1
|
Xie J, Jiang D. Understanding the Diversity, Evolution, Ecology, and Applications of Mycoviruses. Annu Rev Microbiol 2024; 78:595-620. [PMID: 39348839 DOI: 10.1146/annurev-micro-041522-105358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Mycoviruses are widely distributed among various kinds of fungi. Over the past 10 years, more novel mycoviruses have been discovered with the use of high-throughput sequencing techniques, and research on mycoviruses has made fantastic progress, promoting our understanding of the diversity, classification, evolution, and ecology of the entire virosphere. Mycoviruses affect the biological and ecological functions of their hosts, for example, by suppressing or improving hosts' virulence and reproduction ability, and subsequently affect the microbiological community where their hosts live; hence, we may develop mycoviruses to regulate the health of environments, plants, animals, and human beings. In this review, we introduce recently discovered mycoviruses from fungi of humans, animals, plants, and environments, and their diversity, evolution, and ecological characteristics. We also present the potential application of mycoviruses by describing the latest progress on using mycoviruses to control plant diseases. Finally, we discuss the main issues facing mycovirus research in the future.
Collapse
Affiliation(s)
- Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Hubei Hongshan Laboratory, Wuhan, China; ,
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Hubei Hongshan Laboratory, Wuhan, China; ,
| |
Collapse
|
2
|
Pagnoni S, Oufensou S, Balmas V, Bulgari D, Gobbi E, Forgia M, Migheli Q, Turina M. A collection of Trichoderma isolates from natural environments in Sardinia reveals a complex virome that includes negative-sense fungal viruses with unprecedented genome organizations. Virus Evol 2023; 9:vead042. [PMID: 37692893 PMCID: PMC10491862 DOI: 10.1093/ve/vead042] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 09/12/2023] Open
Abstract
Trichoderma genus includes soil-inhabiting fungi that provide important ecosystem services in their interaction with plants and other fungi, as well as biocontrol of fungal plant diseases. A collection of Trichoderma isolates from Sardinia has been previously characterized, but here we selected 113 isolates, representatives of the collection, and characterized their viral components. We carried out high-throughput sequencing of ribosome-depleted total RNA following a bioinformatics pipeline that detects virus-derived RNA-directed RNA polymerases (RdRps) and other conserved viral protein sequences. This pipeline detected seventeen viral RdRps with two of them corresponding to viruses already detected in other regions of the world and the remaining fifteen representing isolates of new putative virus species. Surprisingly, eight of them are from new negative-sense RNA viruses, a first in the genus Trichoderma. Among them is a cogu-like virus, closely related to plant-infecting viruses. Regarding the positive-sense viruses, we report the presence of an 'ormycovirus' belonging to a recently characterized group of bisegmented single-stranded RNA viruses with uncertain phylogenetic assignment. Finally, for the first time, we report a bisegmented member of Mononegavirales which infects fungi. The proteins encoded by the second genomic RNA of this virus were used to re-evaluate several viruses in the Penicillimonavirus and Plasmopamonavirus genera, here shown to be bisegmented and encoding a conserved polypeptide that has structural conservation with the nucleocapsid domain of rhabdoviruses.
Collapse
Affiliation(s)
- Saul Pagnoni
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milan, via Celoria 2, Milan 20133, Italy
| | - Safa Oufensou
- Department of Agricultural Sciences and NRD—Desertification Research Center, University of Sassari, Viale Italia 39a, Sassari, Sardegna 07100, Italy
| | - Virgilio Balmas
- Department of Agricultural Sciences and NRD—Desertification Research Center, University of Sassari, Viale Italia 39a, Sassari, Sardegna 07100, Italy
| | - Daniela Bulgari
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia 25123, Italy
| | - Emanuela Gobbi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia 25123, Italy
| | - Marco Forgia
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce, 73, Torino 10135, Italy
| | - Quirico Migheli
- Department of Agricultural Sciences and NRD—Desertification Research Center, University of Sassari, Viale Italia 39a, Sassari, Sardegna 07100, Italy
| | - Massimo Turina
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce, 73, Torino 10135, Italy
| |
Collapse
|
3
|
Liu C, Jiang X, Tan Z, Wang R, Shang Q, Li H, Xu S, Aranda MA, Wu B. An Outstandingly Rare Occurrence of Mycoviruses in Soil Strains of the Plant-Beneficial Fungi from the Genus Trichoderma and a Novel Polymycoviridae Isolate. Microbiol Spectr 2023; 11:e0522822. [PMID: 37022156 PMCID: PMC10269472 DOI: 10.1128/spectrum.05228-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/31/2023] [Indexed: 04/07/2023] Open
Abstract
In fungi, viral infections frequently remain cryptic causing little or no phenotypic changes. It can indicate either a long history of coevolution or a strong immune system of the host. Some fungi are outstandingly ubiquitous and can be recovered from a great diversity of habitats. However, the role of viral infection in the emergence of environmental opportunistic species is not known. The genus of filamentous and mycoparasitic fungi Trichoderma (Hypocreales, Ascomycota) consists of more than 400 species, which mainly occur on dead wood, other fungi, or as endo- and epiphytes. However, some species are environmental opportunists because they are cosmopolitan, can establish in a diversity of habitats, and can also become pests on mushroom farms and infect immunocompromised humans. In this study, we investigated the library of 163 Trichoderma strains isolated from grassland soils in Inner Mongolia, China, and found only four strains with signs of the mycoviral nucleic acids, including a strain of T. barbatum infected with a novel strain of the Polymycoviridae and named and characterized here as Trichoderma barbatum polymycovirus 1 (TbPMV1). Phylogenetic analysis suggested that TbPMV1 was evolutionarily distinct from the Polymycoviridae isolated either from Eurotialean fungi or from the order Magnaportales. Although the Polymycoviridae viruses were also known from Hypocrealean Beauveria bassiana, the phylogeny of TbPMV1 did not reflect the phylogeny of the host. Our analysis lays the groundwork for further in-depth characterization of TbPMV1 and the role of mycoviruses in the emergence of environmental opportunism in Trichoderma. IMPORTANCE Although viruses infect all organisms, our knowledge of some groups of eukaryotes remains limited. For instance, the diversity of viruses infecting fungi-mycoviruses-is largely unknown. However, the knowledge of viruses associated with industrially relevant and plant-beneficial fungi, such as Trichoderma spp. (Hypocreales, Ascomycota), may shed light on the stability of their phenotypes and the expression of beneficial traits. In this study, we screened the library of soilborne Trichoderma strains because these isolates may be developed into bioeffectors for plant protection and sustainable agriculture. Notably, the diversity of endophytic viruses in soil Trichoderma was outstandingly low. Only 2% of 163 strains contained traces of dsRNA viruses, including the new Trichoderma barbatum polymycovirus 1 (TbPMV1) characterized in this study. TbPMV1 is the first mycovirus found in Trichoderma. Our results indicate that the limited data prevent the in-depth study of the evolutionary relationship between soilborne fungi and is worth further investigation.
