1
|
Premraj A, Aleyas AG, Nautiyal B, Rasool TJ. First report of a chemokine from camelids: Dromedary CXCL8 is induced by poxvirus and heavy metal toxicity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 161:105261. [PMID: 39241936 DOI: 10.1016/j.dci.2024.105261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Low molecular weight proteins, known as chemokines, facilitate the migration and localization of immune cells to the site of infection and injury. One of the first chemokines identified, CXCL8 functions as a key neutrophil activator, recruiting neutrophils to sites of inflammation. Several viral infections, including zoonotic coronaviruses and poxviruses, have been reported to induce the expression of CXCL8. Dromedary camels are known to harbor several potentially zoonotic pathogens, but critical immune molecules such as chemokines remain unidentified. We report here the identification of CXCL8 from the dromedary camel - the first chemokine identified from camelids. The complete dromedary CXCL8 cDNA sequence as well as the corresponding gene sequence from dromedary and two New World camelids - alpaca and llama were cloned. CXCL8 mRNA expression was relatively higher in PBMC, spleen, lung, intestine, and liver. Poly(I:C) and lipopolysaccharide stimulated CXCL8 expression in vitro, while interferon treatment inhibited it. In vitro infection with potentially zoonotic camelpox virus induced the expression of CXCL8 in camel kidney cells. Toxicological studies on camelids have been limited, and no biomarkers have been identified. Hence, we also evaluated CXCL8 mRNA expression as a potential biomarker to assess heavy metal toxicity in camel kidney cells in vitro. CXCL8 expression was increased after in vitro exposure to heavy metal compounds of cobalt and cadmium, suggesting potential utility as a biomarker for renal toxicity in camels. The results of our study demonstrate that camel CXCL8 plays a significant role in immunomodulatory and induced toxicity responses in dromedary camels.
Collapse
Affiliation(s)
- Avinash Premraj
- Camel Biotechnology Center, Presidential Camels & Camel Racing Affairs Centre, Department of the President's Affairs, PO Box 17292, Al Ain, United Arab Emirates
| | - Abi George Aleyas
- Camel Biotechnology Center, Presidential Camels & Camel Racing Affairs Centre, Department of the President's Affairs, PO Box 17292, Al Ain, United Arab Emirates
| | - Binita Nautiyal
- Camel Biotechnology Center, Presidential Camels & Camel Racing Affairs Centre, Department of the President's Affairs, PO Box 17292, Al Ain, United Arab Emirates
| | - Thaha Jamal Rasool
- Camel Biotechnology Center, Presidential Camels & Camel Racing Affairs Centre, Department of the President's Affairs, PO Box 17292, Al Ain, United Arab Emirates.
| |
Collapse
|
2
|
Wang Y, Thaler M, Salgado‐Benvindo C, Ly N, Leijs AA, Ninaber DK, Hansbro PM, Boedijono F, van Hemert MJ, Hiemstra PS, van der Does AM, Faiz A. SARS-CoV-2-infected human airway epithelial cell cultures uniquely lack interferon and immediate early gene responses caused by other coronaviruses. Clin Transl Immunology 2024; 13:e1503. [PMID: 38623540 PMCID: PMC11017760 DOI: 10.1002/cti2.1503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/22/2023] [Accepted: 03/24/2024] [Indexed: 04/17/2024] Open
Abstract
Objectives Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of a class of highly pathogenic coronaviruses. The large family of coronaviruses, however, also includes members that cause only mild symptoms, like human coronavirus-229E (HCoV-229E) or OC43 (HCoV-OC43). Unravelling how molecular (and cellular) pathophysiology differs between highly and low pathogenic coronaviruses is important for the development of therapeutic strategies. Methods Here, we analysed the transcriptome of primary human bronchial epithelial cells (PBEC), differentiated at the air-liquid interface (ALI) after infection with SARS-CoV-2, SARS-CoV, Middle East Respiratory Syndrome (MERS)-CoV and HCoV-229E using bulk RNA sequencing. Results ALI-PBEC were efficiently infected by all viruses, and SARS-CoV, MERS-CoV and HCoV-229E infection resulted in a largely similar transcriptional response. The response to SARS-CoV-2 infection differed markedly as it uniquely lacked the increase in expression of immediate early genes, including FOS, FOSB and NR4A1 that was observed with all other coronaviruses. This finding was further confirmed in publicly available experimental and clinical datasets. Interfering with NR4A1 signalling in Calu-3 lung epithelial cells resulted in a 100-fold reduction in extracellular RNA copies of SARS-CoV-2 and MERS-CoV, suggesting an involvement in virus replication. Furthermore, a lack in induction of interferon-related gene expression characterised the main difference between the highly pathogenic coronaviruses and low pathogenic viruses HCoV-229E and HCoV-OC43. Conclusion Our results demonstrate a previously unknown suppression of a host response gene set by SARS-CoV-2 and confirm a difference in interferon-related gene expression between highly pathogenic and low pathogenic coronaviruses.
