1
|
The spatial-temporal distribution and etiological characteristics of hand-foot-and-mouth disease before and after EV‑A71 vaccination in Kunming, China, 2017-2020. Sci Rep 2022; 12:17028. [PMID: 36220850 PMCID: PMC9552732 DOI: 10.1038/s41598-022-21312-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 09/26/2022] [Indexed: 12/29/2022] Open
Abstract
After vaccination with enterovirus 71 (EV-A71), the prevalence of hand-foot-and-mouth disease (HFMD) remained high, and the spatial-temporal distribution of enteroviruses changed. Therefore, it is essential to define the temporal features, spatial distributions, and epidemiological and etiological characteristics of HFMD in Kunming. Between 2017 and 2020, a total of 36,540 children were diagnosed with HFMD in Kunming, including 32,754 children with enterovirus-positive clinical samples. Demographic, geographical, epidemiological and etiological data of the cases were acquired and analyzed. Other enteroviruses replaced EV-A71, and the incidence of EV-A71 decreased dramatically, whereas coxsackievirus A6 (CV-A6) and coxsackievirus A16 (CV-A16) had substantial outbreaks in 2018 and 2019, respectively. The major and minor peaks all extended for 2-4 months compared to before vaccination with the EV-A71 vaccine. From 2019 to 2020, CV-A6, as the predominant serotype, showed only a single peak. Although a high incidence of HFMD was observed in Guandu, Chenggong and Xishan, the annual incidence of different enterovirus serotypes was different in different regions. In 2017, other enteroviruses were most prevalent in Shilin. In 2018, CV-A16 and CV-A6 were most prevalent in Luquan and Shilin, respectively. In 2019, CV-A16 was most prevalent in Jinning. In 2020, CV-A6 and coxsackievirus A10 (CV-A10) were most prevalent in Luquan and Shilin, respectively. Meanwhile, the epidemic cycle of CV-A6 and CV-A16 was only 1 year, and CV-A10 and other enteroviruses were potential risk pathogens. The spatial and temporal distribution of HFMD varies at different scales, and the incidence of HFMD associated with different pathogens has obvious regional differences and seasonal trends. Therefore, research on multivalent combined vaccines is urgently needed, and proper preventive and protective measures could effectively control the incidence of HFMD-like diseases.
Collapse
|
2
|
Hu L, Maimaiti H, Zhou L, Gao J, Lu Y. Changing serotypes of hand, foot and mouth disease in Shanghai, 2017-2019. Gut Pathog 2022; 14:12. [PMID: 35313977 PMCID: PMC8935267 DOI: 10.1186/s13099-022-00485-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/10/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hand, foot, and mouth disease (HFMD) is a common reportable infectious disease that is highly contagious among children in China. This study aimed to characterize the epidemics of HFMD and the serotypes of enterovirus (EV) after the introduction of EV-A71 vaccines in Shanghai, a city in Eastern China. RESULTS A total of 2271 HFMD cases were recruited in this study from May 2017 through October 2020. Among these cases, a male-to-female ratio of 1.6:1 was observed, and the cases were mainly in 1-4 years old (63.1%). Children of all ages had a relatively similar time span between the onset of HFMD and the initial medical visit (P = 0.5192). The cases were reported year-round with peaks in the summer (2018 and 2019) and fall (2017), which was consistent with previous epidemics of the reported HFMD cases in the Shanghai municipality. Among the specimens that tested positive for EV (n = 1855), CV-A6 was predominantly detected (71.1%), followed by CV-A16 (14.2%) and EV-A71 (7.0%). Notably, the number of HFMD cases infected with EV-A71 increased in 2019. Furthermore, 9.2% of the cases had comorbidities, mostly convulsion, bronchopneumonia, and pneumonia; however, they were not correlated with the EV serotypes. In addition, 31.2% (709/2271) of the cases were vaccinated with EV-A71 vaccines. The time span differed significantly between the time of vaccination and the onset of the disease across the groups based on whether the onset was before or after vaccination (P < 0.001). CONCLUSIONS CV-A6 is the predominant EV serotype in the epidemic of HFMD in Shanghai; in addition, CV-A16 and EV-A71 may be moderately prevalent. The changing trends in the presence of EV serotypes contributes to the periodicity of the HFMD epidemic. In addition, the minority of HFMD cases may have comorbidities, regardless of the EV serotype. The use of the EV-A71 vaccine has affected the HFMD epidemic. And serotype-specific protection by the EV-A71 vaccine may promote vaccination in children infected with EV-A71 compared to those infected with non-EV-A71 serotypes, which would further change the epidemic scenario of HFMD.
