1
|
Sun Y, Zhang J, Liu Z, Zhang Y, Huang K. Swine Influenza Virus Infection Decreases the Protective Immune Responses of Subunit Vaccine Against Porcine Circovirus Type 2. Front Microbiol 2022; 12:807458. [PMID: 35003038 PMCID: PMC8740023 DOI: 10.3389/fmicb.2021.807458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is the primary pathogen of porcine circovirus diseases and porcine circovirus associated diseases. Immunization with a vaccine is considered an effective measure to control these diseases. However, it is still unknown whether PCV2 vaccines have protective immune responses on the animals infected with swine influenza virus (SIV), a pandemic virus in swine herds. In this study, we first compared the effects of 2 different PCV2 vaccines on normal mice and SIV-infected mice, respectively. The results showed that these two vaccines had protective immune responses in normal mice, and the subunit vaccine (vaccine S) had better effects. However, the inactivated vaccine (vaccine I) instead of vaccine S exhibited more immune responses in the SIV-infected mice. SIV infection significantly decreased the immune responses of vaccine S in varying aspects including decreased PCV2 antibody levels and increased PCV2 replication. Mechanistically, further studies showed that SIV infection increased IL-10 expression and M2 macrophage percentage, but decreased TNF-α expression and M1 macrophage percentage in the mice immunized with vaccine S; on the contrary, macrophage depleting by using clodronate-containing liposomes significantly alleviated the SIV infection-induced decrease in the protective immune responses of vaccine S against PCV2. This study indicates that SIV infection decreases the protective immune responses of vaccine S against PCV2. The macrophage polarization induced by SIV infection might facilitate decreased immune responses to vaccine S, which provides new insight into vaccine evaluation and a reference for the analysis of immunization failure.
Collapse
Affiliation(s)
- Yuhang Sun
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jinlong Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zixuan Liu
- Department of Animal Nutrition and Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ying Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Kehe Huang
- Department of Animal Nutrition and Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Wu L, Chen J, Zhou D, Chen R, Chen X, Shao Z, Yang W, He B. Anti-inflammatory activity of arctigenin against PCV2 infection in a mouse model. Vet Med Sci 2021; 8:700-709. [PMID: 34914190 PMCID: PMC8959337 DOI: 10.1002/vms3.693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Arctigenin (ACT) is a novel anti-inflammatory lignan extracted from Arctium lappa L, a herb commonly used in traditional Chinese herbal medicine. In this study, we investigated the molecular mechanism whereby ACT inhibits PCV2 infection-induced proinflammatory cytokine production in vitro and in vivo. We observed that in PCV2 infection+ACT treated PK-15 cells, proinflammatory cytokine production was significantly reduced, compared to the PCV2-infected cells. The transfection and luciferase reporter assay confirmed that ACT suppressed NF-κB signalling pathway activation following PCV2 infection in PK-15 cells. Furthermore, western blotting demonstrated that ACT suppressed the NF-κB signal pathway in PCV2 infection-stimulated PK-15 cells by inhibiting the translocation of p65 from the cytoplasm to the nucleus and IκBα phosphorylation. BALB/c mice were used as a model to evaluate the anti-inflammatory effect of ACT in vivo. We found that the BALB/c mice inoculated with PCV2 infection + ACT treated showed a significant reduction of proinflammatory cytokine production in serum, lung and spleen tissue, compared to the PCV2-infected mice. Western blotting confirmed that ACT suppressed the NF-κB signal pathway in PCV2-infected mice by inhibiting the translocation of p65 from the cytoplasm to the nucleus and IκBα phosphorylation in lung tissue. Our studies first demonstrate that ACT inhibits PCV2 infection-induced proinflammatory cytokine production by suppressing the phosphorylation and nuclear translocation of NF-κB in vitro and in vivo. These results will help further develop ACT as a Traditional Chinese herbal medicine remedy in the treatment of porcine circovirus-associated diseases.