Collapse
Affiliation(s)
- Chenchen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiliang Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaoyan Tan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rongqun Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiaoxia Shang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China
| | - Hongrui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Horticulture and Landscapes, Tianjin Agricultural University, Tianjin, China
| | - Shujin Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Horticulture and Landscapes, Tianjin Agricultural University, Tianjin, China
| | - Miguel A. Aranda
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Murcia, Spain
| | - Beilei Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Hough B, Steenkamp E, Wingfield B, Read D. Fungal Viruses Unveiled: A Comprehensive Review of Mycoviruses. Viruses 2023; 15:1202. [PMID: 37243288 PMCID: PMC10224137 DOI: 10.3390/v15051202] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Mycoviruses (viruses of fungi) are ubiquitous throughout the fungal kingdom and are currently classified into 23 viral families and the genus botybirnavirus by the International Committee on the Taxonomy of Viruses (ICTV). The primary focus of mycoviral research has been on mycoviruses that infect plant pathogenic fungi, due to the ability of some to reduce the virulence of their host and thus act as potential biocontrol against these fungi. However, mycoviruses lack extracellular transmission mechanisms and rely on intercellular transmission through the hyphal anastomosis, which impedes successful transmission between different fungal strains. This review provides a comprehensive overview of mycoviruses, including their origins, host range, taxonomic classification into families, effects on their fungal counterparts, and the techniques employed in their discovery. The application of mycoviruses as biocontrol agents of plant pathogenic fungi is also discussed.
Collapse
Affiliation(s)
| | | | - Brenda Wingfield
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria 0002, South Africa; (B.H.); (E.S.); (D.R.)
| | | |
Collapse
|
5
|
Olendraite I, Brown K, Firth AE. Identification of RNA Virus-Derived RdRp Sequences in Publicly Available Transcriptomic Data Sets. Mol Biol Evol 2023; 40:msad060. [PMID: 37014783 PMCID: PMC10101049 DOI: 10.1093/molbev/msad060] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/15/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023] Open
Abstract
RNA viruses are abundant and highly diverse and infect all or most eukaryotic organisms. However, only a tiny fraction of the number and diversity of RNA virus species have been catalogued. To cost-effectively expand the diversity of known RNA virus sequences, we mined publicly available transcriptomic data sets. We developed 77 family-level Hidden Markov Model profiles for the viral RNA-dependent RNA polymerase (RdRp)-the only universal "hallmark" gene of RNA viruses. By using these to search the National Center for Biotechnology Information Transcriptome Shotgun Assembly database, we identified 5,867 contigs encoding RNA virus RdRps or fragments thereof and analyzed their diversity, taxonomic classification, phylogeny, and host associations. Our study expands the known diversity of RNA viruses, and the 77 curated RdRp Profile Hidden Markov Models provide a useful resource for the virus discovery community.
