1
|
Yan H, Zhu X, Zhang D, Zhang K, Shi N, Liu X. Hsa_circ_0008085 acts as a miR-146a-5p sponge to suppress influenza a virus replication via modulating of TRAF6. Int Immunopharmacol 2025; 157:114743. [PMID: 40306111 DOI: 10.1016/j.intimp.2025.114743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
Influenza A virus (IAV) has attracted considerable attention in recent years due to its increase in incidence and threat to human health. Circular RNA (circRNA) is a non-coding RNA with a closed structural pattern, which often acts as a sponge for microRNAs (miRNAs) in the cell. A growing body of evidence supports several crucial roles for circRNAs in viral infection, including regulation of viral replication, evasion of the host immune response and disease pathogenesis. However, due to the wide variety of circRNAs, their potential functions in IAV infection remain to be elucidated. In this study, we determined that the expression of hsa_circ_0008085 was induced by IAV infection. In addition, the JAK/STAT signaling pathway was associated with the induction of hsa_circ_0008085 in the context of IAV infection, as evidenced by the application of ruxolitinib, a compound that inhibits the activation of the JAK/STAT pathway. In A549 cells, enhanced expression of hsa_circ_0008085 was found to repress viral gene expression and diminish the production of infectious progeny. In contrast, when hsa_circ_0008085 was knocked down, a significant boost in IAV replication was observed. Following a pull-down of RNA utilizing biotin and a luciferase reporter assay, we established that hsa_circ_0008085 binds with miR-146a-5p, functioning as an endogenous sponge that suppresses the activity of miR-146a-5p. This interaction leads to an upregulation of TRAF6 expression, which in turn inhibits the replication of IAV. Conclusively, these data demonstrate that hsa_circ_0008085 inhibits viral replication via the miR-146a-5p/TRAF6 axis, highlighting the promising role of circRNAs in antiviral therapies.
Collapse
Affiliation(s)
- Hongjian Yan
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin 132101, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiangyu Zhu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Daining Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Kaichun Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ning Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Xidong Liu
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin 132101, China.
| |
Collapse
|
2
|
Srinivasan R, Ramadoss R, Kandasamy V, Ranganadin P, Green SR, Kasirajan A, Pillai AB. Exploring the regulatory role of small RNAs in modulating host-pathogen interactions: implications for bacterial and viral infections. Mol Biol Rep 2025; 52:115. [PMID: 39799541 DOI: 10.1007/s11033-024-10214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025]
Abstract
MicroRNAs (miRNAs) and transfer RNA-derived stress-induced RNAs (tiRNAs) have emerged as crucial players in the post-transcriptional regulation of gene expression in various cellular processes, including immunity and host defense against infections. In recent years, increasing evidence has highlighted their complex role in influencing the host response during viral and bacterial infections. miRNAs have been shown to play multiple roles in host-pathogen interaction like TLR activation and altered disease virulence during bacterial infections. In the context of viral infections, miRNAs are involved in regulating viral replication, pathogenesis, and immune evasion. Similarly, tiRNAs have recently emerged as novel players in bacterial and viral infections such as modulating bacterial growth, adaptation to stress conditions, host antiviral responses, and impacting viral replication and pathogenesis. This review provides a comprehensive analysis of the potential of miRNA expression profiles as diagnostic biomarkers to differentiate between bacterial and viral infections. Further discusses the key pathways through which small RNAs regulate bacterial and viral infection-related diseases.
Collapse
Affiliation(s)
- Rajesh Srinivasan
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Ramya Ramadoss
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Vanathy Kandasamy
- Department of Microbiology, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Pajanivel Ranganadin
- Department of Pulmonary Medicine, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Siva Ranganathan Green
- Department of General Medicine, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Anand Kasirajan
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Agieshkumar Balakrishna Pillai
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India.
- Institute of Advanced Virology, Trivandrum, Kerala, 695 317, India.
| |
Collapse
|
3
|
Zhang Q, Yu S, Yang Z, Wang X, Li J, Su L, Zhang H, Lou X, Mao H, Sun Y, Fang L, Yan H, Zhang Y. DENV-1 Infection of Macrophages Induces Pyroptosis and Causes Changes in MicroRNA Expression Profiles. Biomedicines 2024; 12:2752. [PMID: 39767659 PMCID: PMC11673035 DOI: 10.3390/biomedicines12122752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Dengue virus (DENV) is the most widespread mosquito-borne virus, which can cause dengue fever with mild symptoms, or progress to fatal dengue hemorrhagic fever and dengue shock syndrome. As the main target cells of DENV, macrophages are responsible for the innate immune response against the virus. METHODS In this study, we investigated the role of pyroptosis in the pathogenic mechanism of dengue fever by examining the level of pyroptosis in DENV-1-infected macrophages and further screened differentially expressed microRNAs by high-throughput sequencing to predict microRNAs that could affect the pyroptosis of the macrophage. RESULTS Macrophages infected with DENV-1 were induced with decreased cell viability, decreased release of lactate dehydrogenase and IL-1β, activation of NLRP3 inflammasome and caspase-1, cleavage of GSDMD to produce an N-terminal fragment bound to cell membrane, and finally induced macrophage pyroptosis. MicroRNA expression profiles were obtained by sequencing macrophages from all periods of DENV-1 infection and comparing with the negative control. Sixty-three microRNAs differentially expressed in both the early and later stages of infection were also identified. In particular, miR-223-3p, miR-148a-3p, miR-125a-5p, miR-146a-5p and miR-34a-5p were recognized as small molecules that may be involved in the regulation of inflammation. CONCLUSIONS In summary, this study aimed to understand the pathogenic mechanism of DENV through relevant molecular mechanisms and provide new targets for dengue-specific therapy.
Collapse
Affiliation(s)
- Qinyi Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Sicong Yu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
- The First People’s Hospital of Xiaoshan District, Hangzhou 311201, China
| | - Zhangnv Yang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Xingxing Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Hangzhou 310051, China
| | - Jianhua Li
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Hangzhou 310051, China
| | - Lingxuan Su
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Hangzhou 310051, China
| | - Huijun Zhang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, National Human Diseases Animal Model Resource Center, Beijing 100021, China
| | - Xiuyu Lou
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Hangzhou 310051, China
| | - Haiyan Mao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Hangzhou 310051, China
| | - Yi Sun
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Hangzhou 310051, China
| | - Lei Fang
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310016, China
| | - Hao Yan
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Hangzhou 310051, China
| | - Yanjun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Hangzhou 310051, China
| |
Collapse
|
4
|
Bannazadeh Baghi H, Bayat M, Mehrasa P, Alavi SMA, Lotfalizadeh MH, Memar MY, Taghavi SP, Zarepour F, Hamblin MR, Sadri Nahand J, Hashemian SMR, Mirzaei H. Regulatory role of microRNAs in virus-mediated inflammation. J Inflamm (Lond) 2024; 21:43. [PMID: 39497125 PMCID: PMC11536602 DOI: 10.1186/s12950-024-00417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
Viral infections in humans often cause excessive inflammation. In some viral infections, inflammation can be serious and even fatal, while in other infections it can promote viral clearance. Viruses can escape from the host immune system via regulating inflammatory pathways, thus worsening the illness. MicroRNAs (miRNAs) are tiny non-coding RNA molecules expressed within diverse tissues as well as cells and are engaged in different normal pathological and physiological pathways. Emerging proof suggests that miRNAs can impact innate and adaptive immunity, inflammatory responses, cell invasion, and the progression of viral infections. We discuss some intriguing new findings in the current work, focusing on the impacts of different miRNAs on host inflammatory responses and virus-mediated inflammation. A better understanding of dysregulated miRNAs in viral infections could improve the identification, prevention, and treatment of several serious diseases.
Collapse
Affiliation(s)
- Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Parisa Mehrasa
- Department of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
5
|
Zhang S, Luo C, Chen Q, Li N, Liao X, Wu J, Zha H, Xie T, Bai S, Tian W, Zhu L, Zou X, Fang S, Sun C, Jiang Y, Yuan J, Shu Y, Wu N, Luo H. ZIKV induces P62-mediated autophagic degradation of TRAF6 through TRAF6-NS1 interaction. iScience 2024; 27:110757. [PMID: 39280623 PMCID: PMC11401155 DOI: 10.1016/j.isci.2024.110757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/07/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024] Open
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6) is crucial in flavivirus infections, modulating the host immune response through interactions with viral proteins. Despite its importance, the relationship between TRAF6 and Zika virus (ZIKV) remains poorly understood. Our prior proteomics analysis revealed reduced TRAF6 protein levels in ZIKV-infected human trophoblast cells compared to non-infected controls. Subsequent studies in cell models and murine tissues confirmed a significant reduction in both TRAF6 mRNA and protein levels post-ZIKV infection. Further investigations unveiled that ZIKV induces P62-mediated degradation of TRAF6, with NS1 identified as the primary contributor. Co-localization and interaction studies demonstrated that NS1 promotes the association of P62, a key autophagy mediator, with TRAF6. Notably, our findings revealed TRAF6 enhances ZIKV infection, NS1 ubiquitination, NS1 expression, and the production of inflammatory cytokines and chemokines. These insights highlight the intricate TRAF6-ZIKV relationship, offering potential for drug targeting NS1-TRAF6 interactions to manage ZIKV infections effectively.
