1
|
Petrone ME, Charon J, Grigg MJ, William T, Rajahram GS, Westaway J, Piera KA, Shi M, Anstey NM, Holmes EC. A virus associated with the zoonotic pathogen Plasmodium knowlesi causing human malaria is a member of a diverse and unclassified viral taxon. Virus Evol 2024; 10:veae091. [PMID: 39619416 PMCID: PMC11605544 DOI: 10.1093/ve/veae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024] Open
Abstract
The Apicomplexa are a phylum of single-celled eukaryotes that can infect humans and include the mosquito-borne parasite Plasmodium, the cause of malaria. Viruses that infect non-Plasmodium spp. disease-causing protozoa affect the pathogen life cycle and disease outcomes. However, only one RNA virus (Matryoshka RNA virus 1) has been identified in Plasmodium, and none have been identified in zoonotic Plasmodium species. The rapid expansion of the known RNA virosphere via metagenomic sequencing suggests that this dearth is due to the divergent nature of RNA viruses that infect protozoa. We leveraged newly uncovered data sets to explore the virome of human-infecting Plasmodium species collected in Sabah, east (Borneo) Malaysia. From this, we identified a highly divergent RNA virus in two human-infecting P. knowlesi isolates that is related to the unclassified group 'ormycoviruses'. By characterizing 15 additional ormycoviruses identified in the transcriptomes of arthropods, we show that this group of viruses exhibits a complex ecology as noninfecting passengers at the arthropod-mammal interface. With the addition of viral diversity discovered using the artificial intelligence-based analysis of metagenomic data, we also demonstrate that the ormycoviruses are part of a diverse and unclassified viral taxon. This is the first observation of an RNA virus in a zoonotic Plasmodium species. By linking small-scale experimental data to advances in large-scale virus discovery, we characterize the diversity and confirm the putative genomic architecture of an unclassified viral taxon. This approach can be used to further explore the virome of disease-causing Apicomplexa and better understand how protozoa-infecting viruses may affect parasite fitness, pathobiology, and treatment outcomes.
Collapse
Affiliation(s)
- Mary E Petrone
- Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Laboratory of Data Discovery for Health Limited, 19 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
| | - Justine Charon
- Fruit Biology and Pathology Unit, University of Bordeaux, INRAE, 71 Av. Edouard Bourlaux, Villenave-d’Ornon, Bordeaux 33140, France
| | - Matthew J Grigg
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, John Mathews Building (Bldg 58), Royal Darwin Hospital Campus, Rocklands Drv., Casuarina, Darwin, NT 8010, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah 88200, Malaysia
| | - Timothy William
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah 88200, Malaysia
- Subang Jaya Medical Centre, No. 1, Jalan SS12/1A, Ss 12, Subang Jaya, Selangor 47500, Malaysia
| | - Giri S Rajahram
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah 88200, Malaysia
- Queen Elizabeth Hospital II, Ministry of Health Malaysia, Lorong Bersatu, Off, Jalan Damai, Luyang Commercial Centre, Kota Kinabalu, Sabah 88300, Malaysia
| | - Jacob Westaway
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, John Mathews Building (Bldg 58), Royal Darwin Hospital Campus, Rocklands Drv., Casuarina, Darwin, NT 8010, Australia
| | - Kim A Piera
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, John Mathews Building (Bldg 58), Royal Darwin Hospital Campus, Rocklands Drv., Casuarina, Darwin, NT 8010, Australia
| | - Mang Shi
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Sun Yat-sen University, Shenzhen 518063, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518063, China
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 510642, China
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, John Mathews Building (Bldg 58), Royal Darwin Hospital Campus, Rocklands Drv., Casuarina, Darwin, NT 8010, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah 88200, Malaysia
| | - Edward C Holmes