Collapse
Affiliation(s)
- Ingrida Olendraite
- Division of Virology, Department of Pathology, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Katherine Brown
- Division of Virology, Department of Pathology, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Andrew E Firth
- Division of Virology, Department of Pathology, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Schalamun M, Schmoll M. Trichoderma - genomes and genomics as treasure troves for research towards biology, biotechnology and agriculture. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:1002161. [PMID: 37746224 PMCID: PMC10512326 DOI: 10.3389/ffunb.2022.1002161] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/25/2022] [Indexed: 09/26/2023]
Abstract
The genus Trichoderma is among the best studied groups of filamentous fungi, largely because of its high relevance in applications from agriculture to enzyme biosynthesis to biofuel production. However, the physiological competences of these fungi, that led to these beneficial applications are intriguing also from a scientific and ecological point of view. This review therefore summarizes recent developments in studies of fungal genomes, updates on previously started genome annotation efforts and novel discoveries as well as efforts towards bioprospecting for enzymes and bioactive compounds such as cellulases, enzymes degrading xenobiotics and metabolites with potential pharmaceutical value. Thereby insights are provided into genomes, mitochondrial genomes and genomes of mycoviruses of Trichoderma strains relevant for enzyme production, biocontrol and mycoremediation. In several cases, production of bioactive compounds could be associated with responsible genes or clusters and bioremediation capabilities could be supported or predicted using genome information. Insights into evolution of the genus Trichoderma revealed large scale horizontal gene transfer, predominantly of CAZyme genes, but also secondary metabolite clusters. Investigation of sexual development showed that Trichoderma species are competent of repeat induced point mutation (RIP) and in some cases, segmental aneuploidy was observed. Some random mutants finally gave away their crucial mutations like T. reesei QM9978 and QM9136 and the fertility defect of QM6a was traced back to its gene defect. The Trichoderma core genome was narrowed down to 7000 genes and gene clustering was investigated in the genomes of multiple species. Finally, recent developments in application of CRISPR/Cas9 in Trichoderma, cloning and expression strategies for the workhorse T. reesei as well as the use genome mining tools for bioprospecting Trichoderma are highlighted. The intriguing new findings on evolution, genomics and physiology highlight emerging trends and illustrate worthwhile perspectives in diverse fields of research with Trichoderma.
Collapse
Affiliation(s)
- Miriam Schalamun
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Monika Schmoll
- Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Wang R, Liu C, Jiang X, Tan Z, Li H, Xu S, Zhang S, Shang Q, Deising HB, Behrens SE, Wu B. The Newly Identified Trichoderma harzianum Partitivirus (ThPV2) Does Not Diminish Spore Production and Biocontrol Activity of Its Host. Viruses 2022; 14:1532. [PMID: 35891512 PMCID: PMC9317543 DOI: 10.3390/v14071532] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
A new partititvirus isolated from a Trichoderma harzianum strain (T673), collected in China, was characterized and annotated as Trichoderma harzianum partitivirus 2 (ThPV2). The genome of ThPV2 consists of a 1693 bp dsRNA1 encoding a putative RNA-dependent RNA polymerase (RdRp) and a 1458 bp dsRNA2 encoding a hypothetical protein. In comparative studies employing the ThPV2-infected strain (T673) and a strain cured by ribavirin treatment (virus-free strain T673-F), we investigated biological effects of ThPV2 infection. While the growth rate of the virus-infected fungus differed little from that of the cured variant, higher mycelial density, conidiospore, and chlamydospore production were observed in the virus-infected strain T673. Furthermore, both the ThPV2-infected and the cured strain showed growth- and development-promoting activities in cucumber plants. In vitro confrontation tests showed that strains T673 and T673-F inhibited several important fungal pathogens and an oomycete pathogen in a comparable manner. Interestingly, in experiments with cucumber seeds inoculated with Fusarium oxysporum f. sp. cucumerinum, the ThPV2-infected strain T673 showed moderately but statistically significantly improved biocontrol activity when compared with strain T673-F. Our data broaden the spectrum of known mycoviruses and provide relevant information for the development of mycoviruses for agronomic applications.
Collapse
Affiliation(s)
- Rongqun Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China; (R.W.); (C.L.); (X.J.); (Z.T.); (H.L.); (S.X.); (S.Z.)
| | - Chenchen Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China; (R.W.); (C.L.); (X.J.); (Z.T.); (H.L.); (S.X.); (S.Z.)
| | - Xiliang Jiang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China; (R.W.); (C.L.); (X.J.); (Z.T.); (H.L.); (S.X.); (S.Z.)
| | - Zhaoyan Tan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China; (R.W.); (C.L.); (X.J.); (Z.T.); (H.L.); (S.X.); (S.Z.)
| | - Hongrui Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China; (R.W.); (C.L.); (X.J.); (Z.T.); (H.L.); (S.X.); (S.Z.)
- College of Horticulture and Landscapes, Tianjin Agricultural University, Tianjin 300392, China
| | - Shujin Xu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China; (R.W.); (C.L.); (X.J.); (Z.T.); (H.L.); (S.X.); (S.Z.)
- College of Horticulture and Landscapes, Tianjin Agricultural University, Tianjin 300392, China
| | - Shuaihu Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China; (R.W.); (C.L.); (X.J.); (Z.T.); (H.L.); (S.X.); (S.Z.)
| | - Qiaoxia Shang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China;
| | - Holger B. Deising
- Institute for Agricultural and Nutritional Sciences, Section Phytopathology and Plant Protection, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany;
| | - Sven-Erik Behrens
- Institute of Biochemistry and Biotechnology, Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany;
| | - Beilei Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China; (R.W.); (C.L.); (X.J.); (Z.T.); (H.L.); (S.X.); (S.Z.)
| |
Collapse
|
8
|
Chun J, So KK, Ko YH, Kim DH. Molecular characteristics of a novel hypovirus from Trichoderma harzianum. Arch Virol 2021; 167:233-238. [PMID: 34674011 DOI: 10.1007/s00705-021-05253-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/12/2021] [Indexed: 11/26/2022]
Abstract
We report a novel mycovirus with a positive-sense single-stranded (+)ss RNA genome, belonging to the family Hypoviridae, infecting Trichoderma harzianum strain M6. The complete genome sequence is 13,813 nucleotides long, excluding the poly(A) tail at the 3' end. Sequence analysis revealed that the genome has a single large open reading frame (ORF) encoding a 4,118-amino-acid polyprotein harboring five conserved motifs of a protease, two conserved domains of a protein of unknown function, an RNA-dependent RNA polymerase, and a helicase. Sequence comparisons revealed that the deduced amino acid sequence of the polyprotein is similar to those of other hypoviruses and is most similar to that of Bipolaris oryzae hypovirus 1 (35.1% identity). Phylogenetic analysis using full-length RdRp and helicase sequences showed that this virus clustered closely with known members of the proposed genus "Alphahypovirus" of the family Hypoviridae. We accordingly designated this novel mycovirus "Trichoderma harzianum hypovirus 2" (ThHV2).