Collapse
Affiliation(s)
- Linjie Hu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Fosun Tower, 131 Dong An Road, Shanghai, 200032, China
| | - Hairenguli Maimaiti
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Fosun Tower, 131 Dong An Road, Shanghai, 200032, China
| | - Lu Zhou
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Fosun Tower, 131 Dong An Road, Shanghai, 200032, China
| | - Jie Gao
- Department of Infection Control, Shanghai Children's Hospital, Shanghai Jiaotong University, 355 Luding Road, Shanghai, 200062, China.
| | - Yihan Lu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Fosun Tower, 131 Dong An Road, Shanghai, 200032, China.
| |
Collapse
|
3
|
Liu H, Zhang M, Feng C, Cong S, Xu D, Sun H, Yang Z, Ma S. Characterization of Coxsackievirus A6 Strains Isolated From Children With Hand, Foot, and Mouth Disease. Front Cell Infect Microbiol 2021; 11:700191. [PMID: 34490141 PMCID: PMC8418080 DOI: 10.3389/fcimb.2021.700191] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022] Open
Abstract
Coxsackievirus A6 (CVA6) is a key pathogen causing hand, foot and mouth disease (HFMD). However, there are currently no specific antiviral drugs or vaccines for treating infections caused by CVA6. In this study, human rhabdomyosarcoma (RD), African green monkey kidney (Vero), and human embryonic lung diploid fibroblast (KMB17) cells were used to isolate CVA6 from 327 anal swab and fecal samples obtained during HFMD monitoring between 2009 and 2017. The VP1 genes of the isolates were sequenced and genotyped, and the biological characteristics of the representative CVA6 strains were analyzed. A total of 37 CVA6 strains of the D3 gene subtypes were isolated from RD cells, all of which belonged to the epidemic strains in mainland China. Using the adaptive culture method, 10 KMB17 cell-adapted strains were obtained; however, no Vero cell-adapted strains were acquired. Among the KMB17 cell-adapted strains, only KYN-A1205 caused disease or partial death in suckling mice, and its virulence was stronger than its RD cell-adapted strain. The pathogenic KYN-A1205 strain caused strong tropism to the muscle tissue and led to pathological changes, including muscle necrosis and nuclear fragmentation in the forelimb and hindlimb. Sequence analysis demonstrated that the KYN-A1205 strain exhibited multiple amino acid mutations after KMB17 cell adaptation. Moreover, it showed strong pathogenicity, good immunogenicity and genetic stability, and could be used as an experimental CVA6 vaccine candidate.
Collapse
Affiliation(s)
- Hongbo Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China.,Safety Evaluation Center, Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), Chengdu, China
| | - Ming Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Changzeng Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Shanri Cong
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Danhan Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Hao Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Zhaoqing Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Shaohui Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| |
Collapse
|
4
|
Zhang J, Xu D, Liu H, Zhang M, Feng C, Cong S, Sun H, Yang Z, Ma S. Characterization of coxsackievirus A10 strains isolated from children with hand, foot, and mouth disease. J Med Virol 2021; 94:601-609. [PMID: 34387895 DOI: 10.1002/jmv.27268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/27/2021] [Accepted: 08/11/2021] [Indexed: 11/10/2022]
Abstract
Hand, foot, and mouth disease (HFMD) is a contagious disease that threatens the health of children under 5 years of age. Coxsackievirus A10 (CV-A10) is one of the main pathogens of HFMD. Currently, preventive vaccines and specific therapeutic drugs are not available for CV-A10. In this study, a total of 327 stool specimens were collected from pediatric patients from 2009 to 2017 during HFMD surveillance, among which 14 CV-A10 strains could only be isolated from RD cells, but not from KMB17 and Vero cells. Through adaptive culture, two and 11 CV-A10 strains were recovered from Vero and KMB17 cell cultures, respectively. The growth of CV-A10 strains in Vero cells was better than that in KMB17 cells. The 14 CV-A10 strains belonged to the F genotype, and the nucleotides and amino acids of their complete genomes shared 92.6% - 96.3% and 98.4 - 98.9% identities, respectively. The different CV-A10 strains exhibited varying virulence in vivo, but had similar effects on tissue injury, with the hind limb muscles, kidneys, and lungs being severely affected. Additionally, the hind limb muscles had the highest viral loads. CV-A10 was found to exhibit strong tropism to muscle tissue. The results of this study are critical to developing vaccines against CV-A10 infections. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Danhan Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Hongbo Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Ming Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Changzeng Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Shanri Cong
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Hao Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Zhaoqing Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Shaohui Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| |
Collapse
|
5
|
Gopalkrishna V, Ganorkar N. Epidemiological and molecular characteristics of circulating CVA16, CVA6 strains and genotype distribution in hand, foot and mouth disease cases in 2017 to 2018 from Western India. J Med Virol 2021; 93:3572-3580. [PMID: 32833231 DOI: 10.1002/jmv.26454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/16/2020] [Indexed: 12/22/2022]