Collapse
Affiliation(s)
- Ying Wang
- PulmoScience Lab, Department of PulmonologyLeiden University Medical CenterLeidenThe Netherlands
| | - Melissa Thaler
- Department of Medical MicrobiologyLeiden University Medical CenterLeidenThe Netherlands
| | | | - Nathan Ly
- Respiratory Bioinformatics and Molecular Biology (RBMB), School of Life SciencesUniversity of Technology SydneySydneyNSWAustralia
| | - Anouk A Leijs
- Department of Medical MicrobiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Dennis K Ninaber
- PulmoScience Lab, Department of PulmonologyLeiden University Medical CenterLeidenThe Netherlands
| | - Philip M Hansbro
- Centre for InflammationCentenary Institute and University of Technology Sydney, Faculty of ScienceSydneyNSWAustralia
| | - Fia Boedijono
- Centre for InflammationCentenary Institute and University of Technology Sydney, Faculty of ScienceSydneyNSWAustralia
| | - Martijn J van Hemert
- Department of Medical MicrobiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Pieter S Hiemstra
- PulmoScience Lab, Department of PulmonologyLeiden University Medical CenterLeidenThe Netherlands
| | - Anne M van der Does
- PulmoScience Lab, Department of PulmonologyLeiden University Medical CenterLeidenThe Netherlands
| | - Alen Faiz
- Respiratory Bioinformatics and Molecular Biology (RBMB), School of Life SciencesUniversity of Technology SydneySydneyNSWAustralia
| |
Collapse
|
3
|
Stakišaitis D, Kapočius L, Tatarūnas V, Gečys D, Mickienė A, Tamošuitis T, Ugenskienė R, Vaitkevičius A, Balnytė I, Lesauskaitė V. Effects of Combined Treatment with Sodium Dichloroacetate and Sodium Valproate on the Genes in Inflammation- and Immune-Related Pathways in T Lymphocytes from Patients with SARS-CoV-2 Infection with Pneumonia: Sex-Related Differences. Pharmaceutics 2024; 16:409. [PMID: 38543303 PMCID: PMC10974540 DOI: 10.3390/pharmaceutics16030409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 12/10/2024] Open
Abstract
The study presents data on the anti-inflammatory effects of a combination of sodium dichloroacetate and sodium valproate (DCA-VPA) on the expression of inflammation- and immune response-related genes in T lymphocytes of SARS-CoV-2 patients. The study aimed to assess the effects of DCA-VPA on the genes of cytokine activity, chemokine-mediated signaling, neutrophil chemotaxis, lymphocyte chemotaxis, T-cell chemotaxis, and regulation of T-cell proliferation pathways. The study included 21 patients with SARS-CoV-2 infection and pneumonia: 9 male patients with a mean age of 68.44 ± 15.32 years and 12 female patients with a mean age of 65.42 ± 15.74 years. They were hospitalized between December 2022 and March 2023. At the time of testing, over 90% of sequences analyzed in Lithuania were found to be of the omicron variant of SARS-CoV-2. The T lymphocytes from patients were treated with 5 mmol DCA and 2 mmol VPA for 24 h in vitro. The effect of the DCA-VPA treatment on gene expression in T lymphocytes was analyzed via gene sequencing. The study shows that DCA-VPA has significant anti-inflammatory effects and apparent sex-related differences. The effect is more potent in T cells from male patients with SARS-CoV-2 infection and pneumonia than in females.
Collapse
Affiliation(s)
- Donatas Stakišaitis
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (I.B.)