Collapse
Affiliation(s)
- Jeesun Chun
- Department of Molecular Biology, Institute for Molecular Biology and Genetics, Jeonbuk National University, 567 Baekje-daero, Jeonju, 54896, Korea
| | - Kum-Kang So
- Department of Molecular Biology, Institute for Molecular Biology and Genetics, Jeonbuk National University, 567 Baekje-daero, Jeonju, 54896, Korea
| | - Yo-Han Ko
- Department of Molecular Biology, Institute for Molecular Biology and Genetics, Jeonbuk National University, 567 Baekje-daero, Jeonju, 54896, Korea
| | - Dae-Hyuk Kim
- Department of Molecular Biology, Institute for Molecular Biology and Genetics, Jeonbuk National University, 567 Baekje-daero, Jeonju, 54896, Korea.
| |
Collapse
|
9
|
Poimala A, Parikka P, Hantula J, Vainio EJ. Viral diversity in Phytophthora cactorum population infecting strawberry. Environ Microbiol 2021; 23:5200-5221. [PMID: 33848054 DOI: 10.1111/1462-2920.15519] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/18/2021] [Accepted: 04/08/2021] [Indexed: 01/31/2023]
Abstract
Eighty-eight Phytophthora cactorum strains isolated from crown or leather rot of strawberry in 1971-2019 were screened for viruses using RNA-seq and RT-PCR. Remarkably, all but one isolate were virus-infected, most of them harbouring more than one virus of different genera or species. The most common virus occurring in 94% of the isolates was the Phytophthora cactorum RNA virus 1 (PcRV1) resembling members of Totiviridae. Novel viruses related to members of Endornaviridae, named Phytophthora cactorum alphaendornaviruses 1-3 (PcAEV1-3), were found in 57% of the isolates. Four isolates hosted viruses with affinities to Bunyaviridae, named Phytophthora cactorum bunyaviruses 1-3 (PcBV1-3), and a virus resembling members of the proposed genus 'Ustivirus', named Phytophthora cactorum usti-like virus (PcUV1), was found in a single isolate. Most of the virus species were represented by several distinct strains sharing ≥81.4% aa sequence identity. We found no evidence of spatial differentiation but some temporal changes in the P. cactorum virus community were observed. Some isolates harboured two or more closely related strains of the same virus (PcAEV1 or PcRV1) sharing 86.6%-96.4% nt identity in their polymerase sequence. This was surprising as viruses with such a high similarity are typically mutually exclusive.
Collapse
Affiliation(s)
- Anna Poimala
- Natural Resources Institute Finland (Luke), Forest Health and Biodiversity, Latokartanonkaari 9, Helsinki, FI-00790, Finland
| | - Päivi Parikka
- Natural Resources Institute Finland (Luke), Plant Health, Humppilantie 18, Jokioinen, 31600, Finland
| | - Jarkko Hantula
- Natural Resources Institute Finland (Luke), Forest Health and Biodiversity, Latokartanonkaari 9, Helsinki, FI-00790, Finland
| | - Eeva J Vainio
- Natural Resources Institute Finland (Luke), Forest Health and Biodiversity, Latokartanonkaari 9, Helsinki, FI-00790, Finland
| |
Collapse
|
10
|
A novel mycovirus isolated from the plant-pathogenic fungus Botryosphaeria dothidea. Arch Virol 2021; 166:1267-1272. [PMID: 33598815 DOI: 10.1007/s00705-021-04983-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/19/2020] [Indexed: 12/17/2022]
Abstract
A novel virus, Botryosphaeria dothidea bipartite mycovirus 1 (BdBMV1), was isolated from the plant-pathogenic fungus Botryosphaeria dothidea strain HNDT1, and the complete nucleotide sequence of its genome was determined. BdBMV1 consists of two genomic segments. The first segment is 1,976 bp in length and contains a single open reading frame (ORF) encoding the RNA-dependent RNA polymerase (RdRp) (68.95 kDa). The second segment is 1,786 bp in length and also contains a single ORF encoding a hypothetical protein of 35.19 kDa of unknown function. Based on the sequence of its RdRp, BdBMV1 is phylogenetically related to several other unclassified dsRNA mycoviruses, including Cryphonectria parasitica bipartite mycovirus 1 (CpBV1), and has a distant relationship to members of the family Partitiviridae.