Collapse
Affiliation(s)
- Shengze Zhang
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Chuming Luo
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Qiqi Chen
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Nina Li
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Xinzhong Liao
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Jiani Wu
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Haolu Zha
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Ting Xie
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Shaohui Bai
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Weijian Tian
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Lin Zhu
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Xuan Zou
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518073, P.R. China
| | - Shisong Fang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518073, P.R. China
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, P.R. China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, P.R. China
| | - Ying Jiang
- Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen 518054, P.R. China
| | - Jianhui Yuan
- Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen 518054, P.R. China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, P.R. China
- Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, P.R. China
| | - Nan Wu
- Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen 518054, P.R. China
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, P.R. China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, P.R. China
| |
Collapse
|
6
|
Macha NO, Komarasamy TV, Harun S, Adnan NAA, Hassan SS, Balasubramaniam VRMT. Cross Talk between MicroRNAs and Dengue Virus. Am J Trop Med Hyg 2024; 110:856-867. [PMID: 38579704 PMCID: PMC11066346 DOI: 10.4269/ajtmh.23-0546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/19/2023] [Indexed: 04/07/2024] Open
Abstract
Dengue fever (DF) is an endemic infectious tropical disease and is rapidly becoming a global problem. Dengue fever is caused by one of the four dengue virus (DENV) serotypes and is spread by the female Aedes mosquito. Clinical manifestations of DF may range from asymptomatic to life-threatening severe illness with conditions of hemorrhagic fever and shock. Early and precise diagnosis is vital to avoid mortality from DF. A different approach is required to combat DF because of the challenges with the vaccines currently available, which are nonspecific; each is capable of causing cross-reaction and disease-enhancing antibody responses against the residual serotypes. MicroRNAs (miRNAs) are known to be implicated in DENV infection and are postulated to be involved in most of the host responses. Thus, they might be a suitable target for new strategies against the disease. The involvement of miRNAs in cellular activities and pathways during viral infections has been explored under numerous conditions. Interestingly, miRNAs have also been shown to be involved in viral replication. In this review, we summarize the role of known miRNAs, specifically the role of miRNA Let-7c (miR-Let-7c), miR-133a, miR-30e, and miR-146a, in the regulation of DENV replication and their possible effects on the initial immune reaction.
Collapse
Affiliation(s)
- Nur Omar Macha
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Thamil Vaani Komarasamy
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Sarahani Harun
- Institute of Systems Biology Malaysia, National University of Malaysia, Selangor, Malaysia
| | - Nur Amelia Azreen Adnan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Sharifah Syed Hassan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Vinod R. M. T. Balasubramaniam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
7
|
Pandita S, Verma A, Kumar N. Role of miRNAs in regulating virus replication. ANIMAL GENE 2023; 30:200162. [DOI: 10.1016/j.angen.2023.200162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
8
|
Pradhan A, Aneja A, Ghosh S, Devvanshi H, C D, Sahu R, Ross C, Kshetrapal P, Maitra A, Das S. Association of exosomal miR-96-5p and miR-146a-5p with the disease severity in dengue virus infection. J Med Virol 2023; 95:e28614. [PMID: 36840403 DOI: 10.1002/jmv.28614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/31/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
Exosomes are small extracellular vesicles secreted by cells and have a major role in cell-to-cell signaling. As dengue infection progresses from a mild to a severe form of infection, the exosome's microRNA (miRNA) composition might change, which may contribute to pathogenesis. In this study, a comprehensive analysis of serum exosomal miRNAs was performed and their involvement in dengue virus-induced disease progression in an Indian cohort was assessed. Small RNA-seq showed 50 differentially expressed exosomal miRNAs that were significantly dysregulated during dengue infection. After extensive validation, miR-96-5p was found to be significantly upregulated, whereas miR-146a-5p was significantly downregulated with the progression of disease to severe form. Interestingly, a strong positive correlation was found between the expression levels of miR-96-5p and miR-146a-5p and the platelet levels of the patients. Further, study of miR-146a-5p showed that it regulates the expression of the proteins which are involved in the immune responses. These results suggest that miR-96-5p and miR-146a-5p could be used as diagnostic and prognostic markers for dengue disease progression, in addition to the already available biochemical and pathological parameters.
Collapse
Affiliation(s)
- Aunji Pradhan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Ashish Aneja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sahana Ghosh
- National Institute of Biomedical Genomics, Kalyani, India
| | - Himadri Devvanshi
- Translational Health Science and Technology Institute, Faridabad, India
| | - Deepika C
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Risabh Sahu
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Celil Ross
- St. John's Medical College, Bangalore, India
| | | | - Arindam Maitra
- National Institute of Biomedical Genomics, Kalyani, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- National Institute of Biomedical Genomics, Kalyani, India
| |
Collapse
|
9
|
Madhry D, Malvankar S, Phadnis S, Srivastava RK, Bhattacharyya S, Verma B. Synergistic correlation between host angiogenin and dengue virus replication. RNA Biol 2023; 20:805-816. [PMID: 37796112 PMCID: PMC10557563 DOI: 10.1080/15476286.2023.2264003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/06/2023] Open
Abstract
DENV infection poses a major health concern globally and the pathophysiology relies heavily on host-cellular machinery. Although virus replication relies heavily on the host, the mechanistic details of DENV-host interaction is not fully characterized yet. Here, we are focusing on characterizing the mechanistic basis of virus-induced stress on the host cell. Specifically, we aim to characterize the role of the stress modulator ribonuclease Angiogenin during DENV infection. Our results suggested that the levels of Angiogenin are up-regulated in DENV-infected cells and the levels increase proportionately with DENV replication. Our efforts to knockdown Angiogenin using siRNA were unsuccessful in DENV-infected cells but not in mock-infected control. To further investigate the modulation between DENV replication and Angiogenin, we treated Huh7 cells with Ivermectin prior to DENV infection. Our results suggest a significant reduction in DENV replication specifically at the later stages as a consequence of Ivermectin treatment. Interestingly, Angiogenin levels were also found to be decreased proportionately. Our results suggest that Angiogenin modulation during DENV infection is important for DENV replication and pathogenesis.
Collapse
Affiliation(s)
- Deeksha Madhry
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, India
| | - Shivani Malvankar
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, India
| | - Sushant Phadnis
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, India
| | - Sankar Bhattacharyya
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, India
| |
Collapse
|
10
|
Zheng HQ, Li C, Zhu XF, Wang WX, Yin BY, Zhang WJ, Feng SL, Yin XH, Huang H, Zhang YM. miR-615 facilitates porcine epidemic diarrhea virus replication by targeting IRAK1 to inhibit type III interferon expression. Front Microbiol 2022; 13:1071394. [PMID: 36643411 PMCID: PMC9832332 DOI: 10.3389/fmicb.2022.1071394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/10/2022] [Indexed: 12/04/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) in the Coronavirus family is a highly contagious enteric pathogen in the swine industry, which has evolved mechanisms to evade host innate immune responses. The PEDV-mediated inhibition of interferons (IFNs) has been linked to the nuclear factor-kappa B (NF-κB) pathway. MicroRNAs (miRNAs) are involved in virus-host interactions and IFN-I regulation. However, the mechanism by which the PEDV regulates IFN during PEDV infection has not yet been investigated in its natural target cells. We here report a novel mechanism of viral immune escape involving miR-615, which was screened from a high-throughput sequencing library of porcine intestinal epithelial cells (IECs) infected with PEDV. PEDV infection altered the profiles of miRNAs and the activities of several pathways involved in innate immunity. Overexpression of miR-615 increased PEDV replication, inhibited IFN expression, downregulated the NF-κB pathway, and blocked p65 nuclear translocation. In contrast, knockdown of miR-615 enhanced IFN expression, suppressed PEDV replication, and activated the NF-κB pathway. We further determined that IRAK1 is the target gene of miR-615 in IECs. Our findings show that miR-615 suppresses activation of the NF-κB pathway by suppressing the IRAK1 protein and reducing the generation of IFN-IIIs, which in turn facilitates PEDV infection in IECs. Moreover, miR-615 inhibited PEDV replication and NF-κB pathway activation in both IECs and MARC-145 cells. These findings support an important role for miR-615 in the innate immune regulation of PEDV infections and provide a novel perspective for developing new treatments.