Collapse
Affiliation(s)
- Lijun Wu
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Jie Chen
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Danna Zhou
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Runshan Chen
- Animal disease prevention and control center, Fangxian Animal Husbandry and Veterinary Service Center, Shiyan, China
| | - Xiabing Chen
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Zhiyong Shao
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Wenhai Yang
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Bin He
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
3
|
Abstract
AbstractPorcine circovirus type 2 (PCV2), which serves as a major causative agent of PCV2-associated diseases and causes severe loss to the pig industry worldwide, can dysregulate the immune response and induce immunosuppression in PCV2-infected pigs. Similar to PCV2, porcine circovirus type 3 (PCV3), a newly identified swine circovirus which might be closely associated with porcine dermatitis and nephropathy syndrome, reproductive disorder, and multisystemic inflammatory responses, also interferes with host immune defense. Interaction between host immune system and PCVs is considered to be a crucial determinant of pathogenicity in pigs. Here, we sought to briefly discuss the current knowledge regarding the interaction of porcine circovirus type 2 and/or 3 with host immune cells and immune responses to better depict the viral immunomodulatory capacity, pathogenic mechanisms, and the future research direction in host immune responses to infection with PCV2 and PCV3.
Collapse
|
4
|
Peterson NC, Berlin AA. Risk Assessment for Use of a Porcine Circovirus-Contaminated Reagent in a Barrier Maintained Rodent Colony. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2020; 59:575-579. [PMID: 32605692 DOI: 10.30802/aalas-jaalas-20-000012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A proposal for the use of porcine pancreatic elastase (PPE) to develop a mouse model of pulmonary emphysema raised concerns about introducing contaminating porcine viruses into our barrier facility. Porcine Circovirus (PCV) is a known contaminant of vaccines and cell cultures that have been exposed to porcine-derived reagents. Endemic infection of PCV3 in laboratory mice has been reported, and some evidence supports natural PCV infection in wild mice. PPE samples from 2 different vendors tested positive for DNA from both PCV2 and 3. To allow model development with these reagents to proceed, we developed a protocol that would meet scientific objectives, minimize exposure of mice, and provide information on the potential for the virus to spread. Five d after BALB/c mice received intralaryngeal administration of PPE, lungs were harvested and analyzed for evidence of disease. Tissues from other major organs were submitted to test for disseminated PCV2 and 3 DNA. Similarly, tissues (including lungs) from direct contact nude sentinel mice were analyzed for the presence of the virus. To evaluate the possibility of endemic PCV2/3 infection, we also surveyed non-porcine reagent exposed mice on other studies. PCV2 and 3 was not detected in any of the tissues submitted. Although this study provided no evidence of infection and transmission of PCV2/3 from the contaminated PPE sample over the 5 d study, further work is needed to understand the risks and impact of introducing PCV contaminated cells or reagents into barrier maintained rodent colonies.
Collapse
Affiliation(s)
- Norman C Peterson
- Clinical Pharmacology and Safety Sciences, Research and Development, AstraZeneca, Gaithersburg, Maryland;,
| | - Aaron A Berlin
- Early Respiratory and Immunology, BioPharmaceuticals Research and Development, AstraZeneca, Gaithersburg, Maryland
| |
Collapse
|
5
|
Opriessnig T, Karuppannan AK, Castro AMMG, Xiao CT. Porcine circoviruses: current status, knowledge gaps and challenges. Virus Res 2020; 286:198044. [PMID: 32502553 DOI: 10.1016/j.virusres.2020.198044] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 10/24/2022]
Abstract
Circoviruses (CV) include some of the smallest viruses known. They were named after their circularly arranged single-stranded DNA genome with a gene encoding a conserved replicase protein on the sense strand. Circoviruses are widely distributed in mammals, fish, avian species and even insects. In pigs, four different CVs have been identified and named with consecutive numbers based on the order of their discovery: Porcine circovirus 1 (PCV1), Porcine circovirus 2 (PCV2), Porcine circovirus 3 (PCV3) and most recently Porcine circovirus 4 (PCV4). PCVs are ubiquitous in global pig populations and uninfected herds are rarely found. It is generally accepted that PCV1 is non-pathogenic. In contrast, PCV2 is considered an important, economically challenging pathogen on a global scale with comprehensive vaccination schemes in place. The role of PCV3 is still controversial several years after its discovery. Propagation of PCV3 appears to be challenging and only one successful experimental infection model has been published to date. Similarly to PCV2, PCV3 is widespread and found in many pigs regardless of their health history, including high health herds. PCV4 has only recently been discovered and further information on this virus is required to understand its potential impact. This review summarizes current knowledge on CVs in pigs and aims to contrast and compare known facts on PCVs.
