1
|
Dellis C, Tatsi EB, Koukou DM, Filippatos F, Vetouli EE, Zoumakis E, Michos A, Syriopoulou V. Genotyping and Molecular Characterization of VP6 and NSP4 Genes of Unusual Rotavirus Group A Isolated from Children with Acute Gastroenteritis. Adv Virol 2024; 2024:3263228. [PMID: 38993264 PMCID: PMC11239230 DOI: 10.1155/2024/3263228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 07/13/2024] Open
Abstract
Group A rotavirus (RVA), which causes acute gastroenteritis (AGE) in children worldwide, is categorized mainly based on VP7 (genotype G) and VP4 (genotype P) genes. Genotypes that circulate at <1% are considered unusual. Important genes also include VP6 (genotype I) and NSP4 (genotype E). VP6 establishes the group and affects immunogenicity, while NSP4, as an enterotoxin, is responsible for the clinical symptoms. The aim of this study was to genotype the VP6 and NSP4 genes and molecularly characterize the NSP4 and VP6 genes of unusual RVA. Unusual RVA strains extracted from fecal samples of children ≤16 years with AGE were genotyped in VP6 and NSP4 genes with Sanger sequencing. In a 15-year period (2007-2021), 54.8% (34/62) of unusual RVA were successfully I and E genotyped. Three different I and E genotypes were identified; I2 (73.5%, 25/34) and E2 (35.3%, 12/34) were the most common. E3 genotype was detected from 2017 onwards. The uncommon combination of I2-E3 was found in 26.5% (9/34) of the strains and G3-P[9]-I2-E3 remained the most frequent G-P-I-E combination (20.6%, 7/34). Children infected with RVA E2 strains had a statistically higher frequency of dehydration (50%) than those infected with RVA E3 strains (p = 0.019). Multiple substitutions were detected in NSP4, but their functional effect remains unknown. The result indicates the genetic diversity of RVA strains. Continuous surveillance of the RVA based on the whole genome will provide better knowledge of its evolution.
Collapse
Affiliation(s)
- Charilaos Dellis
- First Department of Pediatrics Infectious Diseases and Chemotherapy Research Laboratory Medical School National and Kapodistrian University of Athens "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Elizabeth-Barbara Tatsi
- First Department of Pediatrics Infectious Diseases and Chemotherapy Research Laboratory Medical School National and Kapodistrian University of Athens "Aghia Sophia" Children's Hospital, Athens, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine, Athens, Greece
| | - Dimitra-Maria Koukou
- First Department of Pediatrics Infectious Diseases and Chemotherapy Research Laboratory Medical School National and Kapodistrian University of Athens "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Filippos Filippatos
- First Department of Pediatrics Infectious Diseases and Chemotherapy Research Laboratory Medical School National and Kapodistrian University of Athens "Aghia Sophia" Children's Hospital, Athens, Greece
| | | | - Emmanouil Zoumakis
- First Department of Pediatrics Infectious Diseases and Chemotherapy Research Laboratory Medical School National and Kapodistrian University of Athens "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Athanasios Michos
- First Department of Pediatrics Infectious Diseases and Chemotherapy Research Laboratory Medical School National and Kapodistrian University of Athens "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Vasiliki Syriopoulou
- First Department of Pediatrics Infectious Diseases and Chemotherapy Research Laboratory Medical School National and Kapodistrian University of Athens "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
2
|
Fukuda Y, Kusuhara H, Takai-Todaka R, Haga K, Katayama K, Tsugawa T. Human transmission and outbreaks of feline-like G6 rotavirus revealed with whole-genome analysis of G6P[9] feline rotavirus. J Med Virol 2024; 96:e29565. [PMID: 38558056 DOI: 10.1002/jmv.29565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
Group A rotaviruses (RVAs) are generally highly species-specific; however, some strains infect across species. Feline RVAs sporadically infect humans, causing gastroenteritis. In 2012 and 2013, rectal swab samples were collected from 61 asymptomatic shelter cats at a public health center in Mie Prefecture, Japan, to investigate the presence of RVA and any association with human infections. The analysis identified G6P[9] strains in three cats and G3P[9] strains in two cats, although no feline RVA sequence data were available for the former. A whole-genome analysis of these G6P[9] strains identified the genotype constellation G6-P[9]-I2-R2-C2-M2-A3-N2-T3-E3-H3. The nucleotide identity among these G6P[9] strains exceeded 99.5% across all 11 gene segments, indicating the circulation of this G6P[9] strain among cats. Notably, strain RVA/Human-wt/JPN/KF17/2010/G6P[9], previously detected in a 3-year-old child with gastroenteritis, shares high nucleotide identity (>98%) with Mie20120017f, the representative G6P[9] strain in this study, across all 11 gene segments, confirming feline RVA infection and symptomatic presentation in this child. The VP7 gene of strain Mie20120017f also shares high nucleotide identity with other sporadically reported G6 RVA strains in humans. This suggests that feline-origin G6 strains as the probable source of these sporadic G6 RVA strains causing gastroenteritis in humans globally. Moreover, a feline-like human G6P[8] strain circulating in Brazil in 2022 was identified, emphasizing the importance of ongoing surveillance to monitor potential global human outbreaks of RVA.