Collapse
|
11
|
Chun J, Na B, Kim DH. Characterization of a novel dsRNA mycovirus of Trichoderma atroviride NFCF377 reveals a member of "Fusagraviridae" with changes in antifungal activity of the host fungus. J Microbiol 2020; 58:1046-1053. [PMID: 33095387 DOI: 10.1007/s12275-020-0380-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022]
Abstract
Trichoderma atroviride is a common fungus found in various ecosystems that shows mycoparasitic ability on other fungi. A novel dsRNA virus was isolated from T. atroviride NFCF377 strain and its molecular features were analyzed. The viral genome consists of a single segmented double-stranded RNA and is 9,584 bp in length, with two discontinuous open reading frames (ORF1 and ORF2). A mycoviral structural protein and an RNA-dependent RNA polymerase (RdRp) are encoded by ORF1 and ORF2, respectively, between which is found a canonical shifty heptameric signal motif (AAAAAAC) followed by an RNA pseudoknot. Analysis of sequence similarity and phylogeny showed that it is closely related to members of the proposed family "Fusagraviridae", with a highest similarity to the Trichoderma atroviride mycovirus 1 (TaMV1). Although the sequence similarity of deduced amino acid to TaMV1 was evident, sequence deviations were distinctive at untranslated regions (UTRs) due to the extended size. Thus, we inferred this dsRNA to be a different strain of Trichoderma atroviride mycovirus 1 (TaMV1-NFCF377). Electron microscopy image exhibited an icosahedral viral particle of 40 nm diameter. Virus-cured isogenic isolates were generated and no differences in growth rate, colony morphology, or conidia production were observed between virus-infected and virus-cured strains. However, culture filtrates of TaMV1-NFCF377-infected strain showed enhanced antifungal activity against the plant pathogen Rhizoctonia solani but not to edible mushroom Pleurotus ostreatus. These results suggested that TaMV1-NFCF377 affected the metabolism of the fungal host to potentiate antifungal compounds against a plant pahogen, but this enhanced antifungal activity appeared to be species-specific.
Collapse
Affiliation(s)
- Jeesun Chun
- Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Byeonghak Na
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Dae-Hyuk Kim
- Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
- Department of Molecular Biology, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
12
|
A Novel Virus Alters Gene Expression and Vacuolar Morphology in Malassezia Cells and Induces a TLR3-Mediated Inflammatory Immune Response. mBio 2020; 11:mBio.01521-20. [PMID: 32873759 PMCID: PMC7468201 DOI: 10.1128/mbio.01521-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Malassezia is the most dominant fungal genus on the human skin surface and is associated with various skin diseases including dandruff and seborrheic dermatitis. Among Malassezia species, Malassezia restricta is the most widely observed species on the human skin. In the current study, we identified a novel dsRNA virus, named MrV40, in M. restricta and characterized the sequence and structure of the viral genome along with an independent satellite dsRNA viral segment. Moreover, expression of genes involved in ribosomal synthesis and programmed cell death was altered, indicating that virus infection affected the physiology of the fungal host cells. Our data also showed that the viral nucleic acid from MrV40 induces a TLR3-mediated inflammatory immune response in bone marrow-derived dendritic cells, indicating that a viral element likely contributes to the pathogenicity of Malassezia. This is the first study to identify and characterize a novel mycovirus in Malassezia. Most fungal viruses have been identified in plant pathogens, whereas the presence of viral particles in human-pathogenic fungi is less well studied. In the present study, we observed extrachromosomal double-stranded RNA (dsRNA) segments in various clinical isolates of Malassezia species. Malassezia is the most dominant fungal genus on the human skin surface, and species in this group are considered etiological factors of various skin diseases including dandruff, seborrheic dermatitis, and atopic dermatitis. We identified novel dsRNA segments, and our sequencing results revealed that the virus, named MrV40, belongs to the Totiviridae family and contains an additional satellite dsRNA segment encoding a novel protein. The transcriptome of virus-infected Malassezia restricta cells was compared to that of virus-cured cells, and the results showed that transcripts involved in ribosomal biosynthesis were downregulated and those involved in energy production and programmed cell death were upregulated. Moreover, transmission electron microscopy revealed significantly larger vacuoles in virus-infected M. restricta cells, indicating that MrV40 infection dramatically altered M. restricta physiology. Our analysis also revealed that viral nucleic acid from MrV40 induced a TLR3 (Toll-like receptor 3)-mediated inflammatory immune response in bone marrow-derived dendritic cells, suggesting that a viral element contributes to the pathogenicity of Malassezia.
Collapse
|
13
|
You J, Zhou K, Liu X, Wu M, Yang L, Zhang J, Chen W, Li G. Defective RNA of a Novel Mycovirus with High Transmissibility Detrimental to Biocontrol Properties of Trichoderma spp. Microorganisms 2019; 7:microorganisms7110507. [PMID: 31671828 PMCID: PMC6920978 DOI: 10.3390/microorganisms7110507] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/20/2019] [Accepted: 10/25/2019] [Indexed: 01/07/2023] Open
Abstract
Trichoderma species are a group of fungi which is widely distributed in major terrestrial ecosystems; they are also commonly used as biocontrol agents for many plant diseases. A virus, namely Trichoderma harzianum hypovirus 1 (ThHV1), was identified in T. harzianum isolate T-70, and also infected isolate T-70D, together with its defective RNA (ThHV1-S). The ThHV1 genome possessed two Open Reading Frames (ORFs), namely ORF1 and ORF2. The start codon of ORF2 overlapped with the stop codon of ORF1 in a 43 nt long region. The polypeptide encoded by ORF2 of ThHV1 shared sequence similarities with those of betahypoviruses, indicating that ThHV1 is a novel member of Hypoviridea. Isolate T-70D, carrying both ThHV1 and ThHV1-S, showed abnormal biological properties, notably a decreased mycoparasitism ability when compared with isolate T-70. Both ThHV1 and ThHV1-S could be vertically transmitted to conidia and horizontally transmitted to T. harzianum isolate T-68 and T. koningiopsis T-51. The derivative strains carrying both ThHV1 and ThHV1-S showed decreased mycoparasitism ability, whereas strains carrying ThHV1 alone were normal, indicating that ThHV1-S is closely associated with the decreased mycoparasitism ability of T. harzianum isolate T-70D. ThHV1 was widely detected in isolates of T. harzianum, T. koningiopsis and T. atroviride originating from soil of China. Therefore, viruses in fungal biocontrol agents may also be a factor associated with the stability of their application.
