater than 90% and only a few less than 60%. The availability of the whole genomic sequence of HN3/12 aids in our understanding of, and provides new insights into, the genetic diversity of ORFV. Electronic supplementary material The online version of this article (doi:10.1186/s12917-017-1178-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huiqin Chen
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Wei Li
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Zhenzhan Kuang
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Daxiang Chen
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xiaoqing Liao
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Ming Li
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Shuhong Luo
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People's Republic of China. .,Department of Laboratory Medicine, School of Stomatology and Medicine, Foshan University, 5 Hebin Road, Foshan, Guangdong Province, 528000, People's Republic of China.
| | - Wenbo Hao
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People's Republic of China. .,Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
20
|
Diagnosis and phylogenetic analysis of a multifocal cutaneous orf virus with mixed bacterial infection outbreak in goats in Fujian province, China. Arch Virol 2017. [PMID: 28623407 DOI: 10.1007/s00705-017-3424-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Outbreaks of orf virus on goat farms are common in China. In this study, we investigated a severe multifocal cutaneous orf virus outbreak with a correlative mixed bacterial infection which persisted for up to 6 months, and which had a high morbidity (93.7%) and mortality (15%) among kids in a herd of crossbreed goats in Fujian province in China. The disease was diagnosed as an orf virus (ORFV XD strain) infection associating with Streptococcus pluranimalium and Staphylococcus, identified using standard virological and bacteriological techniques. Multiple sequence alignments and phylogenetic analyses of the whole ORFV 011 (B2L), 059 (F1L), 032 and 080 genes revealed that the even though the virus phylogeny was clustered in branches of conventional orf virus strains, it nonetheless evidenced high variation within this subset. Furthermore, the sequences from the ORFV 080 gene allowed us to distinguish between the different strains at a higher resolution and these observations afforded us a comparative view of the ORFV 080 gene. This is the first report describing an outbreak of severe multifocal cutaneous orf virus with associated bacterial infection in China.
Collapse
|
21
|
Wang H, Jiang J, Ding R, Wang X, Liao M, Shao J, Luo X, Luo S, Duan C. Identification and characterization of Orf virus 050 protein proteolysis. Virus Genes 2017; 53:400-409. [PMID: 28190135 DOI: 10.1007/s11262-017-1430-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 01/20/2017] [Indexed: 12/24/2022]
Abstract
The Orf virus 050 (ORFV050) gene is located in the core region of the ORFV genome. It is similar to Vaccinia virus (VV) Copenhagen L4R, and encodes the DNA-binding virion core protein VP8, which has structures similar to the VV P25K core protein and may undergo similar proteolytic processing during virus assembly. Three conserved Ala-Gly-X motifs at putative cleavage sites were identified in ORFV050. To investigate the proteolysis of ORFV050 and its participation in viral assembly, full-length and site-directed mutant ORFV050 recombinant proteins were constructed and expressed. Two distinct protein bands of 28.5 and 25 kDa were detected in the infected cells using anti-ORFV050 polyclonal antiserum. A potential cleavage site was identified at amino acids 30-32 of ORFV050. Mutation of AG/A to (R) in ORFV050 abolished the process of proteolysis. ORFV050 is a late gene synthesized during viral replication in the host cytoplasm. According to these results, we conclude that ORFV050 undergoes proteolysis and plays an important role in viral assembly.
Collapse
Affiliation(s)
- Han Wang
- Department of Laboratory Medicine, The Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Junyi Jiang
- Department of Laboratory Medicine, The Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Rui Ding
- Department of Laboratory Medicine, The Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Xiaoping Wang
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.,Department of Laboratory Medicine, Nongken Centre Hospital of Guangdong Province, Zhanjiang, 524002, Guangdong, People's Republic of China
| | - Meiying Liao
- Department of Laboratory Medicine, The Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China.,Department of Laboratory Medicine, Kiang Wu Hospital, Macau, 999078, People's Republic of China
| | - Jing Shao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China.,Medical Research Center, The Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Xiaohong Luo
- Department of Laboratory Medicine, The Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Shuhong Luo
- Department of Laboratory Medicine, School of Stomatology and Medicine, Foshan University, 5 Hebin Road, Foshan, 528000, Guangdong, People's Republic of China.
| | - Chaohui Duan
- Department of Laboratory Medicine, The Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China.