Abstract
Hand, Foot, and Mouth disease (HFMD) is a mild exanthematous and febrile disease occurs in children aged ≤10 years old. The present study highlights clinical, epidemiological characteristics, distribution of enterovirus (EV) types, and sub genotypes in HFMD cases reported during 2017 to 2018 in Western India. A total of 93 clinical samples collected from 68 HFMD cases were included. The presence of EV-RNA was determined by 5'UTR based nested reverse transcription polymerase chain reaction followed by molecular typing, sub genotyping by VP1/2A junction or VP1, full VP1 gene amplification, and phylogenetic analysis. The study reports 80.64% (75/93) EV positivity and 94.66% (71/75) typing rate, with a predominant circulation of CVA16 and CVA6 strains. Sequence analysis revealed the presence of coxsackievirus (CV)A16 (57.7%), CVA6 (40.8%), and Echo1 (1.4%) strains. EV infections were predominantly observed in children aged 1 to 3 years old (43.9%). Although cases were reported throughout the year, peaked in July (15.8%) and August (24.6%) months and persisted till September (19.3%). All the CVA16 and CVA6 positive strains were genotyped using full VP1 gene amplification. All CVA16 Indian strains (n = 41) were clustered with rarely reported B1c sub genotype and CVA6 strains (n = 29) with E2 sub-lineage. The study highlights the genetic characteristics of circulating CVA16, CVA6, and Echo1 strains in HFMD cases from Western India. The emergence of CVA16 B1c genotype and sub-lineage E2 of CVA6 strains and their constant circulation further demands systemic surveillance studies on HFMD from different parts of India to facilitate the rapid diagnosis of CVA16 and CVA6 strains using the molecular and serological based approach and for intervention strategies.
Collapse
Affiliation(s)
- Varanasi Gopalkrishna
- Enteric Viruses Group, Indian Council of Medical Research (ICMR), National Institute of Virology, Pune, India
| | - Nital Ganorkar
- Enteric Viruses Group, Indian Council of Medical Research (ICMR), National Institute of Virology, Pune, India
| |
Collapse
|
6
|
Control measures during the COVID-19 outbreak reduced the transmission of hand, foot, and mouth disease. JOURNAL OF SAFETY SCIENCE AND RESILIENCE 2021; 2. [PMCID: PMC8194009 DOI: 10.1016/j.jnlssr.2021.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Control measures during the coronavirus disease 2019 (COVID-19) outbreak may have limited the spread of infectious diseases. This study aimed to analyze the impact of COVID-19 on the spread of hand, foot, and mouth disease (HFMD) in China. A mathematical model was established to fit the reported data of HFMD in six selected cities in mainland China from 2015 to 2020. The absolute difference (AD) and relative difference (RD) between the reported incidence in 2020, and simulated maximum, minimum, or median incidence of HFMD in 2015–2019 were calculated. The incidence and Reff of HFMD have decreased in six selected cities since the outbreak of COVID-19, and in the second half of 2020, the incidence and Reff of HFMD have rebounded. The results show that the total attack rate (TAR) in 2020 was lower than the maximum, minimum, and median TAR fitted in previous years in six selected cities (except Changsha City). For the maximum, median, minimum fitted TAR, the range of RD (%) is 42·20–99·20%, 36·35–98·41% 48·35–96·23% (except Changsha City) respectively. The preventive and control measures of COVID-19 have significantly contributed to the containment of HFMD transmission.
Collapse
|
7
|
Rojjanadumrongkul K, Kumthip K, Khamrin P, Ukarapol N, Ushijima H, Maneekarn N. Enterovirus infections in pediatric patients hospitalized with acute gastroenteritis in Chiang Mai, Thailand, 2015-2018. PeerJ 2020; 8:e9645. [PMID: 32874779 PMCID: PMC7439955 DOI: 10.7717/peerj.9645] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
Background Infection with viruses especially rotavirus, norovirus, astrovirus, and adenovirus has been known to be a major cause of acute gastroenteritis in children under 5 years of age globally, particularly in developing countries. Also, some genotypes of enteroviruses (EVs) have been reported to be associated with gastroenteritis. This study is aimed to investigate the prevalence and genotype diversity of EV in children admitted to hospitals with acute gastroenteritis. Methods A total of 1,736 fecal specimens were collected from children hospitalized with diarrhea in Chiang Mai, Thailand from 2015 to 2018. All specimens were tested for the presence of EV by RT-PCR of the 5' untranslated region. The genotypes of EV were further identified by nucleotide sequencing and phylogenetic analysis of the viral protein 1 (VP1) gene. Results EV was detected in 154 out of 1,736 specimens (8.9%) throughout the study period. The prevalence of EV detected in 2015, 2016, 2017, and 2018 was 7.2%, 9.0%, 11.2%, and 8.6%, respectively. EV was detected all year round with a high prevalence during rainy season in Thailand. Overall, 37 genotypes of EV were identified in this study. Among these, coxsackievirus (CV)-A24 and CV-B5 (7.5% each), and EV-C96 (6.8%) were the common genotypes detected. Conclusion This study demonstrates the prevalence, seasonal distribution, and genotype diversity of EV circulating in children hospitalized with acute gastroenteritis in Chiang Mai, Thailand during the period 2015 to 2018.