Collapse
Affiliation(s)
- Jiaqi You
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China.
| | - Kang Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaolin Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mingde Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Long Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jing Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Weidong Chen
- U.S. Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, WA 99164, USA.
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
14
|
Liu C, Li M, Redda ET, Mei J, Zhang J, Wu B, Jiang X. A novel double-stranded RNA mycovirus isolated from Trichoderma harzianum. Virol J 2019; 16:113. [PMID: 31511029 PMCID: PMC6737671 DOI: 10.1186/s12985-019-1213-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 08/05/2019] [Indexed: 11/24/2022] Open
Abstract
Background Trichoderma spp. are used extensively in agriculture as biological control agents to prevent soil-borne plant diseases. In recent years, mycoviruses from fungi have attracted increasing attention due to their effects on their hosts, but Trichoderma mycoviruses have not been the subject of extensive study. We sought to discover novel mycoviruses from Trichoderma spp. and to determine the effects of the biocontrol function of Trichoderma spp. Methods Mycoviruses were screened by dsRNA extraction and metagenomic analysis. RT-PCR, 5′ RACE, and 3′ RACE were used to obtain the genome sequence. MEGA software was used to classify the new mycovirus. The effects of the identified mycovirus on the biological properties of the host strain 525 were evaluated using cucumber plants and Fusarium oxysporum f. sp. cucumerinum. Results A novel mycovirus, Trichoderma harzianum mycovirus 1 (ThMV1) (accession number MH155602), was discovered in Trichoderma harzianum strain 525, a soil-borne fungus collected from Inner Mongolia, China. The mycovirus exhibited a double-stranded RNA (dsRNA) genome with a complete genome sequence of 3160 base pairs and two open reading frames (ORFs) on the negative strand. Phylogenetic analysis indicated that it belongs to an unclassified family of dsRNA mycoviruses. The removal of ThMV1 from the host 525 strain reduced host biomass production and improved the biocontrol capability of the host for Fusarium oxysporum f. sp. cucumerinum. At same time, the presence of ThMV1 improved the growth of cucumber. Conclusion ThMV1 is a new unclassified mycovirus found in T. harzianum. It not only affects the phenotype of the host strain but also reduces its biocontrol function, which sheds light on the interaction between the mycovirus and Trichoderma spp. Electronic supplementary material The online version of this article (10.1186/s12985-019-1213-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chenchen Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193, People's Republic of China
| | - Mei Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193, People's Republic of China
| | - Estifanos Tsegaye Redda
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193, People's Republic of China
| | - Jie Mei
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193, People's Republic of China
| | - Jiantai Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193, People's Republic of China
| | - Beilei Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193, People's Republic of China.
| | - Xiliang Jiang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
15
|
Sutela S, Poimala A, Vainio EJ. Viruses of fungi and oomycetes in the soil environment. FEMS Microbiol Ecol 2019; 95:5542194. [DOI: 10.1093/femsec/fiz119] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022] Open
Abstract
ABSTRACTSoils support a myriad of organisms hosting highly diverse viromes. In this minireview, we focus on viruses hosted by true fungi and oomycetes (members of Stamenopila, Chromalveolata) inhabiting bulk soil, rhizosphere and litter layer, and representing different ecological guilds, including fungal saprotrophs, mycorrhizal fungi, mutualistic endophytes and pathogens. Viruses infecting fungi and oomycetes are characterized by persistent intracellular nonlytic lifestyles and transmission via spores and/or hyphal contacts. Almost all fungal and oomycete viruses have genomes composed of single-stranded or double-stranded RNA, and recent studies have revealed numerous novel viruses representing yet unclassified family-level groups. Depending on the virus–host combination, infections can be asymptomatic, beneficial or detrimental to the host. Thus, mycovirus infections may contribute to the multiplex interactions of hosts, therefore likely affecting the dynamics of fungal communities required for the functioning of soil ecosystems. However, the effects of fungal and oomycete viruses on soil ecological processes are still mostly unknown. Interestingly, new metagenomics data suggest an extensive level of horizontal virus transfer between plants, fungi and insects.
Collapse
Affiliation(s)
- Suvi Sutela
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Anna Poimala
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Eeva J Vainio
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| |
Collapse
|
16
|
Petrzik K, Siddique AB. A mycoparasitic and opportunistic fungus is inhabited by a mycovirus. Arch Virol 2019; 164:2545-2549. [PMID: 31317260 DOI: 10.1007/s00705-019-04359-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/28/2019] [Indexed: 01/04/2023]
Abstract
A novel bisegmented double-stranded RNA virus was identified in the mycoparasitic and opportunistic fungus Hypomyces chrysospermus. The RNA1 genome segment comprises 1866 bp and encodes an RNA-dependent RNA polymerase (RdRp). The RNA2 segment comprises 1822 bp and encodes a capsid protein. Phylogenetic analysis of the RdRp protein indicated that this virus is a new member of genus Alphapartitivirus in the family Partitiviridae. We have designated this mycovirus as "Hypomyces chrysospermus partitivirus 1" (HcPV1). HcPV1 is highly transmissible with aleurioconidia and is present in large amounts within growing mycelium in comparison to the GAPDH reference gene.