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania
| | - Linas Kapočius
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (I.B.)
| | - Vacis Tatarūnas
- Institute of Cardiology, Laboratory of Molecular Cardiology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (V.T.); (D.G.); (V.L.)
| | - Dovydas Gečys
- Institute of Cardiology, Laboratory of Molecular Cardiology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (V.T.); (D.G.); (V.L.)
| | - Auksė Mickienė
- Department of Infectious Diseases, Lithuanian University of Health Sciences, 47116 Kaunas, Lithuania;
| | - Tomas Tamošuitis
- Department of Intensive Care Medicine, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania;
| | - Rasa Ugenskienė
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania;
| | - Arūnas Vaitkevičius
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University Hospital Santaros Klinikos, Vilnius University, 08661 Vilnius, Lithuania;
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (I.B.)
| | - Vaiva Lesauskaitė
- Institute of Cardiology, Laboratory of Molecular Cardiology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (V.T.); (D.G.); (V.L.)
| |
Collapse
|
4
|
Dai CL, Yang HX, Liu QP, Rahman K, Zhang H. CXCL6: A potential therapeutic target for inflammation and cancer. Clin Exp Med 2023; 23:4413-4427. [PMID: 37612429 DOI: 10.1007/s10238-023-01152-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/23/2023] [Indexed: 08/25/2023]
Abstract
Chemokines were originally defined as cytokines that affect the movement of immune cells. In recent years, due to the increasing importance of immune cells in the tumor microenvironment (TME), the role of chemokines has changed from a single "chemotactic agent" to a key factor that can regulate TME and affect the tumor phenotype. CXCL6, also known as granulocyte chemoattractant protein-2 (GCP-2), can recruit neutrophils to complete non-specific immunity in the process of inflammation. Cancer-related genes and interleukin family can promote the abnormal secretion of CXCL6, which promotes tumor growth, metastasis, epithelial mesenchymal transformation (EMT) and angiogenesis in the TME. CXCL6 also has a role in promoting fibrosis and tissue damage repair. In this review, we focus on the regulatory network affecting CXCL6 expression, its role in the progress of inflammation and how it affects tumorigenesis and progression based on the TME, in an attempt to provide a potential target for the treatment of diseases such as inflammation and cancer.
Collapse
Affiliation(s)
- Chun-Lan Dai
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Xuan Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiu-Ping Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, UK
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
5
|
Kucher AN, Koroleva IA, Zarubin AA, Nazarenko MS. MicroRNAs as the Potential Regulators of SARS-CoV-2 Infection and Modifiers of the COVID-19 Clinical Features. Mol Biol 2022; 56:29-45. [PMID: 35464324 PMCID: PMC9016216 DOI: 10.1134/s0026893322010034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 12/27/2022]
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) warrants the identification of factors that may determine both risk and severity of infection. The factors include microRNAs that have a wide regulatory potential and hence are particularly interesting. The review focuses on the potential roles of human microRNAs and the viral genome as well as microRNAs in SARS-CoV-2 infection and clinical features of COVID-19. The review summarizes the information about the human microRNAs that are thought to specifically bind to the SARS-CoV-2 genome and considers their expression levels in various organs (cells) in both healthy state and pathologies that are risk factors for severe COVID-19. Potential mechanisms whereby SARS-CoV-2 may affect the clinical features of COVID-19 are discussed in brief. The mechanisms include blocking of human microRNAs and RNA-binding proteins, changes in gene expression in infected cells, and possible epigenetic modifications of the human genome with the participation of coronavirus microRNAs.