Collapse
Affiliation(s)
- Tanja Opriessnig
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK; Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA.
| | - Anbu K Karuppannan
- Vaccine Research Centre-Viral Vaccines, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | | | - Chao-Ting Xiao
- Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, China
| |
Collapse
|
6
|
Niu L, Wang Z, Zhao L, Wang Y, Cui X, Shi Y, Chen H, Ge J. Detection and molecular characterization of canine circovirus circulating in northeastern China during 2014-2016. Arch Virol 2019; 165:137-143. [PMID: 31745718 PMCID: PMC7087310 DOI: 10.1007/s00705-019-04433-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/10/2019] [Indexed: 11/24/2022]
Abstract
Canine circovirus (canine CV) is an etiological agent associated with diarrhea, hemorrhagic gastroenteritis and vasculitis. Although canine CV has been identified and characterized in southern China in recent years, its epidemiology in other regions of China and its precise molecular characteristics have not been examined. In this study, we examined 141 fecal specimens collected from domestic dogs with or without diarrhea in Heilongjiang province, Northeastern China, during 2014 to 2016. A total of 18 out of 141 samples were found to be positive for canine CV by real-time quantitative PCR. In the diarrhea samples, canine CV was detected in coinfections with canine parvovirus 2. More importantly, two different canine CV strains were detected in one sample. Five canine CV genomes were successfully amplified. Sequence analysis showed that there were two unique amino acid changes in the Rep protein (N39S in the K1 strain, and T71A in the XF16 strain). Phylogenetic analysis indicated that canine CV could be divided into four genotypes, and specific nucleotide mutations could be used for confirming the four genotypes. Moreover, recombination analysis revealed that a total of eight recombination events were found in five genomic sequences. Molecular evolution analysis showed that the canine CV has been under purifying selection. This study provides evidence that at least three genotypes of canine CV are co-circulating in China. Continuous epidemiological surveillance is therefore necessary to understand their importance for the evolution of canine CV.
Collapse
Affiliation(s)
- Lingdi Niu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zheng Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Lili Zhao
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Rd, Harbin, 150069, People's Republic of China
| | - Yu Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.,Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Rd, Harbin, 150069, People's Republic of China
| | - Xingyang Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yunjia Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hongyan Chen
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Rd, Harbin, 150069, People's Republic of China.
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China. .,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, 150030, People's Republic of China.
| |
Collapse
|
7
|
Du Q, Zhang H, He M, Zhao X, He J, Cui B, Yang X, Tong D, Huang Y. Interleukin-10 Promotes Porcine Circovirus Type 2 Persistent Infection in Mice and Aggravates the Tissue Lesions by Suppression of T Cell Infiltration. Front Microbiol 2019; 10:2050. [PMID: 31551984 PMCID: PMC6747007 DOI: 10.3389/fmicb.2019.02050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/20/2019] [Indexed: 12/31/2022] Open
Abstract
Interleukin (IL)-10, as a key anti-inflammatory cytokine, increases during porcine circovirus type 2 (PCV2) infection, but the role of IL-10 in the process remains to be defined. In the present study, using an IL-10 deficient mice model, we found that IL-10 deficiency prevented the reduction of splenic lymphocytes (CD45+ cells) induced by PCV2 and promoted CD4+ and CD8+ T cell infiltration in lungs through inducting more T cell chemokines (CCL3, CXCL9, and CXCL10). Simultaneously, PCV2 infection induced a significant increase of pro-inflammatory cytokines and PCV2-specific antibodies in IL-10 deficient mice than in wild-type mice, resulting in a lower viral load in lung and a milder lung lesion in IL-10 deficient mice relative to wild-type mice. Moreover, the amounts of pulmonary CD4+ and CD8+ T cells were all inversely correlated with the lung lesions, as well as the viral load of PCV2. These results demonstrate that PCV2 infection employs IL-10 to block the transfer of T cells to the lungs of mice, and IL-10 attenuates the production of pro-inflammatory cytokines and PCV2-specific antibodies. The lack of T cell infiltration, pro-inflammatory cytokines, and PCV2-specific antibodies promote PCV2 replication, leading to a more severe lung lesion in mice.
