1
|
Gao Y, Chen N, Jiang X, Yang X. Application of α-bromination reaction on acetophenone derivatives in experimental teaching: a chemical innovation experiment engaging junior undergraduates. BMC Chem 2024; 18:38. [PMID: 38383516 PMCID: PMC10882791 DOI: 10.1186/s13065-024-01145-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/13/2024] [Indexed: 02/23/2024] Open
Abstract
The α-bromination reaction of carbonyl compounds is a significant topic in the field of organic chemistry. However, due to the lack of suitable brominating reagents, the application of this reaction in undergraduate organic chemistry experiments is limited. In this study, three junior undergraduates successfully conducted an innovative experiment under the guidance of teachers. The bromination of various acetophenone derivatives was investigated by employing pyridine hydrobromide perbromide as the brominating agent, with a focus on exploring the effects of reaction time, reaction temperature, and dosage of the brominating agent. The results demonstrated that 4-chloro-α-bromo-acetophenone could be synthesized at 90 ℃ using 4-chloroacetophenone as a substrate and acetic acid as a solvent with a molar ratio of substrate to brominator being 1.0:1.1. Through the experimental teaching of 18 junior undergraduates, it was observed that all the students successfully completed the experiment within a time frame of 4-5 h, with a notable achievement yield exceeding 80% observed in 14 students. This innovative experiment exhibits significant advantages in terms of safety, high yield, cost-effectiveness, and repeatability. Furthermore, while reinforcing fundamental skills in chemistry experimentation among students, it enhances their scientific literacy levels and fosters innovation consciousness as well as practical aptitude. Consequently, this approach is highly suitable for widespread implementation and integration into undergraduate experimental pedagogy.
Collapse
Affiliation(s)
- Yongguang Gao
- Department of Chemistry, Tangshan Normal University, Tangshan, China.
| | - Na Chen
- Department of Chemistry, Tangshan Normal University, Tangshan, China
| | - Xiaoye Jiang
- Department of Chemistry, Tangshan Normal University, Tangshan, China
| | - Xiaochun Yang
- Department of Chemistry, Tangshan Normal University, Tangshan, China
| |
Collapse
|
2
|
C H‧‧‧X (X = F, Cl) and Cl‧‧‧Cl halogen-mediated interactions driving the crystal packing in N-substituted 4-arylimidazoles. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Sarmiento JT, Portilla J. Current Advances in Diazoles-based Chemosensors for CN- and FDetection. Curr Org Synth 2023; 20:77-95. [PMID: 35184705 DOI: 10.2174/1570179419666220218095741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/19/2021] [Accepted: 01/10/2022] [Indexed: 12/16/2022]
Abstract
Advances in molecular probes have recently intensified because they are valuable tools in studying species of interest for human health, the environment, and industry. Among these species, cyanide (CN-) and fluoride (F-) stand out as hazardous and toxic ions in trace amounts. Thus, there is a significant interest in probes design for their detection with diverse diazoles (pyrazole and imidazole) used for this purpose. These diazole derivatives are known as functional molecules because of their known synthetic versatility and applicability, as they exhibit essential photophysical properties with helpful recognition centers. This review provides an overview of the recent progress (2017-2021) in diazole-based sensors for CN- and F- detection, using the azolic ring as a signaling or recognition unit. The discussion focuses on the mechanism of the action described for recognizing the anion, the structure of the probes with the best synthetic simplicity, detection limits (LODs), application, and selectivity. In this context, the analysis involves probes for cyanide sensing first, then probes for fluoride sensing, and ultimately, dual probes that allow both species recognition.
Collapse
Affiliation(s)
- Jeymy T Sarmiento
- Department of Chemistry, Faculty of Sciences, Universidad de los Andes, Bogota, D.C, Colombia
| | - Jaime Portilla
- Department of Chemistry, Faculty of Sciences, Universidad de los Andes, Bogota, D.C, Colombia
| |
Collapse
|
4
|
Aranzazu SL, Tigreros A, Arias-Gómez A, Zapata-Rivera J, Portilla J. BF 3-Mediated Acetylation of Pyrazolo[1,5- a]pyrimidines and Other π-Excedent ( N-Hetero)arenes. J Org Chem 2022; 87:9839-9850. [PMID: 35834668 DOI: 10.1021/acs.joc.2c00881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An operably simple microwave-assisted BF3-mediated acetylation reaction of pyrazolo[1,5-a]pyrimidines and a plausible mechanism based on density functional theory (DFT) theoretical calculations for this transformation are reported. Remarkably, and to the best of our knowledge, this is the first example of the direct acetylation for the functional pyrazolo[1,5-a]pyrimidine (PP) core. The synthesis of this essential building block is reported in high yields using mild reaction conditions, inexpensive reagents, and even substrates with electron-deficient or highly hindered groups. In addition, one of the new methyl ketones was successfully used as a substrate for producing novel and valuable bis-electrophilic compounds with yields of up to 90%. Notably, the discovered acetylation method was successfully applied in other π-excedent (N-hetero)aromatic substrates.