Collapse
Affiliation(s)
- A. N. Kucher
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Iu. A. Koroleva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050 Tomsk, Russia
| | - A. A. Zarubin
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050 Tomsk, Russia
| | - M. S. Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050 Tomsk, Russia
| |
Collapse
|
6
|
Bernasconi A, Cascianelli S. Scenarios for the Integration of Microarray Gene Expression Profiles in COVID-19-Related Studies. Methods Mol Biol 2022; 2401:195-215. [PMID: 34902130 DOI: 10.1007/978-1-0716-1839-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The COVID-19 pandemic has hit heavily many aspects of our lives. At this time, genomic research is concerned with exploiting available datasets and knowledge to fuel discovery on this novel disease. Studies that can precisely characterize the gene expression profiles of human hosts infected by SARS-CoV-2 are of significant relevance. However, not many such experiments have yet been produced to date, nor made publicly available online. Thus, it is of paramount importance that data analysts explore all possibilities to integrate information coming from similar viruses and related diseases; interestingly, microarray gene profile experiments become extremely valuable for this purpose. This chapter reviews the aspects that should be considered when integrating transcriptomics data, considering mainly samples infected by different viruses and combining together various data types and also the extracted knowledge. It describes a series of scenarios from studies performed in literature and it suggests possible other directions of noteworthy integration.
Collapse
Affiliation(s)
- Anna Bernasconi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy.
| | - Silvia Cascianelli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| |
Collapse
|
7
|
Julian DR, Kazakoff MA, Patel A, Jaynes J, Willis MS, Yates CC. Chemokine-Based Therapeutics for the Treatment of Inflammatory and Fibrotic Convergent Pathways in COVID-19. CURRENT PATHOBIOLOGY REPORTS 2021; 9:93-105. [PMID: 34900402 PMCID: PMC8651461 DOI: 10.1007/s40139-021-00226-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/23/2021] [Indexed: 02/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the SARS-CoV-2 betacoronavirus and has taken over 761,426 American lives as of the date of publication and will likely result in long-term, if not permanent, tissue damage for countless patients. COVID-19 presents with diverse and multisystemic pathologic processes, including a hyperinflammatory response, acute respiratory distress syndrome (ARDS), vascular injury, microangiopathy, tissue fibrosis, angiogenesis, and widespread thrombosis across multiple organs, including the lungs, heart, kidney, liver, and brain. C-X-C chemokines contribute to these pathologies by attracting inflammatory mediators, the disruption of endothelial cell integrity and function, and the initiation and propagation of the cytokine storm. Among these, CXCL10 is recognized as a critical contributor to the hyperinflammatory state and poor prognosis in COVID-19. CXCL10 is also known to regulate growth factor-induced fibrosis, and recent evidence suggests the CXCL10-CXCR3 signaling system may be vital in targeting convergent pro-inflammatory and pro-fibrotic pathways. This review will explore the mechanistic role of CXCL10 and related chemokines in fibrotic complications associated with COVID-19 and the potential of CXCL10-targeted therapeutics for early intervention and long-term treatment of COVID-19-induced fibrosis.
Collapse
Affiliation(s)
- Dana R Julian
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, 3500 Victoria Street, Victoria Bldg. 458A, Pittsburgh, PA 15261 USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Megan A Kazakoff
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, 3500 Victoria Street, Victoria Bldg. 458A, Pittsburgh, PA 15261 USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Akhil Patel
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, 3500 Victoria Street, Victoria Bldg. 458A, Pittsburgh, PA 15261 USA
| | - Jesse Jaynes
- College of Agriculture, Environment and Nutrition Sciences and College of Arts and Sciences, Tuskegee University, Tuskegee, AL 36088 USA
| | - Monte S Willis
- Pathology Institute, Allegheny Health Network, Pittsburgh, PA USA.,Department of Internal Medicine, Cardiology Section, Indiana University School of Medicine, Indianapolis, IN USA
| | - Cecelia C Yates
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, 3500 Victoria Street, Victoria Bldg. 458A, Pittsburgh, PA 15261 USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA USA.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| |
Collapse
|
8
|
Rijsbergen LC, van Dijk LLA, Engel MFM, de Vries RD, de Swart RL. In Vitro Modelling of Respiratory Virus Infections in Human Airway Epithelial Cells - A Systematic Review. Front Immunol 2021; 12:683002. [PMID: 34489934 PMCID: PMC8418200 DOI: 10.3389/fimmu.2021.683002] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Respiratory tract infections (RTI) are a major cause of morbidity and mortality in humans. A large number of RTIs is caused by viruses, often resulting in more severe disease in infants, elderly and the immunocompromised. Upon viral infection, most individuals experience common cold-like symptoms associated with an upper RTI. However, in some cases a severe and sometimes life-threatening lower RTI may develop. Reproducible and scalable in vitro culture models that accurately reflect the human respiratory tract are needed to study interactions between respiratory viruses and the host, and to test novel therapeutic interventions. Multiple in vitro respiratory cell culture systems have been described, but the majority of these are based on immortalized cell lines. Although useful for studying certain aspects of viral infections, such monomorphic, unicellular systems fall short in creating an understanding of the processes that occur at an integrated tissue level. Novel in vitro models involving primary human airway epithelial cells and, more recently, human airway organoids, are now in use. In this review, we describe the evolution of in vitro cell culture systems and their characteristics in the context of viral RTIs, starting from advances after immortalized cell cultures to more recently developed organoid systems. Furthermore, we describe how these models are used in studying virus-host interactions, e.g. tropism and receptor studies as well as interactions with the innate immune system. Finally, we provide an outlook for future developments in this field, including co-factors that mimic the microenvironment in the respiratory tract.