Collapse
Affiliation(s)
| | - Kattareeya Kumthip
- Department of Microbiology, Chiang Mai University, Faculty of Medicine, Chiang Mai, Thailand.,Emerging and Re-emerging Diarrheal Viruses Cluster, Chiang Mai University, Chiang Mai, Thailand
| | - Pattara Khamrin
- Department of Microbiology, Chiang Mai University, Faculty of Medicine, Chiang Mai, Thailand.,Emerging and Re-emerging Diarrheal Viruses Cluster, Chiang Mai University, Chiang Mai, Thailand
| | - Nuthapong Ukarapol
- Emerging and Re-emerging Diarrheal Viruses Cluster, Chiang Mai University, Chiang Mai, Thailand.,Department of Pediatrics, Chiang Mai University, Faculty of Medicine, Chiang Mai, Thailand
| | - Hiroshi Ushijima
- Department of Developmental Medical Sciences, The University of Tokyo, School of International Health, Graduate School of Medicine, Tokyo, Japan.,Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Niwat Maneekarn
- Department of Microbiology, Chiang Mai University, Faculty of Medicine, Chiang Mai, Thailand.,Emerging and Re-emerging Diarrheal Viruses Cluster, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
8
|
Sun H, Gao M, Cui D. Molecular characteristics of the VP1 region of enterovirus 71 strains in China. Gut Pathog 2020; 12:38. [PMID: 32818043 PMCID: PMC7427758 DOI: 10.1186/s13099-020-00377-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/11/2020] [Indexed: 01/08/2023] Open
Abstract
Background Enterovirus 71 (EV71) is the most commonly implicated causative agent of severe outbreaks of paediatric hand, foot, and mouth disease (HFMD).VP1 protein, a capsid protein of EV71, is responsible for the genotype of the virus and is essential for vaccine development and effectiveness. However, the genotypes of EV71 isolates in China are still not completely clear. Methods The VP1 gene sequences of 3712 EV71 virus strains from China, excluding repetitive sequences and 30 known EV71 genotypes as reference strains, between 1986 and 2019 were obtained from GenBank. Phylogenetic tree, amino acid homology, genetic variation and genotype analyses of the EV71VP1 protein were performed with MEGA 6.0 software. Results The amino acid identity was found to be 88.33%–100% among the 3712 EV71 strains, 93.47%–100% compared with vaccine strain H07, and 93.04%–100% compared with vaccine strains FY7VP5 or FY-23 K-B. Since 2000, the prevalent strains of EV71 were mainly of the C4 genotype. Among these, the C4a subgenotype was predominant, followed by the C4b subgenotype; other subgenotypes appeared sporadically between 2005 and 2018 in mainland China. The B4 genotype was the main genotype in Taiwan, and the epidemic strains were constantly changing. Some amino acid variations in VP1 of EV71 occurred with high frequencies, including A289T (20.99%), H22Q (16.49%), A293S (15.95%), S283T (15.11%), V249I (7.76%), N31D (7.25%), and E98K (6.65%). Conclusion The C4 genotype of EV71 in China matches the vaccine and should effectively control EV71. However, the efficacy of the vaccine is partially affected by the continuous change in epidemic strains in Taiwan. These results suggest that the genetic characteristics of the EV71-VP1 region should be continuously monitored, which is critical for epidemic control and vaccine design to prevent EV71 infection in children.