Collapse
Affiliation(s)
- Yuya Fukuda
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
- Laboratory of Viral Infection, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Hajime Kusuhara
- Mie Prefecture Health and Environment Research Institute, Mie, Japan
| | - Reiko Takai-Todaka
- Laboratory of Viral Infection, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Kei Haga
- Laboratory of Viral Infection, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Takeshi Tsugawa
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
3
|
Le LKT, Chu MNT, Tate JE, Jiang B, Bowen MD, Esona MD, Gautam R, Jaimes J, Pham TPT, Huong NT, Anh DD, Trang NV, Parashar U. Genetic diversity of G9, G3, G8 and G1 rotavirus group A strains circulating among children with acute gastroenteritis in Vietnam from 2016 to 2021. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105566. [PMID: 38316245 PMCID: PMC11299202 DOI: 10.1016/j.meegid.2024.105566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Rotavirus group A (RVA) is the most common cause of severe childhood diarrhea worldwide. The introduction of rotavirus vaccination programs has contributed to a reduction in hospitalizations and mortality caused by RVA. From 2016 to 2021, we conducted surveillance to monitor RVA prevalence and genotype distribution in Nam Dinh and Thua Thien Hue (TT Hue) provinces where a pilot Rotavin-M1 vaccine (Vietnam) implementation took place from 2017 to 2020. Out of 6626 stool samples, RVA was detected in 2164 (32.6%) by ELISA. RT-PCR using type-specific primers were used to determine the G and P genotypes of RVA-positive specimens. Whole genome sequences of a subset of 52 specimens randomly selected from 2016 to 2021 were mapped using next-generation sequencing. From 2016 to 2021, the G9, G3 and G8 strains dominated, with detected frequencies of 39%, 23%, and 19%, respectively; of which, the most common genotypes identified were G9P[8], G3P[8] and G8P[8]. G1 strains re-emerged in Nam Dinh and TT Hue (29.5% and 11.9%, respectively) from 2020 to 2021. G3 prevalence decreased from 74% to 20% in TT Hue and from 21% to 13% in Nam Dinh province between 2017 and 2021. The G3 strains consisted of 52% human typical G3 (hG3) and 47% equine-like G3 (eG3). Full genome analysis showed substantial diversity among the circulating G3 strains with different backgrounds relating to equine and feline viruses. G9 prevalence decreased sharply from 2016 to 2021 in both provinces. G8 strains peaked during 2019-2020 in Nam Dinh and TT Hue provinces (68% and 46%, respectively). Most G8 and G9 strains had no genetic differences over the surveillance period with very high nucleotide similarities of 99.2-99.9% and 99.1-99.7%, respectively. The G1 strains were not derived from the RVA vaccine. Changes in the genotype distribution and substantial diversity among circulating strains were detected throughout the surveillance period and differed between the two provinces. Determining vaccine effectiveness against circulating strains over time will be important to ensure that observed changes are due to natural secular variation and not from vaccine pressure.
