1
|
Hong Y, Li LH, Kuo TH, Lee YT, Hsu CC. Early Prediction of Septic Shock in Emergency Department Using Serum Metabolites. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025. [PMID: 40340384 DOI: 10.1021/jasms.5c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Early recognition of septic shock is crucial for improving clinical management and patient outcomes, especially in the emergency department (ED). This study conducted serum metabolomic profiling on ED patients diagnosed with septic shock (n = 32) and those without septic shock (n = 92) using a high-resolution mass spectrometer. By implementing a supervised machine learning algorithm, a prediction model based on a panel of metabolites achieved an accuracy of 87.8%. Notably, when employed on a low-resolution instrument, the model maintained its predictive performance with an accuracy of 84.2%. These results demonstrate the potential of metabolite-based algorithms to identify patients at high risk of septic shock. Our proposed workflow aims to optimize risk assessment and streamline clinical management processes in the ED, holding promise as an efficient routine test to promote timely intensive interventions and reduce septic shock mortality.
Collapse
Affiliation(s)
- Yu Hong
- Department of Chemistry, National Taiwan University, 10617, Taipei, Taiwan
| | - Li-Hua Li
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, 11217, Taipei, Taiwan
- Ph.D. Program of Medical Biotechnology, Taipei Medical University, 110301, Taipei, Taiwan
| | - Ting-Hao Kuo
- Department of Chemistry, National Taiwan University, 10617, Taipei, Taiwan
- European Molecular Biology Laboratory, 69117, Heidelberg, Baden-Württemberg, Germany
| | - Yi-Tzu Lee
- Department of Emergency Medicine, Taipei Veterans General Hospital, 11217, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304, Taipei, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, 10617, Taipei, Taiwan
- Leeuwenhoek Laboratories Co. Ltd, 106070, Taipei, Taiwan
| |
Collapse
|
2
|
Quo vadis: signaling molecules and small secreted proteins from mycorrhizal fungi at the early stage of mycorrhiza formation. Symbiosis 2021. [DOI: 10.1007/s13199-021-00793-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
3
|
Ding YH, Miao RX, Zhang Q. Hypaphorine exerts anti-inflammatory effects in sepsis induced acute lung injury via modulating DUSP1/p38/JNK pathway. Kaohsiung J Med Sci 2021; 37:883-893. [PMID: 34250720 DOI: 10.1002/kjm2.12418] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 01/02/2023] Open
Abstract
Sepsis is a systemic inflammatory response syndrome attributed to infection, while sepsis-induced acute lung injury (ALI) has high morbidity and mortality. Here, we aimed to explore the specific mechanism of hypaphorine's anti-inflammatory effects in ALI. Lipopolysaccharide (LPS) was adopted to construct ALI model both in vivo and in vitro. BEAS-2B cell viability and apoptosis was testified by the MTT assay and flow cytometry. Reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) were performed to examine the expression of proinflammatory cytokines (IL-1β, IL-6, TNF-α, and IL-18), and Western blot was adopted to examine the expression of the apoptosis-related proteins (Bax, Bcl2, and Caspase3) and the DUSP1/p38/JNK signaling pathway. At the same time, lung injury score, lactate dehydrogenase (LDH) and myeloperoxidase (MPO) activity were monitored. The dry/wet weight method was used to examine lung edema, and the total protein content in BALF was determined to test pulmonary vascular permeability. As the data suggested, hypaphorine inhibited the LPS-mediated apoptosis of alveolar epithelial cells. What is more, hypaphorine attenuated the expression of inflammatory factors (IL-1β, IL-6, TNF-α, and IL-18) and inactivated the p38/JNK signaling pathway through upregulating DUSP1 in a dose-dependent manner. Meanwhile, DUSP1 knockdown weakened the anti-inflammatory effect of hypaphorine on LPS-mediated lung injury. Furthermore, hypaphorine also relieved LPS induced ALI in rats with anti-inflammatory effects. Taken together, hypaphorine prevented LPS-mediated ALI and proinflammatory response via inactivating the p38/JNK signaling pathway by upregulating DUSP1.