Collapse
Affiliation(s)
- Haiyan Sun
- Department of Clinical Laboratory, Shaoxing Second Hospital, Shaoxing, 312000 Zhejiang China
| | - Min Gao
- Department of Laboratory Medicine, Huzhou Central Hospital, Huzhou, 313003 Zhejiang China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 Zhejiang China.,Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China
| |
Collapse
|
9
|
Epidemiological and aetiological characteristics of hand, foot, and mouth disease in Sichuan Province, China, 2011-2017. Sci Rep 2020; 10:6117. [PMID: 32273569 PMCID: PMC7145801 DOI: 10.1038/s41598-020-63274-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/25/2020] [Indexed: 01/27/2023] Open
Abstract
Hand, foot, and mouth disease (HFMD) remains a threat to the Asia-Pacific region. The epidemiological characteristics and pathogen spectrum of HFMD vary with space and time. These variations are crucial for HFMD interventions but poorly understood in Sichuan Province, China, particularly after the introduction of the EV-A71 vaccine. Using descriptive methods, regression analyses, spatial autocorrelation analysis, and space-time scan statistics, we analysed the epidemiological and aetiological characteristics of HFMD surveillance data in Sichuan Province between 2011 and 2017 to identify spatio-temporal variations. The dominant serotypes of HFMD have changed from enterovirus 71 and coxsackievirus A16 to other enteroviruses since 2013. The seasonal pattern of HFMD showed two peaks generally occurring from April to July and November to December; however, the seasonal pattern varied by prefecture and enterovirus serotype. From 2011 to 2017, spatio-temporal clusters were increasingly concentrated in Chengdu, with several small clusters in northeast Sichuan. The clusters observed in southern Sichuan from 2011 to 2015 disappeared in 2016–2017. These findings highlight the importance of pathogen surveillance and vaccination strategies for HFMD interventions; future prevention and control of HFMD should focus on Chengdu and its vicinity.
Collapse
|
10
|
Xie J, Yang XH, Hu SQ, Zhan WL, Zhang CB, Liu H, Zhao HY, Chai HY, Chen KY, Du QY, Liu P, Yin AH, Luo MY. Co-circulation of coxsackieviruses A-6, A-10, and A-16 causes hand, foot, and mouth disease in Guangzhou city, China. BMC Infect Dis 2020; 20:271. [PMID: 32264839 PMCID: PMC7137261 DOI: 10.1186/s12879-020-04992-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/25/2020] [Indexed: 12/15/2022] Open
Abstract
Background Hand, foot, and mouth disease (HFMD) is a common infectious disease occurring in children under 5 years of age worldwide, and Enterovirus A71 (EV-A71) and Coxsackievirus A16 (CVA-16) are identified as the predominant pathogens. In recent years, Coxsackievirus A6 (CVA-6) and Coxsackievirus A10 (CVA-10) have played more and more important role in a series of HFMD outbreaks. This study aimed to understand the epidemic characteristics associated with HFMD outbreak in Guangzhou, 2018. Methods The clinical and laboratory data of 1220 enterovirus-associated HFMD patients in 2018 were analysed in this study. Molecular diagnostic methods were performed to identify its serotypes. Phylogenetic analyses were depicted based on the complete VP1 gene. Results There were 21 enterovirus serotypes detected in Guangzhou in 2018. Three serotypes of enterovirus, CVA-6 (364/1220, 29.8%), CVA-10 (305/1220, 25.0%), and CVA-16 (397/1220, 32.5%), were identified as the causative pathogens and accounted for 87.3% among all 1220 HFMD patients. In different seasons, CVA-6 was the predominant pathogen of HFMD during autumn, and CVA-10 as well as CVA-16 were more prevalent in summer. Patients infected by CVA-6, CVA-10 or CVA-16 showed similar clinical features and laboratory characteristics, and the ratios of severe HFMD were 5.8, 5.9, and 1.5% in the three serotypes. Phylogenetic analyses of VP1 sequences showed that the CVA-6, CVA-10, and CVA-16 sequences belonged to the sub-genogroup E2, genogroup E, and genogroup B1, respectively. Conclusions CVA-6, CVA-10, and CVA-16 were the predominant and co-circulated serotypes in Guangzhou China, 2018, which should be the new target for prevention and control of HFMD. Our findings provide useful information for diagnosis, treatment, and prevention of HFMD.
Collapse
Affiliation(s)
- Jia Xie
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou, 511442, People's Republic of China
| | - Xiao-Han Yang
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou, 511442, People's Republic of China.,Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511442, People's Republic of China
| | - Si-Qi Hu
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou, 511442, People's Republic of China
| | - Wen-Li Zhan
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou, 511442, People's Republic of China.,Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511442, People's Republic of China
| | - Chang-Bin Zhang
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou, 511442, People's Republic of China.,Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511442, People's Republic of China
| | - Hong Liu
- Department of Pediatrics, Guangdong Women and Children Hospital, Guangzhou, 511442, People's Republic of China
| | - Hong-Yu Zhao
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou, 511442, People's Republic of China.,Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511442, People's Republic of China
| | - Hui-Ying Chai
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou, 511442, People's Republic of China.,Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511442, People's Republic of China
| | - Ke-Yi Chen
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou, 511442, People's Republic of China.,Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511442, People's Republic of China
| | - Qian-Yi Du
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou, 511442, People's Republic of China.,Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511442, People's Republic of China
| | - Pan Liu
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou, 511442, People's Republic of China.,Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511442, People's Republic of China
| | - Ai-Hua Yin
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou, 511442, People's Republic of China.,Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511442, People's Republic of China
| | - Ming-Yong Luo
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou, 511442, People's Republic of China. .,Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511442, People's Republic of China.