Collapse
Affiliation(s)
- Ly K T Le
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Viet Nam
| | - Mai N T Chu
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Viet Nam
| | - Jacqueline E Tate
- United States Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Baoming Jiang
- United States Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Michael D Bowen
- United States Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Mathew D Esona
- United States Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Rashi Gautam
- United States Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Jose Jaimes
- United States Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Thao P T Pham
- Center for Research and Production of Vaccines and Biologicals, Hanoi 100000, Viet Nam
| | - Nguyen T Huong
- Center for Research and Production of Vaccines and Biologicals, Hanoi 100000, Viet Nam
| | - Dang D Anh
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Viet Nam
| | - Nguyen V Trang
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Viet Nam.
| | - Umesh Parashar
- United States Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| |
Collapse
|
4
|
Cao M, Yuan F, Zhang W, Wang X, Ma J, Ma X, Kuai W, Ma X. Genomic analysis of two rare human G3P[9] rotavirus strains in Ningxia, China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 116:105518. [PMID: 37890809 DOI: 10.1016/j.meegid.2023.105518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
G3P (Matthijnssens et al., 2008b [9]) is a rare combination of human rotavirus VP7/VP4 genotypes with a complex evolutionary pattern but limited related studies. Detailed genomic characterisation and genetic evolutionary analyses of G3P (Matthijnssens et al., 2008b [9]) rotaviruses have helped to enhance our understanding of rotavirus diversity. For the first time, we detected two human G3P (Matthijnssens et al., 2008b [9]) Rotavirus A (RVA) strains, RVA/Human-tc/CHN/2020999/2020/G3P (Matthijnssens et al., 2008b [9]) and RVA/Human-wt/CHN/23582009/2023/G3P (Matthijnssens et al., 2008b [9]), in diarrhoea patients from the Ningxia region of China, and carried out a whole-genome analysis of these strains. 2,020,999 and 23,582,009 have identical gene constellations: G3-P[9]-I2-R2-C2-M2-A3-N2-T3-E3-H3, and this genotypic constellation was reported first time in China. They are closely related in 11 genome segments. The genotypes of these two strains are different from the human RVA strains L621 and E2451, which are only G3P (Matthijnssens et al., 2008b [9]) strains reported so far in China, but are identical to those of the Thai feline strain Meesuk and the Korean human strain CAU12-2-51.Phylogenetic analysis showed that the VP6, VP1-VP3, and NSP2 genes of the two strains in this study clustered with human/bovine and feline/bovine rotavirus strains to form a sublineage distinct from the common DS-1-like G2 human rotavirus. In contrast, the VP7, VP4, NSP1, and NSP3-NSP5 gene segments were closely associated with human/feline rotavirus and feline rotavirus strains. These findings suggest that the evolutionary origin of the G3P (Matthijnssens et al., 2008b [9]) human rotavirus found in Ningxia, China, is consistent with the Meesuk and CAU12-2-51 strains, may have arisen through reassortment between uncommon human/bovine, feline/bovine rotavirus strains and human/feline, feline rotaviruses. However, VP1-VP2 gene segments did not have the same lineage as strains Meesuk and CAU12-2-51, suggesting that these genes might be derived from additional reassortment event.
Collapse
Affiliation(s)
- Min Cao
- Ningxia center for Disease Control and Prevention, NO. 528 Shengli South Road, Yingchuan 750004, Ningxia Province, China
| | - Fang Yuan
- Ningxia center for Disease Control and Prevention, NO. 528 Shengli South Road, Yingchuan 750004, Ningxia Province, China
| | - Wei Zhang
- Ningxia center for Disease Control and Prevention, NO. 528 Shengli South Road, Yingchuan 750004, Ningxia Province, China
| | - Xiuqin Wang
- Ningxia center for Disease Control and Prevention, NO. 528 Shengli South Road, Yingchuan 750004, Ningxia Province, China
| | - Jiangtao Ma
- Ningxia center for Disease Control and Prevention, NO. 528 Shengli South Road, Yingchuan 750004, Ningxia Province, China
| | - Xuemin Ma
- Ningxia center for Disease Control and Prevention, NO. 528 Shengli South Road, Yingchuan 750004, Ningxia Province, China
| | - Wenhe Kuai
- Ningxia center for Disease Control and Prevention, NO. 528 Shengli South Road, Yingchuan 750004, Ningxia Province, China
| | - Xueping Ma
- Ningxia center for Disease Control and Prevention, NO. 528 Shengli South Road, Yingchuan 750004, Ningxia Province, China.