Collapse
Affiliation(s)
- Hong-qing Zheng
- Key Laboratory of Animal Epidemic Disease Diagnostic Laboratory of Molecular Biology in Xianyang City, Institute of Animal Husbandry and Veterinary Medicine, Xianyang Vocational Technical College, Xianyang, Shaanxi, China,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Cheng Li
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao-fu Zhu
- Key Laboratory of Animal Epidemic Disease Diagnostic Laboratory of Molecular Biology in Xianyang City, Institute of Animal Husbandry and Veterinary Medicine, Xianyang Vocational Technical College, Xianyang, Shaanxi, China
| | - Wei-Xiao Wang
- Institute of Hemu Biotechnology, Beijing Hemu Biotechnology Co. Ltd., Beijing, China
| | - Bao-ying Yin
- Key Laboratory of Animal Epidemic Disease Diagnostic Laboratory of Molecular Biology in Xianyang City, Institute of Animal Husbandry and Veterinary Medicine, Xianyang Vocational Technical College, Xianyang, Shaanxi, China
| | - Wen-juan Zhang
- Key Laboratory of Animal Epidemic Disease Diagnostic Laboratory of Molecular Biology in Xianyang City, Institute of Animal Husbandry and Veterinary Medicine, Xianyang Vocational Technical College, Xianyang, Shaanxi, China
| | - Shu-lin Feng
- Key Laboratory of Animal Epidemic Disease Diagnostic Laboratory of Molecular Biology in Xianyang City, Institute of Animal Husbandry and Veterinary Medicine, Xianyang Vocational Technical College, Xianyang, Shaanxi, China
| | - Xun-hui Yin
- Liangshan County Animal Husbandry and Veterinary Development Center, Liangshan County Animal Husbandry Bureau, Jining, China
| | - He Huang
- Institute of Hemu Biotechnology, Beijing Hemu Biotechnology Co. Ltd., Beijing, China,*Correspondence: He Huang,
| | - Yan-ming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China,Yan-ming Zhang,
| |
Collapse
|
11
|
Zheng W, Wang T, Liu C, Yan Q, Zhan S, Li G, Liu X, Jiang Y. Liver transcriptomics reveals microRNA features of the host response in a mouse model of dengue virus infection. Comput Biol Med 2022; 150:106057. [PMID: 36215851 DOI: 10.1016/j.compbiomed.2022.106057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/25/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Organ dysfunction, especially liver injury, caused by dengue virus (DENV) infection has been associated with fatal cases in dengue patients around the world. However, the pathophysiological mechanisms of liver involvement in dengue remain unclear. There is accumulating evidence that miRNAs are playing an important role in regulating viral pathogenesis, and it can help in diagnostic and anti-viral therapies development. METHODS We collected liver tissues of DENV-infected for small RNA sequencing to identify significantly different express miRNAs during dengue virus infection, and the identified target genes of these miRNAs were annotated by biological function and pathway enrichment. RESULTS 31 significantly altered miRNAs were identified, including 16 up-regulated and 15 down-regulated miRNAs. By performing a series of miRNA prediction and signaling pathway enrichment analyses, the down-regulated miRNAs of mmu-miR-484, mmu-miR-1247-5p and mmu-miR-6538 were identified to be the crucial miRNAs. Further analysis revealed that the inflammation and immune responses involving Hippo, PI3K-Akt, MAPK, Wnt, mTOR, TGF-beta, Tight junction, and Platelet activation were modulated collectively by these three key miRNAs during DENV infection. These pathways are considered to be closely associated with the pathogenic mechanism and treatment strategy of dengue patients. CONCLUSION The miRNAs identified by sequencing, especially miR-484 may be the potential therapeutic targets for liver involvement in dengue patients which involves the regulation of vascular permeability and expression of inflammatory cytokines.
Collapse
Affiliation(s)
- Wenjiang Zheng
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, China; Animal Experiment Center, Guangzhou University of Chinese Medicine, China.
| | - Ting Wang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, China.
| | - Chengxin Liu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, China.
| | - Qian Yan
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, China.
| | - Shaofeng Zhan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, China.
| | - Geng Li
- Animal Experiment Center, Guangzhou University of Chinese Medicine, China.
| | - Xiaohong Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, China.
| | - Yong Jiang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, China.
| |
Collapse
|
12
|
Lee MF, Voon GZ, Lim HX, Chua ML, Poh CL. Innate and adaptive immune evasion by dengue virus. Front Cell Infect Microbiol 2022; 12:1004608. [PMID: 36189361 PMCID: PMC9523788 DOI: 10.3389/fcimb.2022.1004608] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Dengue is a mosquito-borne disease which causes significant public health concerns in tropical and subtropical countries. Dengue virus (DENV) has evolved various strategies to manipulate the innate immune responses of the host such as ‘hiding’ in the ultrastructure of the host, interfering with the signaling pathway through RNA modifications, inhibiting type 1 IFN production, as well as inhibiting STAT1 phosphorylation. DENV is also able to evade the adaptive immune responses of the host through antigenic variation, antigen-dependent enhancement (ADE), partial maturation of prM proteins, and inhibition of antigen presentation. miRNAs are important regulators of both innate and adaptive immunity and they have been shown to play important roles in DENV replication and pathogenesis. This makes them suitable candidates for the development of anti-dengue therapeutics. This review discusses the various strategies employed by DENV to evade innate and adaptive immunity. The role of miRNAs and DENV non-structural proteins (NS) are promising targets for the development of anti-dengue therapeutics.
Collapse
|
13
|
Micro-Players of Great Significance-Host microRNA Signature in Viral Infections in Humans and Animals. Int J Mol Sci 2022; 23:ijms231810536. [PMID: 36142450 PMCID: PMC9504570 DOI: 10.3390/ijms231810536] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Over time, more and more is becoming known about micro-players of great significance. This is particularly the case for microRNAs (miRNAs; miR), which have been found to participate in the regulation of many physiological and pathological processes in both humans and animals. One such process is viral infection in humans and animals, in which the host miRNAs—alone or in conjunction with the virus—interact on two levels: viruses may regulate the host’s miRNAs to evade its immune system, while the host miRNAs can play anti- or pro-viral roles. The purpose of this comprehensive review is to present the key miRNAs involved in viral infections in humans and animals. We summarize the data in the available literature, indicating that the signature miRNAs in human viral infections mainly include 12 miRNAs (i.e., miR-155, miR-223, miR-146a, miR-122, miR-125b, miR-132, miR-34a, miR -21, miR-16, miR-181 family, let-7 family, and miR-10a), while 10 miRNAs are commonly found in animals (i.e., miR-155, miR-223, miR-146a, miR-145, miR-21, miR-15a/miR-16 cluster, miR-181 family, let-7 family, and miR-122) in this context. Knowledge of which miRNAs are involved in different viral infections and the biological functions that they play can help in understanding the pathogenesis of viral diseases, facilitating the future development of therapeutic agents for both humans and animals.
Collapse
|
14
|
Abstract
Flaviviruses are a spectrum of vector-borne RNA viruses that cause potentially severe diseases in humans including encephalitis, acute-flaccid paralysis, cognitive disorders and foetal abnormalities. Japanese encephalitis virus (JEV), Zika virus (ZIKV), West Nile virus (WNV) and Dengue virus (DENV) are globally emerging pathogens that lead to epidemics and outbreaks with continued transmission to newer geographical areas over time. In the past decade, studies have focussed on understanding the pathogenic mechanisms of these viruses in a bid to alleviate their disease burden. MicroRNAs (miRNAs) are short single-stranded RNAs that have emerged as master-regulators of cellular gene expression. The dynamics of miRNAs within a cell have the capacity to modulate hundreds of genes and, consequently, their physiological manifestation. Increasing evidence suggests their role in host response to disease and infection including cell survival, intracellular viral replication and immune activation. In this review, we aim to comprehensively update published evidence on the role of miRNAs in host cells infected with the common neurotropic flaviviruses, with an increased focus on neuropathogenic mechanisms. In addition, we briefly cover therapeutic advancements made in the context of miRNA-based antiviral strategies.
Collapse
|
15
|
Wu Y, Zhou T, Hu J, Liu Y, Jin S, Wu J, Guan X, Cui J. Autophagy Activation Induces p62-Dependent Autophagic Degradation of Dengue Virus Capsid Protein During Infection. Front Microbiol 2022; 13:889693. [PMID: 35865923 PMCID: PMC9294600 DOI: 10.3389/fmicb.2022.889693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
In the past decade, dengue virus infection is one of the most prevalent and rapidly spreading arthropod-borne diseases worldwide with about 400 million infections every year. Although it has been reported that the dengue virus could take advantage of autophagy to promote its propagation, the association between selective autophagy and the dengue virus remains largely unclear. Here, we demonstrated that dengue virus capsid protein, the key viral protein for virus assembly, maturation, and replication, underwent autophagic degradation after autophagy activation. Autophagy cargo receptor p62 delivered ubiquitinated capsid protein to autophagosomes for degradation, which could be enhanced by Torin 1 treatments. Further study revealed that the association between p62 and viral capsid protein was dependent on the ubiquitin-binding domain of p62, and the poly-ubiquitin conjugated at lysine 76 of capsid protein served as a recognition signal for autophagy. Consistently, p62 deficiency in Huh7 cells led to the enhancement of dengue virus replication. Our study revealed that p62 targeted dengue virus capsid protein for autophagic degradation in a ubiquitin-dependent manner, which might uncover the potential roles of p62 in restricting dengue virus replication.