| |
Collapse
|
11
|
Identification of Norovirus and Human Parechovirus in Patients With Hand, Foot and Mouth Disease Syndrome. Pediatr Infect Dis J 2019; 38:1079-1084. [PMID: 31568248 DOI: 10.1097/inf.0000000000002459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hand, foot and mouth disease (HFMD) is caused mostly by enteroviruses. However, other viral agents also can cause similar syndromes, and hence, the infections they cause are often misdiagnosed clinically. To determine non-enterovirus etiologic agents in HFMD-like cases, we screened enterovirus-negative samples collected from the patients who were clinically diagnosed as HFMD in China. METHODS Two hundred enterovirus-negative samples were collected previously in Wenzhou city of Zhejiang province, China. Both high throughput sequencing and RT-PCR were used to screen viral agents. In addition, their clinical features were analyzed. RESULTS Norovirus (NoV) and human parechovirus (HPeV) were identified from 22 (11.00%) and 9 (4.50%) samples, respectively. In addition, the complete genome sequences were recovered from 4 NoV-positive samples, and the VP1/3Dpol gene sequences were recovered from 5 HPeV-positive samples. Phylogenetic analyses of the NoV sequences revealed that they were closely related to those circulated in other regions of China. Notably, 4 genotypes of HPeVs, including HPeV-1, HPeV-4, HPeV-5 and HPeV-14, were found, indicating high genetic diversity of the virus. Frequent recombination between various genotypes was also observed in the HPeVs. Although most of the patients presented with the clinical features of HFMD, 4 patients infected with NoV GII.4 and 3 patients infected with HPeV-1 (1) and HPeV-4 (2) were characterized with diarrhea. Finally, tonsillitis, convulsion and granulocytopenia were observed in 1 NoV GII.4 patient, while liver dysfunction was found in 1 NoV GII.17 patient. CONCLUSIONS These data reveal the variety of agents in the cases clinically diagnosed as HFMD.
Collapse
|
12
|
The Clinical and Epidemiological Study of Children with Hand, Foot, and Mouth Disease in Hunan, China from 2013 to 2017. Sci Rep 2019; 9:11662. [PMID: 31406192 PMCID: PMC6690890 DOI: 10.1038/s41598-019-48259-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/29/2019] [Indexed: 02/05/2023] Open
Abstract
Hand, foot, and mouth disease (HFMD) is endemic in the Pacific region, especially in mainland China. The case-fatality ratio of HFMD is increasing steadily. Knowledge of the changing epidemiology of HFMD in different regions is necessary for implementing appropriate intervention strategies. In this study, we describe the clinical and epidemiological characteristics of HFMD in Hunan Children’s Hospital between 2013 and 2017. A total of 7203 patients with HFMD were admitted, with complication and mortality rates of 35.62% and 0.78%, respectively. The total number of children with HFMD, proportion of severely ill children, and HFMD mortality rate were the highest in 2014. The number of cases caused by EV-A71 and CV-A16 decreased continuously, while the number of cases caused by ‘other enteroviruses’ increased yearly since 2014, suggesting that other enteric viruses will gradually replace EV-A71 and CV-A16 as the main pathogenic HFMD agents. Furthermore, EV-A71 and mixed infections accounted for the high case fatality rates in children with severe HFMD, among whom EV-A71 infection resulted in the highest complication and mortality rates; the mild form of the disease was dominated by ‘other enteroviruses’. In conclusion, the changing etiological pattern highlights the need to improve pathogen surveillance and vaccine strategies for HFMD control.
Collapse
|
13
|
Zhang M, Zhao Y, Zhang H, Lin K, Liu H, Zhang J, Ding L, Huang X, Yang Z, Ma S. Molecular characterization of Coxsackievirus A16 strains isolated from children with severe hand, foot, and mouth disease in Yunnan, Southwest China, during 2009-2015. J Med Virol 2018; 91:155-160. [PMID: 30168582 DOI: 10.1002/jmv.25297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022]
Abstract
Coxsackievirus A16 (CV-A16) commonly causes mild symptoms, but severe diseases, such as aseptic meningitis, encephalitis, and even fatal cases, have been reported. Thirteen CV-A16 strains were isolated from patients with severe hand, foot, and mouth disease in Yunnan, Southwest China, from 2009 to 2015. Subgenotype B1a and B1b of CV-A16 were predominantly circulating the region with B1b the predominant strain in recent years. The mean rate of nucleotide substitution based on the VP1 gene sequence was 4.545 × 10 -3 substitution per site per year from 2009 to 2015. These results may help in understanding the genetic diversity of CV-A16 and develop a CV-A16 vaccine.