Collapse
Affiliation(s)
- Yu-Hua Ding
- Department of Pharmacy, Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang, Shandong, China
| | - Run-Xin Miao
- Department of Emergency, Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang, Shandong, China
| | - Qiang Zhang
- Department of Pharmacy, Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang, Shandong, China
| |
Collapse
|
4
|
Luan G, Tie F, Yuan Z, Li G, He J, Wang Z, Wang H. Hypaphorine, an Indole Alkaloid Isolated from Caragana korshinskii Kom., Inhibites 3T3-L1 Adipocyte Differentiation and Improves Insulin Sensitivity in Vitro. Chem Biodivers 2017; 14. [PMID: 28398659 DOI: 10.1002/cbdv.201700038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/07/2017] [Indexed: 01/03/2023]
Abstract
Obesity, a major health problem worldwide, is a complex multifactorial chronic disease that increases the risk for insulin resistance, type 2 diabetes, coronary heart disease, and hypertension. In this study, we assessed methods to isolate hypaphorine, a potent drug candidate for obesity and insulin resistance. Semi-preparative reversed-phase liquid chromatography (semi-preparative RPLC) was established as a method to separate three compounds, adenosine, l-tryptophan, and hypaphorine, from the crude extracts of Caragana korshinskii Kom. Due to its specific chemical structure, the effect of hypaphorine on differentiation and dexamethasone (DXM) induced insulin resistance of 3T3-L1 cells was investigated. The structures of the three compounds were confirmed by UV, 1 H-NMR, and 13 C-NMR analysis and compared with published data. The activity results indicated that hypaphorine prevented the differentiation of 3T3-L1 preadipocytes into adipocytes by down-regulating hormone-stimulated protein expression of peroxisome proliferator activated receptor γ (PPARγ) and CCAAT/enhancer binding protein (C/EBPα), and their downstream targets, sterol regulatory element binding protein 1 c (SREBP1c) and fatty acid synthase (FAS). Hypaphorine also alleviated DXM-induced insulin resistance in differentiated 3T3-L1 adipocytes via increasing the phosphorylation level of Akt2, a key protein in the insulin signaling pathway. Taken together, we suggest that the method can be applied to large-scale extraction and large-quantity preparation of hypaphorine for treatment of obesity and insulin resistance.
Collapse
Affiliation(s)
- Guangxiang Luan
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xin'ning Road, Xining, 810008, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fangfang Tie
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xin'ning Road, Xining, 810008, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhenzhen Yuan
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xin'ning Road, Xining, 810008, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gang Li
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xin'ning Road, Xining, 810008, P. R. China.,Center of Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, 30 Qingquan Road, Yantai, 264005, P. R. China
| | - Jie He
- Center of Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, 30 Qingquan Road, Yantai, 264005, P. R. China
| | - Zhenhua Wang
- Center of Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, 30 Qingquan Road, Yantai, 264005, P. R. China
| | - Honglun Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xin'ning Road, Xining, 810008, P. R. China.,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810008, P. R. China
| |
Collapse
|
5
|
Kasheverov IE, Shelukhina IV, Kudryavtsev DS, Makarieva TN, Spirova EN, Guzii AG, Stonik VA, Tsetlin VI. 6-bromohypaphorine from marine nudibranch mollusk Hermissenda crassicornis is an agonist of human α7 nicotinic acetylcholine receptor. Mar Drugs 2015; 13:1255-66. [PMID: 25775422 PMCID: PMC4377982 DOI: 10.3390/md13031255] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/11/2015] [Accepted: 02/15/2015] [Indexed: 01/07/2023] Open
Abstract
6-Bromohypaphorine (6-BHP) has been isolated from the marine sponges Pachymatisma johnstoni, Aplysina sp., and the tunicate Aplidium conicum, but data on its biological activity were not available. For the nudibranch mollusk Hermissenda crassicornis no endogenous compounds were known, and here we describe the isolation of 6-BHP from this mollusk and its effects on different nicotinic acetylcholine receptors (nAChR). Two-electrode voltage-clamp experiments on the chimeric α7 nAChR (built of chicken α7 ligand-binding and glycine receptor transmembrane domains) or on rat α4β2 nAChR expressed in Xenopus oocytes revealed no action of 6-BHP. However, in radioligand analysis, 6-BHP competed with radioiodinated α-bungarotoxin for binding to human α7 nAChR expressed in GH4C1 cells (IC50 23 ± 1 μM), but showed no competition on muscle-type nAChR from Torpedo californica. In Ca2+-imaging experiments on the human α7 nAChR expressed in the Neuro2a cells, 6-BHP in the presence of PNU120596 behaved as an agonist (EC50 ~80 μM). To the best of our knowledge, 6-BHP is the first low-molecular weight compound from marine source which is an agonist of the nAChR subtype. This may have physiological importance because H. crassicornis, with its simple and tractable nervous system, is a convenient model system for studying the learning and memory processes.