Collapse
Affiliation(s)
- Yaoxing Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tao Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiajia Hu
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yishan Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shouheng Jin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianfeng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Krishnamoorthy P, Raj AS, Kumar P, Das N, Kumar H. Host and viral non-coding RNAs in dengue pathogenesis. Rev Med Virol 2022; 32:e2360. [PMID: 35510480 DOI: 10.1002/rmv.2360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/10/2022]
Abstract
Dengue virus (DENV) is a mosquito-borne flavivirus that causes frequent outbreaks in tropical countries. Due to the four different serotypes and ever-mutating RNA genome, it is challenging to develop efficient therapeutics. Early diagnosis is crucial to prevent the severe form of dengue, leading to mortality. In the past decade, rapid advancement in the high throughput sequencing technologies has shed light on the crucial regulating role of non-coding RNAs (ncRNAs), also known as the "dark matter" of the genome, in various pathological processes. In addition to the human host ncRNAs like microRNAs and circular RNAs, DENV also produces ncRNAs such as subgenomic flaviviral RNAs that can modulate the virus life cycle and regulate disease outcomes. This review outlines the advances in understanding the interplay between the human host and DENV ncRNAs, their regulation of the innate immune system of the host, and the prospects of the ncRNAs in clinical applications such as dengue diagnosis and promising therapeutics.
Collapse
Affiliation(s)
- Pandikannan Krishnamoorthy
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, India
| | - Athira S Raj
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, India
| | - Pramod Kumar
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, India
| | - Nilanjana Das
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, India
| | - Himanshu Kumar
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, India.,Laboratory of Host Defense, WPI Immunology, Frontier Research Centre, Osaka University, Osaka, Japan
| |
Collapse
|
17
|
miR-573 rescues endothelial dysfunction during dengue infection under PPARγ regulation. J Virol 2022; 96:e0199621. [PMID: 35108097 DOI: 10.1128/jvi.01996-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Early prognosis of abnormal vasculopathy is essential for effective clinical management of severe dengue patients. An exaggerated interferon (IFN) response and release of vasoactive factors from endothelial cells cause vasculopathy. This study shows that dengue 2 (DENV2) infection of human umbilical vein endothelial cells (HUVEC) results in differentially regulated miRNAs important for endothelial function. miR-573 was significantly down-regulated in DENV2-infected HUVEC due to decreased Peroxisome Proliferator Activator Receptor Gamma (PPARγ) activity. Restoring miR-573 expression decreased endothelial permeability by suppressing the expression of vasoactive angiopoietin 2 (ANGPT2). We also found that miR-573 suppressed the proinflammatory IFN response through direct downregulation of toll like receptor 2 (TLR2) expression. Our study provides a novel insight into miR-573 mediated regulation of endothelial function during DENV2 infection which can be further translated into a potential therapeutic and prognostic agent for severe dengue patients. IMPORTANCE: We need to identify molecular factors which can predict the onset of endothelial dysfunction in dengue patients. Increase in endothelial permeability during severe dengue infections is poorly understood. In this study we focus on factors which regulate endothelial function and are dysregulated during DENV2 infection. We show that miR-573 rescues endothelial permeability and is downregulated during DENV2 infection in endothelial cells. This finding can have diagnostic as well as therapeutic applications.
Collapse
|
18
|
Majumdar A, Basu A. Involvement of host microRNAs in flavivirus-induced neuropathology: An update. J Biosci 2022; 47:54. [PMID: 36222134 PMCID: PMC9425815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/17/2022] [Indexed: 09/07/2024]
Abstract
Flaviviruses are a spectrum of vector-borne RNA viruses that cause potentially severe diseases in humans including encephalitis, acute-flaccid paralysis, cognitive disorders and foetal abnormalities. Japanese encephalitis virus (JEV), Zika virus (ZIKV), West Nile virus (WNV) and Dengue virus (DENV) are globally emerging pathogens that lead to epidemics and outbreaks with continued transmission to newer geographical areas over time. In the past decade, studies have focussed on understanding the pathogenic mechanisms of these viruses in a bid to alleviate their disease burden. MicroRNAs (miRNAs) are short single-stranded RNAs that have emerged as master-regulators of cellular gene expression. The dynamics of miRNAs within a cell have the capacity to modulate hundreds of genes and, consequently, their physiological manifestation. Increasing evidence suggests their role in host response to disease and infection including cell survival, intracellular viral replication and immune activation. In this review, we aim to comprehensively update published evidence on the role of miRNAs in host cells infected with the common neurotropic flaviviruses, with an increased focus on neuropathogenic mechanisms. In addition, we briefly cover therapeutic advancements made in the context of miRNA-based antiviral strategies.
Collapse
Affiliation(s)
- Atreye Majumdar
- National Brain Research Centre, Manesar, Gurugram 122 052 India
| | - Anirban Basu
- National Brain Research Centre, Manesar, Gurugram 122 052 India
| |
Collapse
|
19
|
Qu J, Lin Z. Autophagy Regulation by Crosstalk between miRNAs and Ubiquitination System. Int J Mol Sci 2021; 22:ijms222111912. [PMID: 34769343 PMCID: PMC8585084 DOI: 10.3390/ijms222111912] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding single-stranded RNA molecules encoded by endogenous genes with ~22 nucleotides which are involved in the regulation of post-transcriptional gene expression. Ubiquitination and deubiquitination are common post-translational modifications in eukaryotic cells and important pathways in regulating protein degradation and signal transduction, in which E3 ubiquitin ligases and deubiquitinases (DUBs) play a decisive role. MiRNA and ubiquitination are involved in the regulation of most biological processes, including autophagy. Furthermore, in recent years, the direct interaction between miRNA and E3 ubiquitin ligases or deubiquitinases has attracted much attention, and the cross-talk between miRNA and ubiquitination system has been proved to play key regulatory roles in a variety of diseases. In this review, we summarized the advances in autophagy regulation by crosstalk between miRNA and E3 ubiquitin ligases or deubiquitinases.
Collapse
|
20
|
Su Y, Lin T, Liu C, Cheng C, Han X, Jiang X. microRNAs, the Link Between Dengue Virus and the Host Genome. Front Microbiol 2021; 12:714409. [PMID: 34456895 PMCID: PMC8385664 DOI: 10.3389/fmicb.2021.714409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022] Open
Abstract
Dengue virus (DENV) is a small envelope virus of Flaviviridae that is mainly transmitted by Aedes aegypti and Aedes albopictus. It can cause dengue fever with mild clinical symptoms or even life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). At present, there are no specific drugs or mature vaccine products to treat DENV. microRNAs (miRNAs) are a class of important non-coding small molecular RNAs that regulate gene expression at the post-transcriptional level. It is involved in and regulates a series of important life processes, such as growth and development, cell differentiation, cell apoptosis, anti-virus, and anti-tumor. miRNAs also play important roles in interactions between host and viral genome transcriptomes. Host miRNAs can directly target the genome of the virus or regulate host factors to promote or inhibit virus replication. Understanding the expression and function of miRNAs during infection with DENV and the related signal molecules of the miRNA-mediated regulatory network will provide new insights for the development of miRNA-based therapies.