Collapse
|
5
|
N-Phenacyldibromobenzimidazoles—Synthesis Optimization and Evaluation of Their Cytotoxic Activity. Molecules 2022; 27:molecules27144349. [PMID: 35889223 PMCID: PMC9315981 DOI: 10.3390/molecules27144349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Antifungal N-phenacyl derivatives of 4,6- and 5,6-dibromobenzimidazoles are interesting substrates in the synthesis of new antimycotics. Unfortunately, their application is limited by the low synthesis yields and time-consuming separation procedure. In this paper, we present the optimization of the synthesis conditions and purification methods of N-phenacyldibromobenzimidazoles. The reactions were carried out in various base solvent-systems including K2CO3, NaH, KOH, t-BuOK, MeONa, NaHCO3, Et3N, Cs2CO3, DBU, DIPEA, or DABCO as a base, and MeCN, DMF, THF, DMSO, or dioxane as a solvent. The progress of the reaction was monitored using HPLC analysis. The best results were reached when the reactions were carried out in an NaHCO3–MeCN system at reflux for 24 h. Additionally, the cytotoxic activity of the synthesized compounds against MCF-7 (breast adenocarcinoma), A-549 (lung adenocarcinoma), CCRF-CEM (acute lymphoblastic leukemia), and MRC-5 (normal lung fibroblasts) was evaluated. We observed that the studied cell lines differed in sensitivity to the tested compounds with MCF-7 cells being the most sensitive, while A-549 cells were the least sensitive. Moreover, the cytotoxicity of the tested derivatives towards CCRF-CEM cells increased with the number of chlorine or fluorine substituents. Furthermore, some of the active compounds, i.e., 2-(5,6-dibromo-1H-benzimidazol-1-yl)-1-(3,4-dichlorophenyl)ethanone (4f), 2-(4,6-dibromo-1H-benzimidazol-1-yl)-1-(2,4,6-trichlorophenyl)ethanone (5g), and 2-(4,6-dibromo-1H-benzimidazol-1-yl)-1-(2,4,6-trifluorophenyl)ethanone (5j) demonstrated pro-apoptotic properties against leukemic cells with derivative 5g being the most effective.
Collapse
|
6
|
Elejalde-Cadena NR, García-Olave M, Figueroa D, Vidossich P, Miscione GP, Portilla J. Influence of Steric Effect on the Pseudo-Multicomponent Synthesis of N-Aroylmethyl-4-Arylimidazoles. Molecules 2022; 27:1165. [PMID: 35208948 PMCID: PMC8874432 DOI: 10.3390/molecules27041165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/24/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
A pseudo-three-component synthesis of N-aroylmethylimidazoles 3 with three new C-N bonds formed regioselectively under microwave conditions was developed. Products were obtained by reacting two equivalents of aroylmethyl bromide (ArCOCH2Br, 1) with the appropriate amidine salt (RCN2H3.HX, 2) and with K2CO3 as a base in acetonitrile. The bicomponent reaction also occurred, giving the expected 4(5)-aryl-1H-imidazoles 4. Notably, the ratio of products 3 and 4 is governed by steric factors of the amidine 2 (i.e., R = H, CH3, Ph). Therefore, a computational study was carried out to understand the reaction course regarding product ratio (3/4), regioselectivity, and the steric effects of the amidine substituent group.