- Laboratory of Data Discovery for Health Limited, 19 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Petrone ME, Charon J, Grigg MJ, William T, Rajahram GS, Westaway J, Piera KA, Shi M, Anstey NM, Holmes EC. A virus associated with the zoonotic pathogen Plasmodium knowlesi causing human malaria is a member of a diverse and unclassified viral taxon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613759. [PMID: 39345442 PMCID: PMC11430064 DOI: 10.1101/2024.09.18.613759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Apicomplexa are single-celled eukaryotes that can infect humans and include the mosquito-borne parasite Plasmodium, the cause of malaria. Increasing rates of drug resistance in human-only Plasmodium species are reducing the efficacy of control efforts and antimalarial treatments. There are also rising cases of P. knowlesi, the only zoonotic Plasmodium species that causes severe disease and death in humans. Thus, there is a need to develop additional innovative strategies to combat malaria. Viruses that infect non-Plasmodium spp. Disease-causing protozoa have been shown to affect pathogen life cycle and disease outcomes. However, only one virus (Matryoshka RNA virus 1) has been identified in Plasmodium, and none have been identified in zoonotic Plasmodium species. The rapid expansion of the known RNA virosphere using structure- and artificial intelligence-based methods suggests that this dearth is due to the divergent nature of RNA viruses that infect protozoa. We leveraged these newly uncovered data sets to explore the virome of human-infecting Plasmodium species collected in Sabah, east (Borneo) Malaysia. We identified a highly divergent RNA virus in two human-infecting P. knowlesi isolates that is related to the unclassified group 'ormycoviruses'. By characterising fifteen additional ormycoviruses identified in the transcriptomes of arthropods we show that this group of viruses exhibits a complex ecology at the arthropod-mammal interface. Through the application of artificial intelligence methods, we then demonstrate that the ormycoviruses are part of a diverse and unclassified viral taxon. This is the first observation of an RNA virus in a zoonotic Plasmodium species. By linking small-scale experimental data to large-scale virus discovery advances, we characterise the diversity and genomic architecture of an unclassified viral taxon. This approach should be used to further explore the virome of disease-causing Apicomplexa and better understand how protozoa-infecting viruses may affect parasite fitness, pathobiology, and treatment outcomes.
Collapse
Affiliation(s)
- Mary E. Petrone
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
| | - Justine Charon
- Fruit Biology and Pathology Unit, University of Bordeaux, INRAE, Bordeaux, France
| | - Matthew J Grigg
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- Infectious Diseases Society Kota Kinabalu Sabah - Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
| | - Timothy William
- Infectious Diseases Society Kota Kinabalu Sabah - Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
- Subang Jaya Medical Centre, Subang Jaya, Malaysia
| | - Giri S Rajahram
- Infectious Diseases Society Kota Kinabalu Sabah - Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
- Queen Elizabeth Hospital II, Ministry of Health Malaysia, Kota Kinabalu, Sabah, Malaysia
| | - Jacob Westaway
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Kim A Piera
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Mang Shi
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Nicholas M. Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- Infectious Diseases Society Kota Kinabalu Sabah - Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
| | - Edward C. Holmes
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Nibert ML, Xie Y, Xiao J, Gao Y, Liu D, Yang G, Tao J. Transcriptome mining of RNA viruses (family Totiviridae ) in Eimeria necatrix and Eimeria stiedai. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.20.541574. [PMID: 37292684 PMCID: PMC10245732 DOI: 10.1101/2023.05.20.541574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Coccidian protozoa from the genus Eimeria are widespread parasites of vertebrates, causing serious disease (coccidiosis) and economic loss most notably in poultry. Several species of Eimeria are themselves infected with small RNA viruses assigned to the family Totiviridae . In this study, the sequences of two such viruses were newly determined, one of which represents the first complete protein-coding sequence of a virus from E. necatrix , an important pathogen of chickens, and the other of which is from E. stiedai , an important pathogen of rabbits. Sequence features of the newly identified viruses, compared with those of ones reported previously, provide several insights. Phylogenetic analyses suggest that these eimerian viruses constitute a well-demarcated clade, probably deserving of recognition as a distinct genus.