Collapse
Affiliation(s)
- Igor E Kasheverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow 117997, Russia.
| | - Irina V Shelukhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow 117997, Russia.
| | - Denis S Kudryavtsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow 117997, Russia.
| | - Tatyana N Makarieva
- Elyakov Pacific Institute of Bioorganic Chemistry (PIBOC), Russian Academy of Sciences, Prospect 100 let Vladivostoku, 159, Vladivostok 690022, Russia.
| | - Ekaterina N Spirova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow 117997, Russia.
| | - Alla G Guzii
- Elyakov Pacific Institute of Bioorganic Chemistry (PIBOC), Russian Academy of Sciences, Prospect 100 let Vladivostoku, 159, Vladivostok 690022, Russia.
| | - Valentin A Stonik
- Elyakov Pacific Institute of Bioorganic Chemistry (PIBOC), Russian Academy of Sciences, Prospect 100 let Vladivostoku, 159, Vladivostok 690022, Russia.
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow 117997, Russia.
| |
Collapse
|
6
|
Calcium imaging perspectives in plants. Int J Mol Sci 2014; 15:3842-59. [PMID: 24599077 PMCID: PMC3975371 DOI: 10.3390/ijms15033842] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 11/26/2022] Open
Abstract
The calcium ion (Ca2+) is a versatile intracellular messenger. It provides dynamic regulation of a vast array of gene transcriptions, protein kinases, transcription factors and other complex downstream signaling cascades. For the past six decades, intracellular Ca2+ concentration has been significantly studied and still many studies are under way. Our understanding of Ca2+ signaling and the corresponding physiological phenomenon is growing exponentially. Here we focus on the improvements made in the development of probes used for Ca2+ imaging and expanding the application of Ca2+ imaging in plant science research.
Collapse
|
7
|
Pylro VS, de Freitas ALM, Otoni WC, da Silva IR, Borges AC, Costa MD. Calcium oxalate crystals in eucalypt ectomycorrhizae: morphochemical characterization. PLoS One 2013; 8:e67685. [PMID: 23844062 PMCID: PMC3699605 DOI: 10.1371/journal.pone.0067685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/19/2013] [Indexed: 12/02/2022] Open
Abstract
Ectomycorrhizal fungi are ubiquitous in forest ecosystems, benefitting plants principally by increasing the uptake of water and nutrients such as calcium from the soil. Previous work has demonstrated accumulation of crystallites in eucalypt ectomycorrhizas, but detailed morphological and chemical characterization of these crystals has not been performed. In this work, cross sections of acetic acid-treated and cleared ectomycorrhizal fragments were visualized by polarized light microscopy to evaluate the location of crystals within cortical root cells. Ectomycorrhizal sections were also observed by scanning electron microscopy (SEM) coupled with energy dispersive x-ray (EDS) microprobe analysis. The predominant forms of crystals were crystal sand (granules) and concretions. Calcium, carbon and oxygen were detected by EDS as constituent elements and similar elemental profiles were observed between both crystal morphologies. All analyzed crystalline structures were characterized as calcium oxalate crystals. This is the first report of the stoichiometry and morphology of crystals occurring in eucalypt ectomycorrhizas in tropical soils. The data corroborates the role of ectomycorrhizae in the uptake and accumulation of calcium in the form of calcium oxalate crystals in hybrid eucalypt plants.