Collapse
Affiliation(s)
- Laurine C. Rijsbergen
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Laura L. A. van Dijk
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Maarten F. M. Engel
- Medical Library, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Rory D. de Vries
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Rik L. de Swart
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
9
|
Park A, Harris LK. Gene Expression Meta-Analysis Reveals Interferon-Induced Genes Associated With SARS Infection in Lungs. Front Immunol 2021; 12:694355. [PMID: 34367154 PMCID: PMC8342995 DOI: 10.3389/fimmu.2021.694355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/05/2021] [Indexed: 01/01/2023] Open
Abstract
Background Severe Acute Respiratory Syndrome (SARS) corona virus (CoV) infections are a serious public health threat because of their pandemic-causing potential. This work is the first to analyze mRNA expression data from SARS infections through meta-analysis of gene signatures, possibly identifying therapeutic targets associated with major SARS infections. Methods This work defines 37 gene signatures representing SARS-CoV, Middle East Respiratory Syndrome (MERS)-CoV, and SARS-CoV2 infections in human lung cultures and/or mouse lung cultures or samples and compares them through Gene Set Enrichment Analysis (GSEA). To do this, positive and negative infectious clone SARS (icSARS) gene panels are defined from GSEA-identified leading-edge genes between two icSARS-CoV derived signatures, both from human cultures. GSEA then is used to assess enrichment and identify leading-edge icSARS panel genes between icSARS gene panels and 27 other SARS-CoV gene signatures. The meta-analysis is expanded to include five MERS-CoV and three SARS-CoV2 gene signatures. Genes associated with SARS infection are predicted by examining the intersecting membership of GSEA-identified leading-edges across gene signatures. Results Significant enrichment (GSEA p<0.001) is observed between two icSARS-CoV derived signatures, and those leading-edge genes defined the positive (233 genes) and negative (114 genes) icSARS panels. Non-random significant enrichment (null distribution p<0.001) is observed between icSARS panels and all verification icSARSvsmock signatures derived from human cultures, from which 51 over- and 22 under-expressed genes are shared across leading-edges with 10 over-expressed genes already associated with icSARS infection. For the icSARSvsmock mouse signature, significant, non-random significant enrichment held for only the positive icSARS panel, from which nine genes are shared with icSARS infection in human cultures. Considering other SARS strains, significant, non-random enrichment (p<0.05) is observed across signatures derived from other SARS strains for the positive icSARS panel. Five positive icSARS panel genes, CXCL10, OAS3, OASL, IFIT3, and XAF1, are found across mice and human signatures regardless of SARS strains. Conclusion The GSEA-based meta-analysis approach used here identifies genes with and without reported associations with SARS-CoV infections, highlighting this approach’s predictability and usefulness in identifying genes that have potential as therapeutic targets to preclude or overcome SARS infections.