Collapse
|
4
|
Jameel MS, Kalef DA. Investigations on the Role of Commercial Probiotics on New Zealand White Rabbits Experimentally Infected with Eimeria stiedae. COMP PARASITOL 2023. [DOI: 10.1654/copa-d-22-00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Maab Salah Jameel
- Department of Parasitology, College of Veterinary Medicine, University of Baghdad, Baghdad City, Iraq
| | - Dalia Ahmed Kalef
- Department of Parasitology, College of Veterinary Medicine, University of Baghdad, Baghdad City, Iraq
| |
Collapse
|
5
|
Abstract
Leishmaniaviruses (LRVs) have been demonstrated to enhance progression of leishmaniasis, a vector-transmitted disease with a wide range of clinical manifestations that is caused by flagellates of the genus Leishmania. Here, we used two previously proposed strategies of the LRV ablation to shed light on the relationships of two Leishmania spp. with their respective viral species (L. guyanensis, LRV1 and L. major, LRV2) and demonstrated considerable difference between two studied systems. LRV1 could be easily eliminated by the expression of exogenous capsids regardless of their origin (the same or distantly related LRV1 strains, or even LRV2), while LRV2 was only partially depleted in the case of the native capsid overexpression. The striking differences were also observed in the effects of complete viral elimination with 2'C-methyladenosine (2-CMA) on the transcriptional profiles of these two Leishmania spp. While virtually no differentially expressed genes were detected after the LRV1 removal from L. guyanensis, the response of L. major after ablation of LRV2 involved 87 genes, the analysis of which suggested a considerable stress experienced even after several passages following the treatment. This effect on L. major was also reflected in a significant decrease of the proliferation rate, not documented in L. guyanensis and naturally virus-free strain of L. major. Our findings suggest that integration of L. major with LRV2 is deeper compared with that of L. guyanensis with LRV1. We presume this determines different effects of the viral presence on the Leishmania spp. infections. IMPORTANCELeishmania spp. represent human pathogens that cause leishmaniasis, a widespread parasitic disease with mild to fatal clinical manifestations. Some strains of leishmaniae bear leishmaniaviruses (LRVs), and this has been shown to aggravate disease course. We investigated the relationships of two distally related Leishmania spp. with their respective LRVs using different strategies of virus removal. Our results suggest the South American L. guyanensis easily loses its virus with no important consequences for the parasite in the laboratory culture. Conversely, the Old-World L. major is refractory to virus removal and experiences a prominent stress if this removal is nonetheless completed. The drastically different levels of integration between the studied Leishmania spp. and their viruses suggest distinct effects of the viral presence on infections in these species of parasites.
Collapse
|
6
|
Analyses of Leishmania-LRV Co-Phylogenetic Patterns and Evolutionary Variability of Viral Proteins. Viruses 2021; 13:v13112305. [PMID: 34835111 PMCID: PMC8624691 DOI: 10.3390/v13112305] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/09/2021] [Indexed: 01/07/2023] Open
Abstract
Leishmania spp. are important pathogens causing a vector-borne disease with a broad range of clinical manifestations from self-healing ulcers to the life-threatening visceral forms. Presence of Leishmania RNA virus (LRV) confers survival advantage to these parasites by suppressing anti-leishmanial immunity in the vertebrate host. The two viral species, LRV1 and LRV2 infect species of the subgenera Viannia and Leishmania, respectively. In this work we investigated co-phylogenetic patterns of leishmaniae and their viruses on a small scale (LRV2 in L. major) and demonstrated their predominant coevolution, occasionally broken by intraspecific host switches. Our analysis of the two viral genes, encoding the capsid and RNA-dependent RNA polymerase (RDRP), revealed them to be under the pressure of purifying selection, which was considerably stronger for the former gene across the whole tree. The selective pressure also differs between the LRV clades and correlates with the frequency of interspecific host switches. In addition, using experimental (capsid) and predicted (RDRP) models we demonstrated that the evolutionary variability across the structure is strikingly different in these two viral proteins.