Collapse
Affiliation(s)
- Victor Satler Pylro
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Wagner Campos Otoni
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Ivo Ribeiro da Silva
- Departamento de Solos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Arnaldo Chaer Borges
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Maurício Dutra Costa
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
8
|
Hilbert M, Voll LM, Ding Y, Hofmann J, Sharma M, Zuccaro A. Indole derivative production by the root endophyte Piriformospora indica is not required for growth promotion but for biotrophic colonization of barley roots. THE NEW PHYTOLOGIST 2012; 196:520-534. [PMID: 22924530 DOI: 10.1111/j.1469-8137.2012.04275.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/07/2012] [Indexed: 05/04/2023]
Abstract
Beneficial effects elicited by the root endophyte Piriformospora indica are widely known, but the mechanism by which these are achieved is still unclear. It is proposed that phytohormones produced by the fungal symbiont play a crucial role in the interaction with the plant roots. Biochemical analyses of the underlying biosynthetic pathways for auxin production have shown that, on tryptophan feeding, P. indica can produce the phytohormones indole-3-acetic acid (IAA) and indole-3-lactate (ILA) through the intermediate indole-3-pyruvic acid (IPA). Time course transcriptional analyses after exposure to tryptophan designated the piTam1 gene as a key player. A green fluorescence protein (GFP) reporter study and transcriptional analysis of colonized barley roots showed that piTam1 is induced during the biotrophic phase. Piriformospora indica strains in which the piTam1 gene was silenced via an RNA interference (RNAi) approach were compromised in IAA and ILA production and displayed reduced colonization of barley (Hordeum vulgare) roots in the biotrophic phase, but the elicitation of growth promotion was not affected compared with the wild-type situation. Our results suggest that IAA is involved in the establishment of biotrophy in P. indica-barley symbiosis and might represent a compatibility factor in this system.
Collapse
Affiliation(s)
- Magdalena Hilbert
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl von Frisch Str. 10, 35043, Marburg, Germany
| | - Lars M Voll
- Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Yi Ding
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl von Frisch Str. 10, 35043, Marburg, Germany
| | - Jörg Hofmann
- Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Monica Sharma
- Department of Mycology and Plant Pathology, Dr. YSP UHF, Nauni, Solan, HP, India
| | - Alga Zuccaro
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl von Frisch Str. 10, 35043, Marburg, Germany
| |
Collapse
|
9
|
Felten J, Martin F, Legué V. Signalling in Ectomycorrhizal Symbiosis. SIGNALING AND COMMUNICATION IN PLANT SYMBIOSIS 2012. [DOI: 10.1007/978-3-642-20966-6_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Qin Y, Yang Z. Rapid tip growth: insights from pollen tubes. Semin Cell Dev Biol 2011; 22:816-24. [PMID: 21729760 DOI: 10.1016/j.semcdb.2011.06.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 06/16/2011] [Accepted: 06/17/2011] [Indexed: 12/31/2022]
Abstract
Pollen tubes extend rapidly in an oscillatory manner by the extreme form of polarized growth, tip growth, and provide an exciting system for studying the spatiotemporal control of polarized cell growth. The Rho-family ROP GTPase is a key signaling molecule in this growth control and is periodically activated at the apical plasma membrane to spatially define the apical growth region and temporally precede the burst of growth. The spatiotemporal dynamics of ROP GTPase is interconnected with actin dynamics and polar exocytosis that is required for tip-targeted membrane and wall expansion. Recent advances in the study of the mechanistic interlinks between ROP-centered signaling and spatiotemporal dynamics of cell membrane and wall remodeling will be discussed.