Collapse
Affiliation(s)
- Nerith Rocio Elejalde-Cadena
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia; (N.R.E.-C.); (M.G.-O.)
| | - Mayra García-Olave
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia; (N.R.E.-C.); (M.G.-O.)
| | - David Figueroa
- COBO-Computational Bio-Organic Chemistry Bogotá, Department of Chemistry, Universidad de los Andes, Cra 1 No. 18A-12, Bogotá 111711, Colombia; (D.F.); (G.P.M.)
| | - Pietro Vidossich
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy;
| | - Gian Pietro Miscione
- COBO-Computational Bio-Organic Chemistry Bogotá, Department of Chemistry, Universidad de los Andes, Cra 1 No. 18A-12, Bogotá 111711, Colombia; (D.F.); (G.P.M.)
| | - Jaime Portilla
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia; (N.R.E.-C.); (M.G.-O.)
| |
Collapse
|
7
|
Ahmadi A, Mohammadnejadi E, Karami P, Razzaghi-Asl N. Current Status and Structure Activity Relationship of Privileged Azoles as Antifungal Agents (2016-2020). Int J Antimicrob Agents 2022; 59:106518. [PMID: 35045309 DOI: 10.1016/j.ijantimicag.2022.106518] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 11/05/2022]
Abstract
Fungal infections have major contribution to the infectious related deaths in recent century. The issue has gotten worse with the advent of immunity impairing conditions such as HIV epidemic. Eukaryote nature of fungal pathogens leads to harder eradication than bacterial infections. Given the importance of the problem, considerable efforts have been put on the synthesis and biological assessment of azole-based chemical scaffolds and their bioisosteres. The emergence of validated macromolecular targets within different fungal species inspires structure-based drug design strategies toward diverse azole-based agents. Despite of advantageous features, emergence of drug-resistant fungal species restrict the applicability of current azoles as the first-line antifungal agents. Consequently, it appears advisable to elucidate SARs and chemical biodiversity within antifungal azoles. Current contribution was devoted to a brief look at clinically applied drugs, structure-based classification of azole antifungals and their structure activity relationships (SARs). Reviewed molecules belong to the antifungal structures that were reported throughout 2016-2020.
Collapse
Affiliation(s)
- A Ahmadi
- Students Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil
| | - E Mohammadnejadi
- Students Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil
| | - P Karami
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - N Razzaghi-Asl
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
8
|
Ríos MC, Bravo NF, Sánchez CC, Portilla J. Chemosensors based on N-heterocyclic dyes: advances in sensing highly toxic ions such as CN - and Hg 2. RSC Adv 2021; 11:34206-34234. [PMID: 35497277 PMCID: PMC9042589 DOI: 10.1039/d1ra06567j] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/02/2021] [Indexed: 12/19/2022] Open
Abstract
CN- and Hg2+ ions are harmful to both the environment and human health, even at trace levels. Thus, alternative methods for their detection and quantification are highly desirable given that the traditional monitoring systems are expensive and require qualified personnel. Optical chemosensors (probes) have revolutionized the sensing of different species due to their high specificity and sensitivity, corresponding with their modular design. They have also been used in aqueous media and different pH ranges, facilitating their applications in various samples. The design of molecular probes is based on organic dyes, where the key species are N-heterocyclic compounds (NHCs) due to their proven photophysical properties, biocompatibility, and synthetic versatility, which favor diverse applications. Accordingly, this review aims to provide an overview of the reports from 2016 to 2021, in which fluorescent probes based on five- and six-membered N-heterocycles are used for the detection of CN- and Hg2+ ions.
Collapse
Affiliation(s)
- María-Camila Ríos
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| | - Néstor-Fabián Bravo
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| | - Christian-Camilo Sánchez
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| | - Jaime Portilla
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| |
Collapse
|
9
|
Staniszewska M, Kuryk Ł, Gryciuk A, Kawalec J, Rogalska M, Baran J, Kowalkowska A. The Antifungal Action Mode of N-Phenacyldibromobenzimidazoles. Molecules 2021; 26:molecules26185463. [PMID: 34576932 PMCID: PMC8465355 DOI: 10.3390/molecules26185463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 11/29/2022] Open
Abstract
Our study aimed to characterise the action mode of N-phenacyldibromobenzimidazoles against C. albicans and C. neoformans. Firstly, we selected the non-cytotoxic most active benzimidazoles based on the structure–activity relationships showing that the group of 5,6-dibromobenzimidazole derivatives are less active against C. albicans vs. 4,6-dibromobenzimidazole analogues (5e–f and 5h). The substitution of chlorine atoms to the benzene ring of the N-phenacyl substituent extended the anti-C. albicans action (5e with 2,4-Cl2 or 5f with 3,4-Cl2). The excellent results for N-phenacyldibromobenzimidazole 5h against the C. albicans reference and clinical isolate showed IC50 = 8 µg/mL and %I = 100 ± 3, respectively. Compound 5h was fungicidal against the C. neoformans isolate. Compound 5h at 160–4 µg/mL caused irreversible damage of the fungal cell membrane and accidental cell death (ACD). We reported on chitinolytic activity of 5h, in accordance with the patterns observed for the following substrates: 4-nitrophenyl-N-acetyl-β-d-glucosaminide and 4-nitrophenyl-β-d-N,N′,N″-triacetylchitothiose. Derivative 5h at 16 µg/mL: (1) it affected cell wall by inducing β-d-glucanase, (2) it caused morphological distortions and (3) osmotic instability in the C. albicans biofilm-treated. Compound 5h exerted Candida-dependent inhibition of virulence factors.