Collapse
Affiliation(s)
- Yinghua Su
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Ting Lin
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Chun Liu
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Cui Cheng
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Xiwen Jiang
- DAAN Gene Co., Ltd. of Sun Yat-sen University, Guangdong, China
| |
Collapse
|
21
|
Identification of potential biomarkers in dengue via integrated bioinformatic analysis. PLoS Negl Trop Dis 2021; 15:e0009633. [PMID: 34347790 PMCID: PMC8336846 DOI: 10.1371/journal.pntd.0009633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 07/07/2021] [Indexed: 11/19/2022] Open
Abstract
Dengue fever virus (DENV) is a global health threat that is becoming increasingly critical. However, the pathogenesis of dengue has not yet been fully elucidated. In this study, we employed bioinformatics analysis to identify potential biomarkers related to dengue fever and clarify their underlying mechanisms. The results showed that there were 668, 1901, and 8283 differentially expressed genes between the dengue-infected samples and normal samples in the GSE28405, GSE38246, and GSE51808 datasets, respectively. Through overlapping, a total of 69 differentially expressed genes (DEGs) were identified, of which 51 were upregulated and 18 were downregulated. We identified twelve hub genes, including MX1, IFI44L, IFI44, IFI27, ISG15, STAT1, IFI35, OAS3, OAS2, OAS1, IFI6, and USP18. Except for IFI44 and STAT1, the others were statistically significant after validation. We predicted the related microRNAs (miRNAs) of these 12 target genes through the database miRTarBase, and finally obtained one important miRNA: has-mir-146a-5p. In addition, gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were carried out, and a protein–protein interaction (PPI) network was constructed to gain insight into the actions of DEGs. In conclusion, our study displayed the effectiveness of bioinformatics analysis methods in screening potential pathogenic genes in dengue fever and their underlying mechanisms. Further, we successfully predicted IFI44L and IFI6, as potential biomarkers with DENV infection, providing promising targets for the treatment of dengue fever to a certain extent. Dengue fever is a mosquito borne viral disease caused by a single stranded RNA virus with four serotypes. DENV infection can cause various diseases, such as breakbone fever, haemorrhagic fever, and shock syndrome. As one of the most viral diseases leading to incidence rate and mortality in animal arthropods, Dengue fever has become an increasingly serious global health threat. However, the pathogenesis of dengue fever has not been fully elucidated. In this study, we used bioinformatics analysis to identify potential biomarkers associated with dengue fever and elucidate their underlying mechanisms. Finally, we predicted that IFI44L and IFI6 might be potential biomarkers of DENV infection. This finding provides a promising target for the treatment of dengue fever to a certain extent. In addition, the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, protein–protein interaction (PPI) network were implemented to analyze the key differentially expressed genes after DENV infection, and the related mechanisms were illuminated by this study.
Collapse
|
22
|
Wu S, Lu D, Zheng X, Xu J, Li Z, Deng L, Hu Y. Dysregulation of autophagy-associated microRNAs in condyloma acuminatum. INFECTION GENETICS AND EVOLUTION 2021; 93:104878. [PMID: 33905885 DOI: 10.1016/j.meegid.2021.104878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/06/2021] [Accepted: 04/18/2021] [Indexed: 02/06/2023]
Abstract
Condyloma acuminatum, which is caused by low-risk human papillomavirus (lrHPV) infection, is one of the most common sexually transmitted diseases. Autophagy is thought to be associated with condyloma acuminatum, but how the autophagy process is regulated remains unclear. MicroRNAs (miRNAs) are important regulators of gene transcription that play a central role in many biological processes, including autophagy and viral infection. This study was designed to identify autophagy-related miRNAs and their targets in condyloma acuminatum and to validate their expression. The levels of the autophagy proteins microtubule-associated protein 1 light chain 3 (LC3) and P62/SQSTM1 (P62) were abnormally increased in the local lesion tissue of condyloma acuminatum patients compared with healthy controls. MiRNAs and their target mRNAs in condyloma acuminatum patients were analyzed by bioinformatics. Eighty-one differentially expressed miRNAs were identified, of which 56 were downregulated and 25 were upregulated. Two of the differentially expressed miRNAs associated with autophagy, miRNA-30a-5p and miRNA-514a-3p, were analyzed further, and their target genes were identified as autophagy-related protein (Atg) 5 and Atg12 and Atg3 and Atg12, respectively. The expression levels of miRNA-30a-5p and miRNA-514a-3p were decreased and those of Atg5, Atg12 and Atg3 were increased in condyloma acuminatum patients compared with healthy controls. In addition, miRNA-30a-5p and miRNA-514a-3p expression correlated with the proliferation index Ki-67 in condyloma acuminatum. Taken together, our results suggest that the changes in autophagy levels in patients with condyloma acuminatum may be related to the changes in miRNA-30a-5p and miRNA-514a-3p expression. This study provides a theoretical basis for identifying new mechanisms that link miRNAs, HPV infection and host autophagy in vivo.
Collapse
Affiliation(s)
- Shi Wu
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China; Dermatology Institute of Jinan University, Jinan University, Guangzhou 510630, China
| | - Dan Lu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China; Clinical Neuroscience Institute of Jinan University, Jinan University, Guangzhou 510630, China
| | - Xinkai Zheng
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China; Dermatology Institute of Jinan University, Jinan University, Guangzhou 510630, China
| | - Jin Xu
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China; Dermatology Institute of Jinan University, Jinan University, Guangzhou 510630, China
| | - Zhen Li
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China; Department of Laser Cosmetology, The fifth people's hospital of Hainan Province, Haikou 570100, China
| | - Liehua Deng
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China; Dermatology Institute of Jinan University, Jinan University, Guangzhou 510630, China.
| | - Yunfeng Hu
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China; Dermatology Institute of Jinan University, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
23
|
Abstract
Viral infections lead to the death of more than a million people each year around the world, both directly and indirectly. Viruses interfere with many cell functions, particularly critical pathways for cell death, by affecting various intracellular mediators. MicroRNAs (miRNAs) are a major example of these mediators because they are involved in many (if not most) cellular mechanisms. Virus-regulated miRNAs have been implicated in three cell death pathways, namely, apoptosis, autophagy, and anoikis. Several molecules (e.g., BECN1 and B cell lymphoma 2 [BCL2] family members) are involved in both apoptosis and autophagy, while activation of anoikis leads to cell death similar to apoptosis. These mechanistic similarities suggest that common regulators, including some miRNAs (e.g., miR-21 and miR-192), are involved in different cell death pathways. Because the balance between cell proliferation and cell death is pivotal to the homeostasis of the human body, miRNAs that regulate cell death pathways have drawn much attention from researchers. miR-21 is regulated by several viruses and can affect both apoptosis and anoikis via modulating various targets, such as PDCD4, PTEN, interleukin (IL)-12, Maspin, and Fas-L. miR-34 can be downregulated by viral infection and has different effects on apoptosis, depending on the type of virus and/or host cell. The present review summarizes the existing knowledge on virus-regulated miRNAs involved in the modulation of cell death pathways. Understanding the mechanisms for virus-mediated regulation of cell death pathways could provide valuable information to improve the diagnosis and treatment of many viral diseases.
Collapse
|
24
|
Bhatnagar P, Sreekanth GP, Murali-Krishna K, Chandele A, Sitaraman R. Dengue Virus Non-Structural Protein 5 as a Versatile, Multi-Functional Effector in Host-Pathogen Interactions. Front Cell Infect Microbiol 2021; 11:574067. [PMID: 33816326 PMCID: PMC8015806 DOI: 10.3389/fcimb.2021.574067] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 02/19/2021] [Indexed: 12/22/2022] Open
Abstract
Dengue is emerging as one of the most prevalent mosquito-borne viral diseases of humans. The 11kb RNA genome of the dengue virus encodes three structural proteins (envelope, pre-membrane, capsid) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5), all of which are translated as a single polyprotein that is subsequently cleaved by viral and host cellular proteases at specific sites. Non-structural protein 5 (NS5) is the largest of the non-structural proteins, functioning as both an RNA-dependent RNA polymerase (RdRp) that replicates the viral RNA and an RNA methyltransferase enzyme (MTase) that protects the viral genome by RNA capping, facilitating polyprotein translation. Within the human host, NS5 interacts with several proteins such as those in the JAK-STAT pathway, thereby interfering with anti-viral interferon signalling. This mini-review presents annotated, consolidated lists of known and potential NS5 interactors in the human host as determined by experimental and computational approaches respectively. The most significant protein interactors and the biological pathways they participate in are also highlighted and their implications discussed, along with the specific serotype of dengue virus as appropriate. This information can potentially stimulate and inform further research efforts towards providing an integrative understanding of the mechanisms by which NS5 manipulates the human-virus interface in general and the innate and adaptive immune responses in particular.
Collapse
Affiliation(s)
- Priya Bhatnagar
- Department of Biotechnology, TERI School of Advanced Studies, New Delhi, India.,ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Gopinathan Pillai Sreekanth
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.,Department of Paediatrics and Emory Vaccine Centre, Emory University School of Medicine, Atlanta, GA, United States
| | - Anmol Chandele
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | |
Collapse
|
25
|
de Oliveira LF, de Andrade AAS, Pagliari C, de Carvalho LV, Silveira TS, Cardoso JF, Silva ALTE, de Vasconcelos JM, Moreira-Nunes CA, Burbano RMR, Nunes MRT, Dos Santos EJM, Júnior JLDSGV. Differential expression analysis and profiling of hepatic miRNA and isomiRNA in dengue hemorrhagic fever. Sci Rep 2021; 11:5554. [PMID: 33692368 PMCID: PMC7946910 DOI: 10.1038/s41598-020-72892-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Dengue virus causes dengue hemorrhagic fever (DHF) and has been associated to fatal cases worldwide. The liver is one of the most important target tissues in severe cases, due to its intense viral replication and metabolic role. microRNAs role during infection is crucial to understand the regulatory mechanisms of DENV infection and can help in diagnostic and anti-viral therapies development. We sequenced the miRNome of six fatal cases and compared to five controls, to characterize the human microRNAs expression profile in the liver tissue during DHF. Eight microRNAs were differentially expressed, including miR-126-5p, a regulatory molecule of endothelial cells, miR-122-5p, a liver specific homeostasis regulator, and miR-146a-5p, an interferon-regulator. Enrichment analysis with predicted target genes of microRNAs revealed regulatory pathways of apoptosis, involving MAPK, RAS, CDK and FAS. Immune response pathways were related to NF- kB, CC and CX families, IL and TLR. This is the first description of the human microRNA and isomicroRNA profile in liver tissues from DHF cases. The results demonstrated the association of miR-126-5p, miR-122-5p and miR-146a-5p with DHF liver pathogenesis, involving endothelial repair and vascular permeability regulation, control of homeostasis and expression of inflammatory cytokines.