Collapse
Affiliation(s)
- Amber Park
- Harris Interdisciplinary Research, Davenport University, Grand Rapids, MI, United States
| | - Laura K Harris
- Harris Interdisciplinary Research, Davenport University, Grand Rapids, MI, United States.,Institute for Cyber-Enabled Research, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
10
|
Taz TA, Ahmed K, Paul BK, Al-Zahrani FA, Mahmud SMH, Moni MA. Identification of biomarkers and pathways for the SARS-CoV-2 infections that make complexities in pulmonary arterial hypertension patients. Brief Bioinform 2021; 22:1451-1465. [PMID: 33611340 PMCID: PMC7929374 DOI: 10.1093/bib/bbab026] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/28/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
This study aimed to identify significant gene expression profiles of the human lung epithelial cells caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. We performed a comparative genomic analysis to show genomic observations between SARS-CoV and SARS-CoV-2. A phylogenetic tree has been carried for genomic analysis that confirmed the genomic variance between SARS-CoV and SARS-CoV-2. Transcriptomic analyses have been performed for SARS-CoV-2 infection responses and pulmonary arterial hypertension (PAH) patients' lungs as a number of patients have been identified who faced PAH after being diagnosed with coronavirus disease 2019 (COVID-19). Gene expression profiling showed significant expression levels for SARS-CoV-2 infection responses to human lung epithelial cells and PAH lungs as well. Differentially expressed genes identification and integration showed concordant genes (SAA2, S100A9, S100A8, SAA1, S100A12 and EDN1) for both SARS-CoV-2 and PAH samples, including S100A9 and S100A8 genes that showed significant interaction in the protein-protein interactions network. Extensive analyses of gene ontology and signaling pathways identification provided evidence of inflammatory responses regarding SARS-CoV-2 infections. The altered signaling and ontology pathways that have emerged from this research may influence the development of effective drugs, especially for the people with preexisting conditions. Identification of regulatory biomolecules revealed the presence of active promoter gene of SARS-CoV-2 in Transferrin-micro Ribonucleic acid (TF-miRNA) co-regulatory network. Predictive drug analyses provided concordant drug compounds that are associated with SARS-CoV-2 infection responses and PAH lung samples, and these compounds showed significant immune response against the RNA viruses like SARS-CoV-2, which is beneficial in therapeutic development in the COVID-19 pandemic.
Collapse
Affiliation(s)
- Tasnimul Alam Taz
- Department of Software Engineering, Daffodil International University, Bangladesh
| | - Kawsar Ahmed
- Department of Information and Communication Technology (ICT) at Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Bikash Kumar Paul
- Department of ICT at Mawlana Bhashani Science and Technology University, Bangladesh
| | | | - S M Hasan Mahmud
- Department of Software Engineering, Daffodil International University, Bangladesh
| | | |
Collapse
|
11
|
Seo SH, Jang Y. Cold-Adapted Live Attenuated SARS-Cov-2 Vaccine Completely Protects Human ACE2 Transgenic Mice from SARS-Cov-2 Infection. Vaccines (Basel) 2020; 8:E584. [PMID: 33022950 PMCID: PMC7712048 DOI: 10.3390/vaccines8040584] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 01/20/2023] Open
Abstract
A safe and effective vaccine that can provide herd immunity against severe acute respiratory syndrome coronavirus (SARS-CoV-2) is urgently needed to stop the spread of this virus among humans. Many human viral vaccines are live, attenuated forms of viruses that elicit humoral and cellular immunity. Here, we describe a cold-adapted live-attenuated vaccine (SARS-CoV-2/human/Korea/CNUHV03-CA22 °C/2020) developed by gradually adapting the growth of SARS-CoV-2 from 37 °C to 22 °C in Vero cells. This vaccine can be potentially administered to humans as a nasal spray. Its single dose strongly induced neutralising antibodies (titre > 640), cellular immunity, and mucosal IgA antibodies in intranasally immunised K18-hACE2 mice, which are very susceptible to SARS-CoV-2 and SARS-CoV infections. The one-dose vaccinated mice were completely protected from SARS-CoV-2 infection and did not show body weight loss, death, or the presence of virus in tissues, such as the nasal turbinates, brain, lungs, and kidneys. These results demonstrate that the cold-adapted live attenuated SARS-CoV-2 vaccine we have developed may be a candidate SARS-CoV-2 vaccine for humans.
Collapse
Affiliation(s)
- Sang Heui Seo
- Laboratory of Influenza Research, College of Veterinary Medicine, Daejeon 34134, Korea;
- Institute of Influenza Virus, Chungnam National University, Daejeon 34134, Korea
| | - Yunyueng Jang
- Laboratory of Influenza Research, College of Veterinary Medicine, Daejeon 34134, Korea;
- Institute of Influenza Virus, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|