Collapse
|
7
|
Wei W, Shen N, Xiao J, Tao Y, Luo Y, Angel C, Gu X, Xie Y, He R, Jing B, Peng X, Yang G. Expression Analysis and Serodiagnostic Potential of Microneme Proteins 1 and 3 in Eimeria stiedai. Genes (Basel) 2020; 11:E725. [PMID: 32610686 PMCID: PMC7397282 DOI: 10.3390/genes11070725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 01/21/2023] Open
Abstract
Eimeria stiedai is an apicomplexan protozoan parasite that invades the liver and bile duct epithelial cells in rabbits and causes severe hepatic coccidiosis, resulting in significant economic losses in the domestic rabbit industry. Hepatic coccidiosis lacks the typical clinical symptoms and there is a lack of effective premortem tools to timely diagnose this disease. Therefore, in the present study we cloned and expressed the two microneme proteins i.e., microneme protein 1 (EsMIC1) and microneme protein 3 (EsMIC3) from E. stiedai and used them as recombinant antigens to develop a serodiagnostic method for an effective diagnosis of hepatic coccidiosis. The cDNAs encoding EsMIC1 and EsMIC3 were cloned and the mRNA expression levels of these two genes at different developmental stages of E. stiedai were determined by quantitative real-time PCR analysis (qRT-PCR). The immunoreactivity of recombinant EsMIC1 (rEsMIC1) and EsMIC3 (rEsMIC3) proteins were detected by Western blotting, and indirect enzyme-linked immunosorbent assays (ELISAs) based on these two recombinant antigens were established to evaluate their serodiagnostic potential. Our results showed that the proteins encoded by the ORFs of EsMIC1 (711 bp) and EsMIC3 (891 bp) were approximately 25.89 and 32.39 kDa in predicted molecular weight, respectively. Both EsMIC1 and EsMIC3 showed the highest mRNA expression levels in the merozoites stage of E. stiedai. Western blotting analysis revealed that both recombinant proteins were recognized by E. stiedai positive sera, and the indirect ELISAs using rEsMIC1 and rEsMIC3 were developed based on their good immunoreactivity, with 100% (48/48) sensitivity and 97.9% (47/48) specificity for rEsMIC1 with 100% (48/48) sensitivity and 100% (48/48) specificity for rEsMIC3, respectively. Moreover, rEsMIC1- and rEsMIC3-based indirect ELISA were able to detect corresponding antibodies in sera at days 6, 8, and 10 post E. stiedai infection, with the highest positive diagnostic rate (62.5% (30/48) for rEsMIC1 and 66.7% (32/48) for rEsMIC3) observed at day 10 post infection. Therefore, both EsMIC1 and EsMIC3 can be used as potential serodiagnostic candidate antigens for hepatic coccidiosis caused by E. stiedai.
Collapse
Affiliation(s)
- Wenrui Wei
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Nengxing Shen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Jie Xiao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Yuanyuan Tao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Yuejun Luo
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Christiana Angel
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
- Department of Veterinary Parasitology, Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Sindh, Pakistan
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Bo Jing
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Wenjiang 611130, China;
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| |
Collapse
|
8
|
de Lima JGS, Teixeira DG, Freitas TT, Lima JPMS, Lanza DCF. Evolutionary origin of 2A-like sequences in Totiviridae genomes. Virus Res 2018; 259:1-9. [PMID: 30339789 DOI: 10.1016/j.virusres.2018.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/28/2018] [Accepted: 10/15/2018] [Indexed: 12/20/2022]
Abstract
In recent years there has been a significant increase in the number of new species potentially belonging to the Totiviridae family. Most of these new viruses have not yet been covered by the Committee on Taxonomy of Viruses (ICTV) official classification. In this study, a phylogenetic analysis including new sequences of Totiviridae candidates revealed a clade including Giardiavirus and a great diversity of new totiviruses, which infect arthropods, protozoa and mollusc. This expanded Giardiavirus clade comprises two monophyletic groups, one of them including Giardia lamblia virus (GLV) grouped with viruses that infect arthropods and vertebrates (GLV-like group), and the other includes the previously proposed Artivirus group (IMNV-like group). A screening of the members of the GLV-like group in search of genomic elements already described in IMNV-like group revealed the existence of sites with a high propensity to become 2 A-like oligopeptides, mainly in a specific subgroup of arthropod viruses, suggesting that these viruses preserved ancestral characteristics. The existence of these "pseudo 2 A-sites" associated to phylogenetic reconstruction indicates that these sequences appear at a decisive stage for viral evolution. If they are changed to functional 2 A-like sequences, an irreversible route to increase the genome complexity will be initiated.