Collapse
Affiliation(s)
- Ming Zhang
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming, China
| | - Yilin Zhao
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming, China
| | - Haihao Zhang
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming, China
| | - Keqin Lin
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming, China
| | - Hongbo Liu
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming, China
| | - Jie Zhang
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming, China
| | - Lisha Ding
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming, China
| | - Xiaoqin Huang
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming, China
| | - Zhaoqing Yang
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming, China
| | - Shaohui Ma
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming, China
| |
Collapse
|
14
|
An emerging and expanding clade accounts for the persistent outbreak of Coxsackievirus A6-associated hand, foot, and mouth disease in China since 2013. Virology 2018; 518:328-334. [PMID: 29587191 DOI: 10.1016/j.virol.2018.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 11/23/2022]
Abstract
Enterovirus (EV)-A71 and Coxsackievirus (CV)-A16 have historically been the major pathogens of hand, foot, and mouth disease (HMFD) in China; however, CV-A6, which had previously received little attention, became the predominant pathogen in 2013, and has remained one of the common pathogens since then. In this work, we conducted a molecular epidemiology study of CV-A6-associated HFMD in Xiamen from 2009 to 2015. The data showed CV-A6 pandemics had a certain periodicity rather than occurring randomly. Evolution analysis based on near-complete VP1 nucleotide sequences showed subgenotype D5 lineage 4 strains account for the persistent outbreak of CV-A6-associated HFMD in China since 2013. Alignment analysis revealed eight candidate amino acid substitutions in VP1, which may provide useful information for the research of CV-A6 virulence enhancement. This study contributed to elucidating the circulation patterns and genetic characteristics of CV-A6 in China; however, further surveillance and intervention in CV-A6 epidemics is recommended.
Collapse
|
15
|
Li J, Pan H, Wang X, Zhu Q, Ge Y, Cai J, Li Y, Xia A, Hu J, Zeng M. Epidemiological surveillance of hand, foot and mouth disease in Shanghai in 2014-2016, prior to the introduction of the enterovirus 71 vaccine. Emerg Microbes Infect 2018; 7:37. [PMID: 29559626 PMCID: PMC5861114 DOI: 10.1038/s41426-018-0035-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/10/2018] [Accepted: 01/14/2018] [Indexed: 11/11/2022]
Abstract
Hand, foot, and mouth disease (HFMD) is mainly epidemic in China and Southeast Asian countries. A novel enterovirus 71 vaccine has been available in China for preventing severe HFMD since 2016. Knowledge of the dynamic epidemiology of HFMD in different regions is necessary for appropriate intervention strategies. This study focused on the citywide surveillance data on the epidemiology and etiology of HFMD in Shanghai during 2014–2016. In these 3 years, the total numbers of reported HFMD cases were 65,018, 39,702, and 57,548, respectively; the numbers of severe cases (case-severity ratios) were 248 (0.38%), 35 (0.09%), and 59 (0.10%), respectively. Children <6 years old accounted for 86.65% to 89.34% of HFMD cases and 91.53 to 97.14% of severe cases. EV-A71 caused all three fatal cases. In severe cases, the detection rate of EV-A71 was 77.82% in 2014, 100% in 2015 and 98.31% in 2016. In uncomplicated inpatient cases, the detection rates of EV-A71, CV-A16, CV-A6, and CV-A10 were, respectively, 43.40, 22.10, 30.73, and 1.89% in 2014; 28.52, 6.46, 53.61, and 7.98% in 2015; and 31.79, 14.15, 44.55, and 4.64% in 2016. In mild community cases, the detection rates of EV-A71, CV-A16, CV-A6, and CV-A10 were, respectively, 25.78, 41.64, 22.93, and 1.78% in 2014; 17.41, 21.23, 50.99, and 3.15% in 2015; and 18.92, 27.84, 45.11, and 1.64% in 2016. Among the cluster outbreaks, the most common pathogen was CV-A16 in 2014 (50.69%) and 2015 (38.10%) and CV-A6 in 2016 (36.30%). These findings show that HFMD outbreaks remained at a high level in Shanghai during 2014–2016. CV-A6 was emerging as the most common pathogen causing HFMD.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Hao Pan
- Department of Infectious Diseases and Control, Shanghai Municipal Center For Disease Control and Prevention, Shanghai, 200336, China
| | - Xiangshi Wang
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Qirong Zhu
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Yanling Ge
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Jiehao Cai
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Yuefang Li
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Aimei Xia
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Jiayu Hu
- Department of Infectious Diseases and Control, Shanghai Municipal Center For Disease Control and Prevention, Shanghai, 200336, China.