Collapse
Affiliation(s)
- Layanna Freitas de Oliveira
- Center for Technological Innovation, Instituto Evandro Chagas, Ananindeua, PA, Brazil. .,Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil.
| | | | - Carla Pagliari
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Taiana S Silveira
- Faculdade de Medicina de São José Do Rio Preto, São Paulo, SP, Brazil
| | | | | | | | - Caroline Aquino Moreira-Nunes
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | | | | | | | | |
Collapse
|
26
|
Shang Y, Liu Q, Wang L, Qiu X, Chen Y, An J. microRNA-146a-5p negatively modulates PM 2.5 caused inflammation in THP-1 cells via autophagy process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115961. [PMID: 33160737 DOI: 10.1016/j.envpol.2020.115961] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/15/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Ambient fine particulate matter (PM2.5) can change the expression profile of microRNAs (miRs), which may play important roles in mediating inflammatory responses. The present study attempts to investigate the roles of miR-146a-5p in regulating cytokine expression in a human monocytic leukemia cell line (THP-1). Four types of PM2.5 extracts obtained from Beijing, China, were subjected to cytotoxic tests in THP-1 cells. These four PM2.5 extracts included two water extracts collected from non-heating and heating season (WN and WH), and two organic extracts from non-heating and heating season (DN and DH). Firstly, the four PM2.5 extracts caused cytotoxicity, oxidative stress responses, cytokine gene expressions and interleukin 8 (IL-8) release in THP-1 cells, with WH showing the highest cytotoxicity, WN showing the highest oxidative stress and inflammatory responses. Additionally, we observed expression of miR-146a-5p was significantly increased, with the maximal response of six folds in WN group. Cellular autophagy was initiated by PM2.5 indicated by related protein and gene expressions. Both RNA interference and autophagy inhibitor were applied to interrupt autophagy process in THP-1 cells. Autophagy dysfunction could alleviate IL-8 expression, suggesting autophagy process regulated cytokine expression and inflammatory response caused by PM2.5. A chemical inhibitor was applied to inhibit the function of miR-146a-5p, and then the expressions of IL-8 and autophagic genes were significantly aggravated. Meanwhile, two target genes of miR-146a-5p, interleukin-1 associated-kinase-1 (IRAK1) and tumor-necrosis factor receptor-associated factor-6 (TRAF6) were increased dramatically, which also played important roles in regulation of autophagy. These data suggested miR-146a-5p negatively modulated cytokine expression caused by PM2.5 via autophagy process through the target genes of IRAK1 and TRAF6. Our findings raised the concerns of the changes of miR expression profile and following responses caused by PM2.5.
Collapse
Affiliation(s)
- Yu Shang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Qianyun Liu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Lu Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yingjun Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Jing An
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
27
|
Rajput R, Sharma J, Nair MT, Khanna M, Arora P, Sood V. Regulation of Host Innate Immunity by Non-Coding RNAs During Dengue Virus Infection. Front Cell Infect Microbiol 2020; 10:588168. [PMID: 33330133 PMCID: PMC7734804 DOI: 10.3389/fcimb.2020.588168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
An estimated 3.9 billion individuals in 128 nations (about 40% of global population) are at risk of acquiring dengue virus infection. About 390 million cases of dengue are reported each year with higher prevalence in the developing world. A recent modeling-based report suggested that half of the population across the globe is at risk of dengue virus infection. In any given dengue outbreak, a percentage of infected population develops severe clinical manifestations, and this remains one of the “unsolved conundrums in dengue pathogenesis”. Although, host immunity and virus serotypes are known to modulate the infection, there are still certain underlying factors that play important roles in modulating dengue pathogenesis. Advanced genomics-based technologies have led to identification of regulatory roles of non-coding RNAs. Accumulating evidence strongly suggests that viruses and their hosts employ non-coding RNAs to modulate the outcome of infection in their own favor. The foremost ones seem to be the cellular microRNAs (miRNAs). Being the post-transcriptional regulators, miRNAs can be regarded as direct switches capable of turning “on” or “off” the viral replication process. Recently, role of long non-coding RNAs (lncRNAs) in modulating viral infections via interferon dependent or independent signaling has been recognized. Hence, we attempt to identify the “under-dog”, the non-coding RNA regulators of dengue virus infection. Such essential knowledge will enhance the understanding of dengue virus infection in holistic manner, by exposing the specific molecular targets for development of novel prophylactic, therapeutic or diagnostic strategies.
Collapse
Affiliation(s)
- Roopali Rajput
- Department of Microbiology (Virology Unit), Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India.,Department of Molecular Medicine, National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | - Jitender Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Bathinda, India
| | - Mahima T Nair
- Department of Zoology, Hansraj College, University of Delhi, Delhi, India
| | - Madhu Khanna
- Department of Microbiology (Virology Unit), Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Pooja Arora
- Department of Zoology, Hansraj College, University of Delhi, Delhi, India
| | - Vikas Sood
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
28
|
Echavarria-Consuegra L, Smit JM, Reggiori F. Role of autophagy during the replication and pathogenesis of common mosquito-borne flavi- and alphaviruses. Open Biol 2020; 9:190009. [PMID: 30862253 PMCID: PMC6451359 DOI: 10.1098/rsob.190009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Arboviruses that are transmitted to humans by mosquitoes represent one of the most important causes of febrile illness worldwide. In recent decades, we have witnessed a dramatic re-emergence of several mosquito-borne arboviruses, including dengue virus (DENV), West Nile virus (WNV), chikungunya virus (CHIKV) and Zika virus (ZIKV). DENV is currently the most common mosquito-borne arbovirus, with an estimated 390 million infections worldwide annually. Despite a global effort, no specific therapeutic strategies are available to combat the diseases caused by these viruses. Multiple cellular pathways modulate the outcome of infection by either promoting or hampering viral replication and/or pathogenesis, and autophagy appears to be one of them. Autophagy is a degradative pathway generally induced to counteract viral infection. Viruses, however, have evolved strategies to subvert this pathway and to hijack autophagy components for their own benefit. In this review, we will focus on the role of autophagy in mosquito-borne arboviruses with emphasis on DENV, CHIKV, WNV and ZIKV, due to their epidemiological importance and high disease burden.
Collapse
Affiliation(s)
- Liliana Echavarria-Consuegra
- 1 Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen , Groningen , The Netherlands
| | - Jolanda M Smit
- 1 Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen , Groningen , The Netherlands
| | - Fulvio Reggiori
- 2 Department of Cell Biology, University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| |
Collapse
|
29
|
Wong RR, Abd-Aziz N, Affendi S, Poh CL. Role of microRNAs in antiviral responses to dengue infection. J Biomed Sci 2020; 27:4. [PMID: 31898495 PMCID: PMC6941309 DOI: 10.1186/s12929-019-0614-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/29/2019] [Indexed: 12/13/2022] Open
Abstract
Dengue virus (DENV) is the etiological agent of dengue fever. Severe dengue could be fatal and there is currently no effective antiviral agent or vaccine. The only licensed vaccine, Dengvaxia, has low efficacy against serotypes 1 and 2. Cellular miRNAs are post-transcriptional regulators that could play a role in direct regulation of viral genes. Host miRNA expressions could either promote or repress viral replications. Induction of some cellular miRNAs could help the virus to evade the host immune response by suppressing the IFN-α/β signaling pathway while others could upregulate IFN-α/β production and inhibit the viral infection. Understanding miRNA expressions and functions during dengue infections would provide insights into the development of miRNA-based therapeutics which could be strategized to act either as miRNA antagonists or miRNA mimics. The known mechanisms of how miRNAs impact DENV replication are diverse. They could suppress DENV multiplication by directly binding to the viral genome, resulting in translational repression. Other miRNA actions include modulation of host factors. In addition, miRNAs that could modulate immunopathogenesis are discussed. Major hurdles lie in the development of chemical modifications and delivery systems for in vivo delivery. Nevertheless, advancement in miRNA formulations and delivery systems hold great promise for the therapeutic potential of miRNA-based therapy, as supported by Miravirsen for treatment of Hepatitis C infection which has successfully completed phase II clinical trial.