Collapse
Affiliation(s)
- Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Huan Zhang
- College of Life Science, Northwest A&F University, Yangling, China
| | - Mingrui He
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xuan Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jia He
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Beibei Cui
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xuefeng Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
8
|
Du Q, Wu X, Wang T, Yang X, Wang Z, Niu Y, Zhao X, Liu SL, Tong D, Huang Y. Porcine Circovirus Type 2 Suppresses IL-12p40 Induction via Capsid/gC1qR-Mediated MicroRNAs and Signalings. THE JOURNAL OF IMMUNOLOGY 2018; 201:533-547. [PMID: 29858268 DOI: 10.4049/jimmunol.1800250] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/03/2018] [Indexed: 12/22/2022]
Abstract
Porcine circovirus (PCV) type 2 (PCV2), an immunosuppression pathogen, is often found to increase the risk of other pathogenic infections. Yet the relative immune mechanisms determining the susceptibility of PCV2-infected animals remain unclear. In this study, we confirmed that PCV2 infection suppressed IL-12p40 expression and host Th1 immune response, leading to a weakened pathogenic clearance upon porcine reproductive respiratory syndrome virus (PRRSV) or Haemophilus parasuis infection. PCV2 infection suppressed pathogens, LPS/IFN-γ, or LPS/R848-induced IL-12p40 expression in porcine alveolar macrophages. PCV2 capsid (Cap) was the major component to suppress IL-12p40 induction by LPS/IFN-γ, LPS/R848, PRRSV, or H. parasuis Either wild-type PCV2 or mutants PCV2-replicase 1 and PCV type 1-Cap2, which contained PCV2 Cap, significantly decreased IL-12p40 levels and increased the replication of PRRSV and H. parasuis in the lung tissues relative to mock or PCV type 1 infection. gC1qR, a Cap binding protein, was not involved in IL-12p40 induction but mediated the inhibitory effect of PCV2 Cap on IL-12p40 induction. PCV2 also activated PI3K/Akt1 and p38 MAPK signalings to inhibit IL-12p40 expression via inhibition of NF-κB p65 binding to il12B promoter and upregulation of miR-23a and miR-29b. Knockdown of Akt1 and p38 MAPK downregulated miR-23a and miR-29b and increased IL-12p40 expression. Inhibition of miR-23a and miR-29b attenuated the inhibitory effect of PCV2 on IL-12p40 induction, resulting in an increased IL-12p40 expression and Th1 cell population and reduced susceptibility to PRRSV or H. parasuis Taken together, these results demonstrate that PCV2 infection suppresses IL-12p40 expression to lower host Th1 immunity to increase the risk of other pathogenic infection via gC1qR-mediated PI3K/Akt1 and p38 MAPK signaling activation.
Collapse
Affiliation(s)
- Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China 712100
| | - Xingchen Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China 712100
| | - Tongtong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China 712100
| | - Xuefeng Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China 712100
| | - Zhenyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China 712100
| | - Yingying Niu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China 712100
| | - Xiaomin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China 712100
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210.,Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210.,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210; and.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China 712100;
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China 712100;
| |
Collapse
|
9
|
Ouyang T, Liu X, Ouyang H, Ren L. Mouse models of porcine circovirus 2 infection. Animal Model Exp Med 2018; 1:23-28. [PMID: 30891543 PMCID: PMC6357427 DOI: 10.1002/ame2.12009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/16/2018] [Indexed: 12/23/2022] Open
Abstract
PCV2 is considered the main pathogen of porcine circovirus diseases and porcine circovirus-associated diseases (PCVD/PCVAD). However, the exact mechanism underlying PCVD/PCVAD is currently unknown. Mouse models of PCV2 are valuable experimental tools that can shed light on the pathogenesis of infection and will enable the evaluation of antiviral agents and vaccine candidates. In this review, we discuss the current state of knowledge of mouse models used in PCV2 research that has been performed to date, highlighting their strengths and limitations, as well as prospects for future PCV2 studies.