Collapse
Affiliation(s)
- Yuan Qin
- Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | | |
Collapse
|
11
|
Swanson SJ, Choi WG, Chanoca A, Gilroy S. In vivo imaging of Ca2+, pH, and reactive oxygen species using fluorescent probes in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:273-97. [PMID: 21370977 DOI: 10.1146/annurev-arplant-042110-103832] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Changes in the levels of Ca(2+), pH, and reactive oxygen species (ROS) are recognized as key cellular regulators involved in diverse physiological and developmental processes in plants. Critical to understanding how they exert such widespread control is an appreciation of their spatial and temporal dynamics at levels from organ to organelle and from seconds to many hours. With appropriate controls, fluorescent sensors can provide a robust approach with which to quantify such changes in Ca(2+), pH, and ROS in real time, in vivo. The fluorescent cellular probes available for visualization split into two broad classes: (a) dyes and (b) an increasingly diverse set of genetically encoded sensors based around green fluorescent proteins (GFPs). The GFP probes in particular can be targeted to well-defined subcellular locales, offering the possibility of high-resolution mapping of these signals within the cell.
Collapse
Affiliation(s)
- Sarah J Swanson
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | | | |
Collapse
|
12
|
|
13
|
Ramos AC, Lima PT, Dias PN, Kasuya MCM, Feijó JA. A pH signaling mechanism involved in the spatial distribution of calcium and anion fluxes in ectomycorrhizal roots. THE NEW PHYTOLOGIST 2009; 181:448-462. [PMID: 19121039 DOI: 10.1111/j.1469-8137.2008.02656.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Mycorrhization is a typical example of a host-pathogen symbiotic interaction where the pathogen cell biology and the host immune response coevolved several functional links. Here, the role played by ion fluxes across the root concerning nutrient uptake, osmoregulation, growth and signaling events is addressed. An ion-selective vibrating probe system was used to determine the net fluxes of protons (H(+)), calcium (Ca(2+)) and anions (A(-)) along nonmycorrhizal and ectomycorrhizal (ECM) roots of Eucalyptus globulus colonized by Pisolithus sp. These data show that, from five root zones analyzed, the main effect of fungal colonization was localized to the elongation zone. Here, strong changes in ion dynamics and rhizosphere acidification capacity were observed. Additionally, ion fluxes exhibited periodic fluctuations. To verify whether these fluctuations corresponded to sustained oscillations, continuous wavelet time spectrum analysis was applied and it was determined that H(+) and A(-) fluxes from ECM roots had longer periods than nonmycorrhizal roots. By contrast, Ca(2+) oscillations were completely abolished following fungal interaction. These results are interpreted in the light of a working model in which nutrient uptake and stimulation of growth are mediated by ECM fungi and may be pH-dependent. Furthermore, the variations detected in ECM roots for H(+) and A(-) fluxes suggest a main contribution from the plant, while the results obtained for Ca(2+) point to a significant involvement of the fungus.
Collapse
Affiliation(s)
- Alessandro C Ramos
- Instituto Gulbenkian de Ciência, Centro de Biologia do Desenvolvimento, Oeiras, 2780-901, Portugal;Depto de Microbiologia, Universidade Federal de Viçosa, Viçosa-MG, 36570-000, Brazil;Depto Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Campo Grande, 1700, Portugal
| | - Pedro T Lima
- Instituto Gulbenkian de Ciência, Centro de Biologia do Desenvolvimento, Oeiras, 2780-901, Portugal;Depto de Microbiologia, Universidade Federal de Viçosa, Viçosa-MG, 36570-000, Brazil;Depto Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Campo Grande, 1700, Portugal
| | - Pedro N Dias
- Instituto Gulbenkian de Ciência, Centro de Biologia do Desenvolvimento, Oeiras, 2780-901, Portugal;Depto de Microbiologia, Universidade Federal de Viçosa, Viçosa-MG, 36570-000, Brazil;Depto Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Campo Grande, 1700, Portugal
| | - Maria Catarina M Kasuya
- Instituto Gulbenkian de Ciência, Centro de Biologia do Desenvolvimento, Oeiras, 2780-901, Portugal;Depto de Microbiologia, Universidade Federal de Viçosa, Viçosa-MG, 36570-000, Brazil;Depto Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Campo Grande, 1700, Portugal
| | - José A Feijó
- Instituto Gulbenkian de Ciência, Centro de Biologia do Desenvolvimento, Oeiras, 2780-901, Portugal;Depto de Microbiologia, Universidade Federal de Viçosa, Viçosa-MG, 36570-000, Brazil;Depto Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Campo Grande, 1700, Portugal
| |
Collapse
|