Collapse
Affiliation(s)
- Rui Rui Wong
- Centre for Virus and Vaccine Research (CVVR), Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Noraini Abd-Aziz
- Centre for Virus and Vaccine Research (CVVR), Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Sarah Affendi
- Centre for Virus and Vaccine Research (CVVR), Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research (CVVR), Sunway University, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
30
|
Tao S, Drexler I. Targeting Autophagy in Innate Immune Cells: Angel or Demon During Infection and Vaccination? Front Immunol 2020; 11:460. [PMID: 32265919 PMCID: PMC7096474 DOI: 10.3389/fimmu.2020.00460] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/28/2020] [Indexed: 01/07/2023] Open
Abstract
Innate immune cells are the "doorkeepers" in the immune system and are important for the initiation of protective vaccine responses against infection. Being an essential regulatory component of the immune system in these cells, autophagy not only mediates pathogen clearance and cytokine production, but also balances the immune response by preventing harmful overreaction. Interestingly, recent literature indicates that autophagy is positively or negatively regulating the innate immune response in a cell type-specific manner. Moreover, autophagy serves as a bridge between innate and adaptive immunity. It is involved in antigen presentation by delivering pathogen compounds to B and T cells, which is important for effective immune protection. Upon infection, autophagy can also be hijacked by some pathogens for replication or evade host immune responses. As a result, autophagy seems like a double-edged sword to the immune response, strongly depending on the cell types involved and infection models used. In this review, the dual role of autophagy in regulating the immune system will be highlighted in various infection models with particular focus on dendritic cells, monocytes/macrophages and neutrophils. Targeting autophagy in these cells as for therapeutic application or prophylactic vaccination will be discussed considering both roles of autophagy, the "angel" enhancing innate immune responses, antigen presentation, pathogen clearance and dampening inflammation or the "demon" enabling viral replication and degrading innate immune components. A better understanding of this dual potential will help to utilize autophagy in innate immune cells in order to optimize vaccines or treatments against infectious diseases.
Collapse
|
31
|
Nahand JS, Karimzadeh MR, Nezamnia M, Fatemipour M, Khatami A, Jamshidi S, Moghoofei M, Taghizadieh M, Hajighadimi S, Shafiee A, Sadeghian M, Bokharaei-Salim F, Mirzaei H. The role of miR-146a in viral infection. IUBMB Life 2019; 72:343-360. [PMID: 31889417 DOI: 10.1002/iub.2222] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
Cellular microRNAs (miRNAs) were identified as a key player in the posttranscriptional regulation of cellular-genes regulatory pathways. They also emerged as a significant regulator of the immune response. In particular, miR-146a acts as an importance modulator of function and differentiation cells of the innate and adaptive immunity. It has been associated with disorder including cancer and viral infections. Given its significance in the regulation of key cellular processes, it is not surprising which virus infection have found ways to dysregulation of miRNAs. miR-146a has been identified in exosomes (exosomal miR-146a). After the exosomes release from donor cells, they are taken up by the recipient cell and probably the exosomal miR-146a is able to modulate the antiviral response in the recipient cell and result in making them more susceptible to virus infection. In this review, we discuss recent reports regarding miR-146a expression levels, target genes, function, and contributing role in the pathogenesis of the viral infection and provide a clue to develop the new therapeutic and preventive strategies for viral disease in the future.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Karimzadeh
- Department of Medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Maria Nezamnia
- Department of Obstetrics and Gynecology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Maryam Fatemipour
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Khatami
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sogol Jamshidi
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women's Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Mohammad Sadeghian
- Orthopedic Surgeon Fellowship of Spine Surgery, Sasan General Hospital, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
32
|
Zhao Y, Wang Z, Zhang W, Zhang L. MicroRNAs play an essential role in autophagy regulation in various disease phenotypes. Biofactors 2019; 45:844-856. [PMID: 31418958 PMCID: PMC6916288 DOI: 10.1002/biof.1555] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
Abstract
Autophagy is a highly conserved catabolic process and fundamental biological process in eukaryotic cells. It recycles intracellular components to provide nutrients during starvation and maintains quality control of organelles and proteins. In addition, autophagy is a well-organized homeostatic cellular process that is responsible for the removal of damaged organelles and intracellular pathogens. Moreover, it also modulates the innate and adaptive immune systems. Micro ribonucleic acids (microRNAs) are a mature class of post-transcriptional modulators that are widely expressed in tissues and organs. And, it can suppress gene expression by targeting messenger RNAs for translational repression or, at a lesser extent, degradation. Research indicates that microRNAs regulate autophagy through different pathways, playing an essential role in the treatment of various diseases. It is an important regulator of fundamental cellular processes such as proliferation, autophagy, and cell apoptosis. In this review article, we first review the current knowledge of autophagy and the function of microRNAs. Then, we summarize the mechanism of autophagy and the signaling pathways related to autophagy by citing at least the main proteins involved in the different phases of the process. Second, we introduce other members of RNA and report some examples in various pathologies. Finally, we review the current literature regarding microRNA-based therapies for cancer, atherosclerosis, cardiac disease, tuberculosis, and viral diseases. MicroRNAs can cause autophagy upregulation or downregulation by targeting genes or affecting autophagy-related signaling pathways. Therefore, the microRNAs have a huge potential in autophagy regulation, and it is the function as diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Yunyi Zhao
- Laboratory of Pathogenic Microbiology and ImmunologyCollege of Life Science, Jilin Agricultural UniversityChangchunChina
| | - Ze Wang
- Laboratory of Pathogenic Microbiology and ImmunologyCollege of Life Science, Jilin Agricultural UniversityChangchunChina
| | - Wenhui Zhang
- Laboratory of Pathogenic Microbiology and ImmunologyCollege of Life Science, Jilin Agricultural UniversityChangchunChina
- Ministry of Education, Engineering Research Center for Bioreactor and Pharmaceutical DevelopmentJilin Agricultural UniversityChangchunChina
| | - Linbo Zhang
- Laboratory of Pathogenic Microbiology and ImmunologyCollege of Life Science, Jilin Agricultural UniversityChangchunChina
- Ministry of Education, Engineering Research Center for Bioreactor and Pharmaceutical DevelopmentJilin Agricultural UniversityChangchunChina
| |
Collapse
|
33
|
Li R, Wang L. Baicalin inhibits influenza virus A replication via activation of type I IFN signaling by reducing miR‑146a. Mol Med Rep 2019; 20:5041-5049. [PMID: 31638222 PMCID: PMC6854550 DOI: 10.3892/mmr.2019.10743] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 06/26/2019] [Indexed: 12/26/2022] Open
Abstract
Influenza virus A (IVA) is one of the predominant causative agents of the seasonal flu and has become an important cause of morbidity worldwide. Great efforts have been paid to develop vaccines against IVA. However, due to antigenic drift in influenza virus A and rapid emergence of drug-resistant strains, current available vaccines or anti-IVA chemotherapeutics are consistently inefficient. Hence, various more broadly effective drugs have become important for the prevention and treatment of IVA. Of these drugs, baicalin, a flavonoid isolated from Radix Scutellaria, is a promising example. However, little is known in regards to its pharmacological mechanism. Here, it was demonstrated that baicalin inhibits the H1N1 and H3N2 viruses in A549 cells. Subsequently, it was found that miR-146a was markedly downregulated by treatment of baicalin. Additionally, further experiments revealed that miR-146a was able to promote the replication of H1N1 and H3N2 by targeting TNF receptor-associated factor 6 (TRAF6), a pivotal adaptor in the interferon (IFN) production signaling pathway, to downregulate type I IFN production, and enrichment of miR-146a eliminated the anti-IVA effects of baicalin on the H1N1 and H3N2 viruses. Additionally, in vivo experiments demonstrated that baicalin could protect mice during H1N1 infection. Taken together, our findings firstly illustrated the anti-IVA molecular mechanism of baicalin and provide new evidence for targeting miRNAs to prevent and treat viral infection, such as the H1N1 and H3N2 viruses.