Collapse
Affiliation(s)
- Ting Ouyang
- Science and Technology Innovation Center for Animal Genome Editing of Jilin ProvinceCollege of Animal SciencesJilin UniversityChangchunJilinChina
| | - Xiao‐hui Liu
- Science and Technology Innovation Center for Animal Genome Editing of Jilin ProvinceCollege of Animal SciencesJilin UniversityChangchunJilinChina
| | - Hong‐sheng Ouyang
- Science and Technology Innovation Center for Animal Genome Editing of Jilin ProvinceCollege of Animal SciencesJilin UniversityChangchunJilinChina
| | - Lin‐zhu Ren
- Science and Technology Innovation Center for Animal Genome Editing of Jilin ProvinceCollege of Animal SciencesJilin UniversityChangchunJilinChina
| |
Collapse
|
10
|
Dekita M, Wu Z, Ni J, Zhang X, Liu Y, Yan X, Nakanishi H, Takahashi I. Cathepsin S Is Involved in Th17 Differentiation Through the Upregulation of IL-6 by Activating PAR-2 after Systemic Exposure to Lipopolysaccharide from Porphyromonas gingivalis. Front Pharmacol 2017; 8:470. [PMID: 28769800 PMCID: PMC5511830 DOI: 10.3389/fphar.2017.00470] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 06/30/2017] [Indexed: 12/15/2022] Open
Abstract
Positive links have been found between periodontitis and numerous diseases in humans via persistent inflammation throughout the body. However, the main factors responsible for maintaining this pro-inflammatory condition are poorly understood. The spleen, the largest secondary immune organ, is a central hub regulating the immune response/inflammation due to the dendritic cell (DC) response to CD4+ T cell subtype differentiation, and lysosomal proteinase cathepsin S (CatS) is known to be involved in DC functions. In the present study, we found that CatS-induced IL-6 production by splenic DCs subsequently promotes Th17 differentiation, in response to systemic exposure to lipopolysaccharide derived from Porphyromonas gingivalis (PgLPS). The population of CD11c+ DCs was significantly increased in the splenic marginal zone (MZ) locally of wild-type (DBA/2) mice with splenomegaly but not in that of CatS deficient (CatS-/-) mice after systemic exposure to PgLPS for 7 consecutive days (5 mg/kg/day, intraperitoneal). Similarly, the population of Th17+CD4+ T cells was also significantly increased in the splenic MZ of wild-type mice but not in that of CatS-/- mice after PgLPS exposure. Furthermore, the increase in the Th17+ CD4+ T cell population paralleled increases in the levels of CatS and IL-6 in CD11c+ cells in the splenic MZ. In isolated primary splenic CD11c+ cells, the mRNA expression and the production of IL-6 was dramatically increased in wild-type mice but not in CatS-/- mice after direct stimulation with PgLPS (1 μg/ml), and this PgLPS-induced increase in the IL-6 expression was completely abolished by pre-treatment with Z-Phe-Leu-COCHO (Z-FL), the specific inhibitor of CatS. The PgLPS activated protease-activated receptor (PAR) 2 in the isolated splenic CD11c+ cells was also significantly inhibited by CatS deficiently. In addition, the PgLPS-induced increase in the IL-6 production by splenic CD11c+ cells was completely abolished by pre-treatment with FSLLRY-NH2, a PAR2 antagonist, as well as Akti, a specific inhibitor of Akt. These findings indicate that CatS plays a critical role in driving splenic DC-dependent Th17 differentiation through the upregulation of IL-6 by activating PAR2 after exposure to components of periodontal bacteria. Therefore, CatS-specific inhibitors may be effective in alleviating periodontitis-related immune/inflammation.
Collapse
Affiliation(s)
- Masato Dekita
- Section of Orthodontics and Dentofacial Orthopedics, Kyushu UniversityFukuoka, Japan
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Kyushu UniversityFukuoka, Japan.,OBT Research Center, Faculty of Dental Science, Kyushu UniversityFukuoka, Japan
| | - Junjun Ni
- Department of Aging Science and Pharmacology, Kyushu UniversityFukuoka, Japan
| | - Xinwen Zhang
- Department of Aging Science and Pharmacology, Kyushu UniversityFukuoka, Japan.,Center of Implant Dentistry, School of Stomatology, China Medical UniversityShenyang, China
| | - Yicong Liu
- Department of Aging Science and Pharmacology, Kyushu UniversityFukuoka, Japan
| | - Xu Yan
- The VIP Department, School of Stomatology, China Medical UniversityShenyang, China
| | - Hiroshi Nakanishi
- Department of Aging Science and Pharmacology, Kyushu UniversityFukuoka, Japan
| | - Ichiro Takahashi
- Section of Orthodontics and Dentofacial Orthopedics, Kyushu UniversityFukuoka, Japan
| |
Collapse
|