Collapse
Affiliation(s)
- Karel Petrzik
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice, Czech Republic.
| | - Abu Bakar Siddique
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice, Czech Republic
| |
Collapse
|
17
|
Liu C, Li M, Redda ET, Mei J, Zhang J, Elena SF, Wu B, Jiang X. Complete nucleotide sequence of a novel mycovirus from Trichoderma harzianum in China. Arch Virol 2019; 164:1213-1216. [PMID: 30746561 PMCID: PMC6420475 DOI: 10.1007/s00705-019-04145-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/13/2018] [Indexed: 11/30/2022]
Abstract
A new mycovirus was identified in Trichoderma harzianum strain 137 isolated in Xinjiang province, China. The whole genome sequence of the mycovirus was determined by metagenomic sequencing, RT-PCR, and RACE cloning. The mycovirus contained two genomic segments. The first segment was 2088 bp long and contained a single ORF (ORF1) encoding the RNA-dependent RNA polymerase (RdRP) (72.26 kDa). The second segment was 1634 bp long and also contained a single ORF (ORF2) encoding a hypothetical protein of 37.472 kDa. We named this novel mycovirus “Trichoderma harzianum bipartite mycovirus 1” (ThBMV1). Phylogenetic analysis showed that ThBMV1 clusters with other unclassified dsRNA mycoviruses.
Collapse
Affiliation(s)
- Chenchen Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193, China
| | - Mei Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193, China
| | - Estifanos Tsegaye Redda
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193, China
| | - Jie Mei
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193, China
| | - Jiantai Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193, China
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (CSIC-Universitat de València), Parc Cientific UV, Catedrático Agustín Escardino 9, 46980, Paterna, Valencia, Spain.,The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, USA
| | - Beilei Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193, China.
| | - Xiliang Jiang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193, China.
| |
Collapse
|
18
|
Chun J, Yang HE, Kim DH. Identification of a Novel Partitivirus of Trichoderma harzianum NFCF319 and Evidence for the Related Antifungal Activity. FRONTIERS IN PLANT SCIENCE 2018; 9:1699. [PMID: 30515186 PMCID: PMC6255973 DOI: 10.3389/fpls.2018.01699] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/31/2018] [Indexed: 06/01/2023]
Abstract
We have reported 15 agarose gel band patterns of double-stranded RNA (dsRNA) from Trichoderma spp. We describe herein that band pattern IX in Trichoderma harzianum NFCF319, which appeared to be a single band but consisted of two dsRNAs of similar size, was identified as a novel mycovirus, designated Trichoderma harzianum partitivirus 1 (ThPV1). The larger segment (dsRNA1) of the ThPV1 genome comprised 2,289 bp and contained a single open reading frame (ORF) encoding an RNA-dependent RNA polymerase (RdRp). The smaller segment (dsRNA2) consisted of 2,245 bp with a single ORF encoding a capsid protein (CP). Evaluation of the deduced amino acid sequence and phylogenetic analysis indicated that ThPV1 is a new member of the genus Betapartitivirus in the family Partitiviridae. Curing of virus infection by single-sporing generated 31 virus-free single-spore clones. No significant differences in growth rate, conidia production, or pigmentation were observed between ThPV1-infected and -cured isogenic strains. In addition, comparison of the newly ThPV1-transmitted isolates with their ThPV1-cured parental strain showed no significant difference in colony morphology or pigmentation. However, inhibition of growth in co-cultured Pleurotus ostreatus and Rhizoctonia solani by T. harzianum was increased in ThPV1-containing strains compared with ThPV1-cured isogenic strains. Moreover, β-1,3-glucanase activity was significantly increased in the ThPV1-containing strains. However, no difference in chitinase activity was observed, suggesting that ThPV1 regulates the activity of a specific fungal enzyme.
Collapse
Affiliation(s)
- Jeesun Chun
- Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, South Korea
| | - Han-Eul Yang
- Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, South Korea
| | - Dae-Hyuk Kim
- Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, South Korea
- Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, South Korea
| |
Collapse
|
19
|
Chun J, Yang HE, Kim DH. Identification and Molecular Characterization of a Novel Partitivirus from Trichoderma atroviride NFCF394. Viruses 2018; 10:E578. [PMID: 30360465 PMCID: PMC6266732 DOI: 10.3390/v10110578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 11/16/2022] Open
Abstract
An increasing number of novel mycoviruses have been described in fungi. Here, we report the molecular characteristics of a novel bisegmented double-stranded RNA (dsRNA) virus from the fungus Trichoderma atroviride NFCF394. We designated this mycovirus as Trichoderma atroviride partitivirus 1 (TaPV1). Electron micrographs of negatively stained, purified viral particles showed an isometric structure approximately of 30 nm in diameter. The larger segment (dsRNA1) of the TaPV1 genome comprised 2023 bp and contained a single open reading frame (ORF) encoding 614 amino acid (AA) residues of RNA-dependent RNA polymerase (RdRp). The smaller segment (dsRNA2) consisted of 2012 bp with a single ORF encoding 577 AA residues of capsid protein (CP). The phylogenetic analysis, based on deduced amino acid sequences of RdRp and CP, indicated that TaPV1 is a new member of the genus Alphapartitivirus in the family Partitiviridae. Virus-cured isogenic strains did not show significant changes in colony morphology. In addition, no changes in the enzymatic activities of β-1,3-glucanase and chitinase were observed in virus-cured strains. To the best of our knowledge, this is the first report of an Alphapartitivirus in T. atroviride.