Collapse
Affiliation(s)
- Rui Li
- Department of Traditional Chinese Medicine, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, P.R. China
| | - Lianxin Wang
- Institute of Basic Research of Traditional Chinese Medicine in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| |
Collapse
|
34
|
Youseff BH, Brewer TG, McNally KL, Izuogu AO, Lubick KJ, Presloid JB, Alqahtani S, Chattopadhyay S, Best SM, Hu X, Taylor RT. TRAF6 Plays a Proviral Role in Tick-Borne Flavivirus Infection through Interaction with the NS3 Protease. iScience 2019; 15:489-501. [PMID: 31129244 PMCID: PMC6536497 DOI: 10.1016/j.isci.2019.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/18/2019] [Accepted: 05/08/2019] [Indexed: 02/08/2023] Open
Abstract
Tick-borne flaviviruses (TBFVs) can cause life-threatening encephalitis and hemorrhagic fever. To identify virus-host interactions that may be exploited as therapeutic targets, we analyzed the TBFV polyprotein in silico for antiviral protein-binding motifs. We obtained two putative tumor necrosis factor receptor-associated factor 6 (TRAF6)-binding motifs (TBMs) within the protease domain of the viral nonstructural 3 (NS3) protein. Here, we show that TBFV NS3 interacted with TRAF6 during infection and that TRAF6 supports TBFV replication. The proviral role of TRAF6 was not seen with mosquito-borne flaviviruses, consistent with the lack of conserved TBMs. Mutation of the second TBM within NS3 disrupted TRAF6 binding, coincident with reduced abundance of mature, autocatalytically derived form of the NS3 protease and significant virus attenuation in vitro. Our studies reveal insights into how flaviviruses exploit innate immunity for the purpose of viral replication and identify a potential target for therapeutic design. Langat virus (LGTV) NS3 protease interacts with TRAF6 during infection Tick-borne, unlike mosquito-borne, flaviviruses use TRAF6 for optimal replication E117A mutation of LGTV NS3 reduces TRAF6 binding and mature protease abundance LGTV with a mutated TRAF6-binding motif is attenuated in vitro
Collapse
Affiliation(s)
- Brian H Youseff
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Thomas G Brewer
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Kristin L McNally
- Innate Immunity and Pathogenesis Unit, Laboratory of Virology, Rocky Mountain Laboratories, DIR, NIAID, NIH, Hamilton, MT 59840, USA
| | - Adaeze O Izuogu
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Kirk J Lubick
- Innate Immunity and Pathogenesis Unit, Laboratory of Virology, Rocky Mountain Laboratories, DIR, NIAID, NIH, Hamilton, MT 59840, USA
| | - John B Presloid
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Saad Alqahtani
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Sonja M Best
- Innate Immunity and Pathogenesis Unit, Laboratory of Virology, Rocky Mountain Laboratories, DIR, NIAID, NIH, Hamilton, MT 59840, USA
| | - Xiche Hu
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - R Travis Taylor
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA.
| |
Collapse
|
35
|
de Aguiar GPCG, Leite CMGDS, Dias B, Vasconcelos SMM, de Moraes RA, de Moraes MEA, Vallinoto ACR, Macedo DS, Cavalcanti LPDG, Miyajima F. Evidence for Host Epigenetic Signatures Arising From Arbovirus Infections: A Systematic Review. Front Immunol 2019; 10:1207. [PMID: 31214179 PMCID: PMC6554415 DOI: 10.3389/fimmu.2019.01207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 05/13/2019] [Indexed: 12/29/2022] Open
Abstract
Background: Arbovirus infections have steadily become a major pandemic threat. This study aimed at investigating the existence of host epigenetic markers arising from the principal arboviruses infections impacting on human health. We set to systematically review all published evidence describing any epigenetic modifications associated with infections from arboviruses, including, but not limited to, microRNAs, DNA methylation, and histone modifications. Methods: A comprehensive search was conducted using the electronic databases PubMed, Science Direct and Cochrane Library from inception to January 4th, 2018. We included reports describing original in vivo or in vitro studies investigating epigenetic changes related to arbovirus infections in either clinical subjects or human cell lines. Studies investigating epigenetic modifications related to the virus or the arthropod vector were excluded. A narrative synthesis of the findings was conducted, contextualizing comparative evidence from in vitro and in vivo studies. Results: A total of 853 unique references were identified and screened by two independent researchers. Thirty-two studies met the inclusion criteria and were reviewed. The evidence was centered mainly on microRNA and DNA methylation signatures implicated with secondary Dengue fever. Evidence for recent epidemic threats, such as the infections by Zika or Chikungunya viruses is still scant. Conclusions: Major epigenetic alterations found on arboviruses infections were miR-146, miR-30e and the Dicer complex. However, existing studies frequently tested distinct hypotheses resulting in a heterogeneity of methodological approaches. Whilst epigenetic signatures associated with arbovirus infections have been reported, existing studies have largely focused on a small number of diseases, particularly dengue. Validation of epigenetic signatures have an untapped potential, but concerted investigations are certainly required to deliver robust candidates of clinical utility for diagnosis, staging and prognosis of specific arboviral diseases.
Collapse
Affiliation(s)
| | | | - Beatriz Dias
- Faculty of Medicine, Unichristus University Center, Fortaleza, Brazil
| | - Silvania Maria Mendes Vasconcelos
- Postgraduate Programme in Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil.,Center for Drug Research and Development (NPDM), Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Renata Amaral de Moraes
- Faculty of Medicine, Unichristus University Center, Fortaleza, Brazil.,Center for Drug Research and Development (NPDM), Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil.,Sao Jose Hospital of Infectious Diseases, Fortaleza, Brazil
| | - Maria Elisabete Amaral de Moraes
- Postgraduate Programme in Medical and Surgical Sciences, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil.,Postgraduate Programme in Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil.,Center for Drug Research and Development (NPDM), Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | | | - Danielle Silveira Macedo
- Postgraduate Programme in Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil.,Center for Drug Research and Development (NPDM), Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Luciano Pamplona de Goes Cavalcanti
- Faculty of Medicine, Unichristus University Center, Fortaleza, Brazil.,Department of Community Health, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Fabio Miyajima
- Postgraduate Programme in Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil.,Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom.,Postgraduate Programme in Medical Sciences, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil.,Oswaldo Cruz Foundation (Fiocruz), Branch Ceara, Eusebio, Brazil
| |
Collapse
|
36
|
Acharya B, Gyeltshen S, Chaijaroenkul W, Na-Bangchang K. Significance of Autophagy in Dengue Virus Infection: A Brief Review. Am J Trop Med Hyg 2019; 100:783-790. [PMID: 30761986 PMCID: PMC6447095 DOI: 10.4269/ajtmh.18-0761] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/29/2018] [Indexed: 12/16/2022] Open
Abstract
Dengue virus (DENV) causes asymptomatic to severe life-threatening infections and affects millions of people worldwide. Autophagy, a cellular degradative pathway, has both proviral and antiviral functions. Dengue virus triggers the autophagy pathway for the successful replication of its genome. However, the exact mechanism and the viral factors involved in activating this pathway remain unclear. This review summarizes the existing knowledge on the mechanism of autophagy induction and its significance during DENV infection.
Collapse
Affiliation(s)
- Bishwanath Acharya
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Thailand
| | - Sonam Gyeltshen
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Thailand
| | - Wanna Chaijaroenkul
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Thailand
| | - Kesara Na-Bangchang
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Thailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Thailand
| |
Collapse
|
37
|
Mishra R, Sood V, Banerjea AC. Dengue NS5 modulates expression of miR-590 to regulate ubiquitin-specific peptidase 42 in human microglia. FASEB Bioadv 2019; 1:265-278. [PMID: 32123831 PMCID: PMC6996368 DOI: 10.1096/fba.2018-00047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/04/2019] [Accepted: 01/11/2019] [Indexed: 12/19/2022] Open
Abstract
Dengue virus (DENV), a member of Flaviviridae family, has become neurovirulent in humans after rapid geographical expansion. Host proteasomal machinery contains both ubiquitin ligases as well as deubiquitinases (DUBs), known to influence key cellular and biological functions. MicroRNA-mediated modulations of DUBs in case of DENV infections have not been explored yet. DENV propagation, MiRNA overexpression, miRNA knockdown, transfection, RT-PCR, luciferase assay, and western blotting have been used in this study to establish the interaction of miR-590 and USP42. DENV infection in human microglial cells resulted in downregulation of host DUB-USP42 in a dose-dependent manner and DENV-NS5 gene alone was found to be sufficient for this downregulation. miR-590 was upregulated upon NS5 overexpression in a dose-dependent manner. Downregulation of USP42 was observed with miR-590 overexpression. The specificity of this regulation was confirmed by miR-590 mimic and anti-miR transfections in microglial cells. miR-590 overexpression and knockdown affected the expression level of TRAF6 in indirect manner in microglial cells. The luciferase assay demonstrated the direct regulatory interaction between miR-590 and 3'UTR of USP42. These findings establish that DENV-NS5 protein can potentially modulate the host deubiquitinase protein USP42 expression via altering cellular miR-590 levels in human microglial cells.
Collapse
Affiliation(s)
- Ritu Mishra
- Laboratory of VirologyNational Institute of ImmunologyNew DelhiIndia
| | - Vikas Sood
- Jamia Hamdard, deemed UniversityNew DelhiIndia
| | - Akhil C. Banerjea
- Laboratory of VirologyNational Institute of ImmunologyNew DelhiIndia
| |
Collapse
|