Collapse
Affiliation(s)
- Monika Staniszewska
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland;
- Correspondence: (M.S.); (A.K.)
| | - Łukasz Kuryk
- Department of Virology, National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland;
- Clinical Science, Targovax Oy, Lars Sonckin Kaari 14, Espoo Stella Luna Business Park, 02600 Espoo, Finland
| | - Aleksander Gryciuk
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St 3, 00-664 Warsaw, Poland; (A.G.); (J.K.); (M.R.)
| | - Joanna Kawalec
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St 3, 00-664 Warsaw, Poland; (A.G.); (J.K.); (M.R.)
| | - Marta Rogalska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St 3, 00-664 Warsaw, Poland; (A.G.); (J.K.); (M.R.)
| | - Joanna Baran
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland;
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St 3, 00-664 Warsaw, Poland; (A.G.); (J.K.); (M.R.)
| | - Anna Kowalkowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St 3, 00-664 Warsaw, Poland; (A.G.); (J.K.); (M.R.)
- Correspondence: (M.S.); (A.K.)
| |
Collapse
|
10
|
Vargas-Oviedo D, Portilla J, Macías MA. Influence of the haloaryl moiety over the molecular packing in N-phenacylbenzimidazoles crystallizing in the same space group. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Castillo JC, Bravo NF, Tamayo LV, Mestizo PD, Hurtado J, Macías M, Portilla J. Water-Compatible Synthesis of 1,2,3-Triazoles under Ultrasonic Conditions by a Cu(I) Complex-Mediated Click Reaction. ACS OMEGA 2020; 5:30148-30159. [PMID: 33251449 PMCID: PMC7689893 DOI: 10.1021/acsomega.0c04592] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/16/2020] [Indexed: 05/04/2023]
Abstract
A new monophosphine Cu(I) complex bearing bis(pyrazolyl)methane (L 1 ) (CuIL 1 PPh 3 ) was synthesized and used as a catalyst for the three-component click reaction from an alkyl halide, sodium azide, and terminal alkyne to furnish 1,4-disubstituted 1,2,3-triazoles in up to 93% yield. The catalyst is highly stable, compatible with oxygen/water, and works with total efficiency under ultrasonic condition. The structure of the complex was studied and confirmed by X-ray crystallography, finding a riveting relationship with its catalytic activity. This sustainable triazoles synthesis is distinguished by its high atom economy, low catalyst loading (up to 0.5 mol %), broad substrate scope, short reaction times, operational simplicity, and an easy gram-scale supply of a functionalized product for subsequent synthetic applications.
Collapse
Affiliation(s)
- Juan-Carlos Castillo
- Bioorganic
Compounds Research Group, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-10, 111711 Bogotá, Colombia
- Escuela
de Ciencias Química, Universidad
Pedagógica y Tecnológica de Colombia, Avenida Central del Norte 39-115, Tunja 150003, Colombia
| | - Nestor-Fabian Bravo
- Bioorganic
Compounds Research Group, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-10, 111711 Bogotá, Colombia
| | - Lenka-Victoria Tamayo
- Grupo
de Investigación en Química Inorgánica, Catálisis
y Bioinorgánica, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - Paula-Daniela Mestizo
- Grupo
de Investigación en Química Inorgánica, Catálisis
y Bioinorgánica, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - John Hurtado
- Grupo
de Investigación en Química Inorgánica, Catálisis
y Bioinorgánica, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - Mario Macías
- Department
of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - Jaime Portilla
- Bioorganic
Compounds Research Group, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-10, 111711 Bogotá, Colombia
| |
Collapse
|