Collapse
Affiliation(s)
- Jeesun Chun
- Institute for Molecular Biology and Genetics, Chonbuk National University, 567 Baekje-daero, Jeonju, Chonbuk 54896, Korea.
| | - Han-Eul Yang
- Department of Bioactive Material Sciences, Chonbuk National University, 567 Baekje-daero, Jeonju, Chonbuk 54896, Korea.
| | - Dae-Hyuk Kim
- Institute for Molecular Biology and Genetics, Chonbuk National University, 567 Baekje-daero, Jeonju, Chonbuk 54896, Korea.
- Department of Bioactive Material Sciences, Chonbuk National University, 567 Baekje-daero, Jeonju, Chonbuk 54896, Korea.
| |
Collapse
|
20
|
Zhang T, Zeng X, Cai X, Liu H, Zeng Z. Molecular characterization of a novel double-stranded RNA mycovirus of Trichoderma asperellum strain JLM45-3. Arch Virol 2018; 163:3433-3437. [PMID: 30128610 DOI: 10.1007/s00705-018-3988-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022]
Abstract
In this study, we describe a novel mycovirus isolated from Trichoderma asperellum, which was designated Trichoderma asperellum dsRNA Virus 1 (TaRV1). The sequence analysis revealed that TaRV1 has two discontinuous open reading frames (ORF), ORF1 and ORF2. A hypothetical protein and an RNA-dependent RNA polymerase are encoded by ORF1 and ORF2, respectively. Phylogenetic analysis based on RdRp sequences clearly places TaRV1 in a taxonomically unassigned dsRNA mycovirus group.
Collapse
Affiliation(s)
- Tingting Zhang
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550000, Guizhou, People's Republic of China. .,Immune Cells and Antibody Engineering Research Center of Guizhou Province, Cell and Gene Engineering Innovative Research Groups of Guizhou Province, Guizhou Medical University, Guiyang, 550000, Guizhou, People's Republic of China. .,College of Biology and Engineering, Guizhou Medical University, Guiyang, 550000, Guizhou, People's Republic of China.
| | - Xiangxing Zeng
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550000, Guizhou, People's Republic of China.,Immune Cells and Antibody Engineering Research Center of Guizhou Province, Cell and Gene Engineering Innovative Research Groups of Guizhou Province, Guizhou Medical University, Guiyang, 550000, Guizhou, People's Republic of China.,College of Biology and Engineering, Guizhou Medical University, Guiyang, 550000, Guizhou, People's Republic of China
| | - Xiaoyao Cai
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550000, Guizhou, People's Republic of China.,Immune Cells and Antibody Engineering Research Center of Guizhou Province, Cell and Gene Engineering Innovative Research Groups of Guizhou Province, Guizhou Medical University, Guiyang, 550000, Guizhou, People's Republic of China.,College of Biology and Engineering, Guizhou Medical University, Guiyang, 550000, Guizhou, People's Republic of China
| | - Hongmei Liu
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550000, Guizhou, People's Republic of China.,Immune Cells and Antibody Engineering Research Center of Guizhou Province, Cell and Gene Engineering Innovative Research Groups of Guizhou Province, Guizhou Medical University, Guiyang, 550000, Guizhou, People's Republic of China.,College of Biology and Engineering, Guizhou Medical University, Guiyang, 550000, Guizhou, People's Republic of China
| | - Zhu Zeng
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550000, Guizhou, People's Republic of China.,Immune Cells and Antibody Engineering Research Center of Guizhou Province, Cell and Gene Engineering Innovative Research Groups of Guizhou Province, Guizhou Medical University, Guiyang, 550000, Guizhou, People's Republic of China.,College of Biology and Engineering, Guizhou Medical University, Guiyang, 550000, Guizhou, People's Republic of China
| |
Collapse
|
21
|
Wang Y, Ma R, Li S, Gong M, Yao B, Bai Y, Gu J. An alkaline and surfactant-tolerant lipase from Trichoderma lentiforme ACCC30425 with high application potential in the detergent industry. AMB Express 2018; 8:95. [PMID: 29873028 PMCID: PMC5988928 DOI: 10.1186/s13568-018-0618-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/23/2018] [Indexed: 11/24/2022] Open
Abstract
Alkaline lipases with adaptability to low temperatures and strong surfactant tolerance are favorable for application in the detergent industry. In the present study, a lipase-encoding gene, TllipA, was cloned from Trichoderma lentiforme ACCC30425 and expressed in Pichia pastoris GS115. The purified recombinant TlLipA was found to have optimal activities at 50 °C and pH 9.5 and retain stable over the pH range of 6.0–10.0 and 40 °C and below. When using esters of different lengths as substrates, TlLipA showed preference for the medium length p-nitrophenyl octanoate. In comparison to commercial lipases, TlLipA demonstrated higher tolerance to various surfactants (SDS, Tween 20, and Triton X100) and retained more activities after incubation with Triton X100 for up to 24 h. These favorable characteristics make TlLipA prospective as an additive in the detergent industry.![]()
Collapse
|