| |
Collapse
|
22
|
Zhao K, He W, Bi J, Zhang X, Zhang D, Huang H, Zhang Y, Song D, Gao F. Development of a lateral flow immunochromatographic assay for the rapid diagnosis of Orf virus infections. J Virol Methods 2016; 236:10-17. [PMID: 27380632 DOI: 10.1016/j.jviromet.2016.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 06/04/2016] [Accepted: 06/20/2016] [Indexed: 12/31/2022]
Abstract
A rapid and simple lateral-flow immunochromatographic assay (LFIA) was developed for the specific detection of Orf virus (ORFV) using two distinct monoclonal antibodies (MAbs: 5A5 and 6F2) against the ORFV ORF011 protein. The MAb 5A5 was conjugated with colloidal gold, and the MAb 6F2 and goat anti-mouse IgG were sprayed onto a nitrocellulose membrane in strips at positions designated test (T) and control (C), respectively. The results showed that samples of ORFV complexed with colloidal gold-conjugated MAb 5A5, were captured by MAb 6F2 at the T line resulting in the appearance of a purple band. When samples did not contain ORFV or when they contained a quantity of ORFV below the detection limit of the test, only the C line was visible. The analysis of sensitivity of the test demonstrated that the lowest detected quantity of ORFV was 2.03×10(3.0) TCID50/ml. Storage at room temperature for 6 months did not result in the loss of performance of the LFIA test. Using loop-mediated isothermal amplification (LAMP) as a reference test, the relative specificity and sensitivity of the LFIA test were determined to be 100% and 92.1%, respectively. Based on these results, the LFIA test developed may be a suitable tool for rapid on-site testing for ORFV infection.
Collapse
Affiliation(s)
- Kui Zhao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, People's Republic of China
| | - Wenqi He
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, People's Republic of China
| | - Jingying Bi
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, People's Republic of China
| | - Ximu Zhang
- Laboratory Animal Center, Peking University, 5 Summer Palace Road, Beijing 100871, People's Republic of China
| | - Di Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, People's Republic of China
| | - Houshuang Huang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, People's Republic of China
| | - Yuexiang Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, People's Republic of China
| | - Deguang Song
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, People's Republic of China
| | - Feng Gao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, People's Republic of China; Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis and Animal Research Center, Jilin University, 5333 Xi'an Road, Changchun 130062, People's Republic of China.
| |
Collapse
|
23
|
Yang Y, Qin X, Wang G, Zhang Y, Shang Y, Zhang Z. Development of a fluorescent probe-based recombinase polymerase amplification assay for rapid detection of Orf virus. Virol J 2015; 12:206. [PMID: 26631157 PMCID: PMC4668657 DOI: 10.1186/s12985-015-0440-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/30/2015] [Indexed: 01/28/2023] Open
Abstract
Background Orf virus (ORFV) is the causative agent of Orf (also known as contagious ecthyma or contagious papular dermatitis), a severe infectious skin disease in goats, sheep and other ruminants. The rapid detection of ORFV is of great importance in disease control and highly needed. A isothermal molecular diagnostic approach, termed recombinase polymerase amplification (RPA), is considered as an novel and rapid alternative techonology to PCR assay. Results In the present study, a novel fluorescent probe based on RPA assay (ORFV exo RPA assay) was developed. The developed ORFV exo RPA assay was capable of as low as 100 copies of ORFV DNA /reaction and was highly specific, with no cross-reaction with closely related viruses (capripox virus, foot-and-mouth disease virus or peste des petits ruminants virus). Further assessment with clinical samples showed that the developed ORFV exo RPA assay has good correlation with qPCR assays for detection of ORFV. Conclusions These results suggest that the developed ORFV exo RPA assay is suitable for rapid detection of ORFV. Electronic supplementary material The online version of this article (doi:10.1186/s12985-015-0440-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, China.
| | - Xiaodong Qin
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, China.
| | - Guangxiang Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, China.
| | - Yuen Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, China. .,The Medical School, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Youjun Shang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, China.
| | - Zhidong Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, China.