| | - Mei Zeng
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China.
| |
Collapse
|
16
|
Kumthip K, Khamrin P, Ushijima H, Maneekarn N. Multiple enterovirus genotypes circulating in children hospitalized with acute gastroenteritis in Thailand. INFECTION GENETICS AND EVOLUTION 2017; 55:324-331. [PMID: 28986202 DOI: 10.1016/j.meegid.2017.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/22/2017] [Accepted: 10/02/2017] [Indexed: 11/30/2022]
Abstract
Enterovirus (EV) infection is widespread and can lead to a broad range of clinical symptoms, from mild to severe forms of disease. EVs are not always classified as pathogen and the epidemiological surveillance of EV infection in acute gastroenteritis cases in Thailand remains unexplored. This study aims to investigate the frequency, seasonality and molecular characteristics of EV circulating in children hospitalized with acute gastroenteritis in Chiang Mai, Thailand from 2010 to 2014. A total of 1266 fecal samples were included in this study. RT-PCR amplification of the 5'UTR was used for EV screening and phylogenetic analysis of the VP1 sequence was performed for EV genotyping. EV was detected in 5.8% of infections (73 out of 1266). Based on VP1 sequence analysis, over half (50.8%) of the identified EV cases were caused by species C, and the next two most frequent were species B and A (35.4% and 13.8%, respectively). This study identified 28 different EV genotypes, EV-C96 and coxsackievirus A24 were the most frequent genotype detected (12.3% each). EV was detected throughout the year with an increase of detection rate in December-January and May-June. In conclusion, this study reported the prevalence of EV infection with a wide variety of EV genotypes in children with acute diarrhea.
Collapse
Affiliation(s)
- Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
17
|
Ganorkar NN, Patil PR, Tikute SS, Gopalkrishna V. Genetic characterization of enterovirus strains identified in Hand, Foot and Mouth Disease (HFMD): Emergence of B1c, C1 subgenotypes, E2 sublineage of CVA16, EV71 and CVA6 strains in India. INFECTION GENETICS AND EVOLUTION 2017; 54:192-199. [PMID: 28577914 DOI: 10.1016/j.meegid.2017.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/22/2017] [Accepted: 05/28/2017] [Indexed: 10/19/2022]
Abstract
Hand, Foot and Mouth disease (HFMD) is a common childhood disease and caused due to Enterovirus-A (EV-A), EV-B and EV-C species worldwide. Cases of HFMD were reported from, Ahmedabad (Gujarat, 2012) and Pune (Maharashtra, 2013-2014) in India. The present study highlights the identification of EV strains (CVA16, CVA6, CVA4 and Echo12), characterization of subgenotypes of CVA16, CVA6 strains during 2012-14 and CVA16, CVA6, EV71 strains reported from the earlier study (2009-10) in HFMD cases from India. A total 158 clinical specimens collected from 64 HFMD cases (2012-2014) were included in the study. EV detection was carried out by 5'NCR based RT-PCR, molecular typing and subgenotyping was by VP1/2A junction or VP1, full VP1 gene amplification respectively followed by phylogenetic analysis. The present study reports 63.92% (101/158) EV positivity by RT-PCR. Ninety four of the 101 (93.06%) EV positive strains were amplified by VP1/2A junction or VP1 regions. Sequence analysis revealed the presence of CVA16 (61.7%), CVA6 (34.04%), CVA4 and Echo12 (4.3%). A total of 114 EV positive strains were genotyped using full and partial VP1 region. All CVA16 Indian strains (n=70) clustered with rarely reported B1c subgenotype, CVA6 (n=43) and EV71 (n=1) strains clustered with sub-lineage E2 and C1 subgenotypes respectively. In summary, the study reports genetic characterization of CVA16, CVA6, CVA4 and Echo12 strains in HFMD cases from India. Circulation of B1c subgenotype of CVA16, E2 sub-lineage of CVA6 and C1 subgenotype of EV 71 strains in HFMD cases were reported for the first time from India. This study helps to understand the genotype distribution, genetic diversity of EV strains associated with HFMD from Eastern, Western and Southern regions in India.
Collapse
Affiliation(s)
- Nital N Ganorkar
- Enteric Viruses Group, National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411 001, India
| | - Pooja R Patil
- Enteric Viruses Group, National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411 001, India
| | - Sanjay S Tikute
- Enteric Viruses Group, National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411 001, India
| | - Varanasi Gopalkrishna
- Enteric Viruses Group, National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411 001, India.
| |
Collapse
|