| |
Collapse
|
5
|
Jampanil N, Kumthip K, Maneekarn N, Khamrin P. Genetic Diversity of Rotaviruses Circulating in Pediatric Patients and Domestic Animals in Thailand. Trop Med Infect Dis 2023; 8:347. [PMID: 37505643 PMCID: PMC10383398 DOI: 10.3390/tropicalmed8070347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Rotavirus A is a highly contagious virus that causes acute gastroenteritis in humans and a wide variety of animals. In this review, we summarized the information on rotavirus described in the studies in the last decade (2008 to 2021) in Thailand, including the prevalence, seasonality, genetic diversity, and interspecies transmission. The overall prevalence of rotavirus infection in humans ranged from 15-33%. Rotavirus infection was detected throughout the year and most frequently in the dry and cold months, typically in March. The diversity of rotavirus genotypes varied year to year and from region to region. From 2008 to 2016, rotavirus G1P[8] was detected as the most predominant genotype in Thailand. After 2016, G1P[8] decreased significantly and other genotypes including G3P[8], G8P[8], and G9P[8] were increasingly detected from 2016 to 2020. Several uncommon rotavirus strains such as G1P[6], G4P[6], and G3P[10] have also been occasionally detected. In addition, most studies on rotavirus A infection in animals in Thailand from 2011 to 2021 reported the detection of rotavirus A in piglets and canine species. It was reported that rotavirus could cross the host species barrier between humans and animals through interspecies transmission and genetic reassortment mechanisms. The surveillance of rotavirus infection is crucial to identify the trend of rotavirus infection and the emergence of novel rotavirus genotypes in this country. The data provide information on rotavirus infection and the diversity of rotavirus genotypes circulating in the pre-vaccination period, and the data will be useful for the evaluation of the effectiveness of rotavirus vaccine implementation in Thailand.
Collapse
Affiliation(s)
- Nutthawadee Jampanil
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Emerging and Re-Emerging Diarrheal Viruses Cluster, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Emerging and Re-Emerging Diarrheal Viruses Cluster, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Emerging and Re-Emerging Diarrheal Viruses Cluster, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
6
|
Aksoy E, Azkur AK. Genome characterization of a Turkish bovine rotavirus field isolate by shotgun metagenomics. Arch Virol 2023; 168:159. [PMID: 37170023 DOI: 10.1007/s00705-023-05778-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/04/2023] [Indexed: 05/13/2023]
Abstract
A bovine rotavirus (BRV) isolate from Kirsehir was isolated from feces of a neonatal calf with diarrhea, identified, and sequenced by shotgun sequencing. Its genotype constellation is G10-P[5]-I2-R2-C2-M2-A3-N2-T6-E2-H3. The structural genes and the non-structural genes NSP1, NSP3, and NSP4 of the Kirsehir isolate were similar in sequence to those of BRVs identified in Turkey. However, VP2, NSP2, NSP4, and NSP5/6 showed similarity to those of rotaviruses from different animal hosts. These findings not only expand our current understanding of the diversity of rotaviruses but also contribute to our understanding of the evolution of rotaviruses at both the national and global levels and reinforce the significance of conducting further research on rotaviruses in Turkey.
Collapse
Affiliation(s)
- Emel Aksoy
- Department of Virology, Faculty of Veterinary Medicine, Kirikkale University, Kirikkale, Türkiye
| | - Ahmet Kürşat Azkur
- Department of Virology, Faculty of Veterinary Medicine, Kirikkale University, Kirikkale, Türkiye.
| |
Collapse
|