| |
Collapse
|
24
|
Chi X, Zeng X, Li W, Hao W, Li M, Huang X, Huang Y, Rock DL, Luo S, Wang S. Genome analysis of orf virus isolates from goats in the Fujian Province of southern China. Front Microbiol 2015; 6:1135. [PMID: 26557108 PMCID: PMC4616995 DOI: 10.3389/fmicb.2015.01135] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 10/02/2015] [Indexed: 01/26/2023] Open
Abstract
Orf virus (ORFV), a species of the genus Parapoxvirus of the family Poxviridae, causes non-systemic, highly contagious, and eruptive disease in sheep, goat, and other wild and domestic ruminants. Our previous work shows orf to be ubiquitous in the Fujian Province of China, a region where there is considerable heterogeneity among ORFVs. In this study, we sequenced full genomes of four Fujian goat ORFV strains (OV-GO, OV-YX, OV-NP, and OV-SJ1). The four strains were 132–139 kb in length, with each containing 124–132 genes and about 64% G+C content. The most notable differences between the four strains were found near the genome termini. OV-NP lacked seven and OV-SJ1 lacked three genes near the right terminus when compared against other ORFVs. We also investigated the skin-virulence of the four Fujian ORFVs in goats. The ORFVs with gene deletions showed low virulence while the ORFVs without gene deletions showed high virulence in goats suggesting gene deletion possibly leads to attenuation of ORFVs. Gene 134 was disrupted in OV-NP genome due to the lack of initial code. The phylogenetic tree based on complete Parapoxviruse genomes showed that sheep originated and goat originated ORFVs formed distinctly separate branches with 100% bootstrap. Based on the single gene phylogenetic tree of 132 genes of ORFVs, 47 genes can be easily distinguished as having originated from sheep or goats. In order to further reveal genetic variation presented in goat ORFVs and sheep ORFVs, we analyzed the deduced amino acid sequences of gene 008, multiple alignment of amino acid sequences of gene 008 from the genome of five goat ORFVs and four sheep ORFVs revealed 33 unique amino acids differentiating it as having sheep or goats as host. The availability of genomic sequences of four Fujian goat ORFVs aids in our understanding of the diversity of orf virus isolates in this region and can assist in distinguishing between orf strains that originate in sheep and goats.
Collapse
Affiliation(s)
- Xuelin Chi
- College of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China ; University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Xiancheng Zeng
- College of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China ; University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Wei Li
- Department of Immunology, School of Biotechnology, Southern Medical University Guangzhou, China
| | - Wenbo Hao
- Department of Immunology, School of Biotechnology, Southern Medical University Guangzhou, China
| | - Ming Li
- Department of Immunology, School of Biotechnology, Southern Medical University Guangzhou, China
| | - Xiaohong Huang
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Yifan Huang
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Daniel L Rock
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Champaign-Urbana Urbana, IL, USA
| | - Shuhong Luo
- Department of Immunology, School of Biotechnology, Southern Medical University Guangzhou, China
| | - Shihua Wang
- College of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| |
Collapse
|
25
|
Zhang K, Xiao Y, Yu M, Liu J, Wang Q, Tao P, Liu S, Ning Z. Phylogenetic analysis of three orf virus strains isolated from different districts in Shandong Province, East China. J Vet Med Sci 2015; 77:1639-45. [PMID: 26311786 PMCID: PMC4710721 DOI: 10.1292/jvms.15-0368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Orf virus (ORFV) is the causative agent of contagious ecthyma, which is a zoonotic disease that affects sheep, goats, wild small ruminants and humans. Shandong Province in East China is one of the main producing areas in China for sheep and goats. Here, we conducted epidemiological surveys in different areas in this Province, isolated three orf virus strains, SDLC, SDTA and SDJN, from goat flocks and then analyzed the genetic evolution of these strains. The ORFV011, ORFV059, ORFV109, ORFV110 and ORFV127 genes of these three strains were amplified, sequenced and analyzed. Phylogenetic analysis showed that ORFV011 of the SDLC and SDTA strains cluster together with the Gansu, Liaoning, Shanxi, Nantou, Hoping and FJ-YX strains, while SDJN clusters with the FJ-GS and FJ-GO strains. ORFV059 of the SDLC and SDTA strains cluster together with the FJ-YX strain, while SDJN clusters with the FJ-GS and FJ-GO strains. ORFV059 and ORFV127 of these three strains were similar to those of the OV-SA00 strain. The results suggested that SDLC, SDTA and SDJN originated from Fujian Province and formed a complex group of viruses in Shandong Province. As the role of ORFV127 gene responsible for the immune evasion of ORFV, the pathogenesis of these three virus strains may similar to that of OV-SA00. These three strains first isolated in Shandong Province are novel ORFV strains, and the data reported here will be helpful for further research about ORFV and its comprehensive prevention and control.
Collapse
Affiliation(s)
- Kaizhao Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|