Collapse
Affiliation(s)
- Juliana G S de Lima
- Applied Molecular Biology Lab - LAPLIC, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Postgraduate Program in Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Diego G Teixeira
- Laboratory of Metabolic Systems and Bioinformatics - LASIS, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Postgraduate Program in Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Tiago T Freitas
- Applied Molecular Biology Lab - LAPLIC, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Postgraduate Program in Science, Technology and Innovation, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - João P M S Lima
- Laboratory of Metabolic Systems and Bioinformatics - LASIS, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Postgraduate Program in Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Daniel C F Lanza
- Applied Molecular Biology Lab - LAPLIC, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Postgraduate Program in Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Postgraduate Program in Science, Technology and Innovation, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
9
|
Sasai S, Tamura K, Tojo M, Herrero ML, Hoshino T, Ohki ST, Mochizuki T. A novel non-segmented double-stranded RNA virus from an Arctic isolate of Pythium polare. Virology 2018; 522:234-243. [DOI: 10.1016/j.virol.2018.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 10/28/2022]
|
10
|
Zhang D, Long Y, Li M, Gong J, Li X, Lin J, Meng J, Gao K, Zhao R, Jin T. Development and evaluation of novel recombinant adenovirus-based vaccine candidates for infectious bronchitis virus and Mycoplasma gallisepticum in chickens. Avian Pathol 2018; 47:213-222. [PMID: 29115156 DOI: 10.1080/03079457.2017.1403009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Avian infectious bronchitis caused by the infectious bronchitis virus (IBV), and mycoplasmosis caused by Mycoplasma gallisepticum (MG) are two major respiratory diseases in chickens that have resulted in severe economic losses in the poultry industry. We constructed a recombinant adenovirus that simultaneously expresses the S1 spike glycoprotein of IBV and the TM-1 protein of MG (pBH-S1-TM-1-EGFP). For comparison, we constructed two recombinant adenoviruses (pBH-S1-EGFP and pBH-TM-1-EGFP) that express either the S1 spike glycoprotein or the TM-1 protein alone. The protective efficacy of these three vaccine constructs against challenge with IBV and/or MG was evaluated in specific pathogen free chickens. Groups of seven-day-old specific pathogen free chicks were immunized twice, two weeks apart, via the oculonasal route with the pBH-S1-TM-1-EGFP, pBH-S1-EGFP, or pBH-TM-1-EGFP vaccine candidates or the commercial attenuated infectious bronchitis vaccine strain H52 and MG vaccine strain F-36 (positive controls), and challenged with virulent IBV or MG two weeks later. Interestingly, by days 7 and 14 after the booster immunization, pBH-S1-TM-1-EGFP-induced antibody titre was significantly higher (P < 0.01) compared to attenuated commercial IBV vaccine; however, there was no significant difference between the pBH-S1-TM-1-EGFP and attenuated commercial MG vaccine groups (P > 0.05). The clinical signs, the gross, and histopathological lesions scores of the adenovirus vaccine constructs were not significantly different from that of the attenuated commercial IBV or MG vaccines (positive controls) (P > 0.05). These results demonstrate the potential of the bivalent pBH-S1-TM-1-EGFP adenovirus construct as a combination vaccine against IB and mycoplasmosis.
Collapse
Affiliation(s)
- Dongchao Zhang
- a College of Animal Science and Veterinary Medicine , Tianjin Agriculture University , Tianjin , People's Republic of China
| | - Yuqing Long
- a College of Animal Science and Veterinary Medicine , Tianjin Agriculture University , Tianjin , People's Republic of China
| | - Meng Li
- a College of Animal Science and Veterinary Medicine , Tianjin Agriculture University , Tianjin , People's Republic of China
| | - Jianfang Gong
- a College of Animal Science and Veterinary Medicine , Tianjin Agriculture University , Tianjin , People's Republic of China
| | - Xiaohui Li
- a College of Animal Science and Veterinary Medicine , Tianjin Agriculture University , Tianjin , People's Republic of China
| | - Jing Lin
- a College of Animal Science and Veterinary Medicine , Tianjin Agriculture University , Tianjin , People's Republic of China
| | - Jiali Meng
- a College of Animal Science and Veterinary Medicine , Tianjin Agriculture University , Tianjin , People's Republic of China
| | - Keke Gao
- a College of Animal Science and Veterinary Medicine , Tianjin Agriculture University , Tianjin , People's Republic of China
| | - Ruili Zhao
- a College of Animal Science and Veterinary Medicine , Tianjin Agriculture University , Tianjin , People's Republic of China
| | - Tianming Jin
- a College of Animal Science and Veterinary Medicine , Tianjin Agriculture University , Tianjin , People's Republic of China
| |
Collapse
|