1
|
Chen X, Yao R, Hua X, Du K, Liu B, Yuan Y, Wang P, Yan Q, Dong L, Groen SC, Jiang S, Zhou T. Identification of maize genes that condition early systemic infection of sugarcane mosaic virus through single-cell transcriptomics. PLANT COMMUNICATIONS 2025; 6:101297. [PMID: 40045576 DOI: 10.1016/j.xplc.2025.101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/06/2025] [Accepted: 03/03/2025] [Indexed: 04/17/2025]
Abstract
During the early systemic infection of plant pathogens, individual cells can harbor pathogens at various stages of infection, ranging from absent to abundant. Consequently, gene expression levels within these cells in response to the pathogens exhibit significant variability. These variations are pivotal in determining pathogenicity or susceptibility, yet they remain largely unexplored and poorly understood. Sugarcane mosaic virus (SCMV) is a representative member of the monocot-infecting potyviruses with a polyadenylated RNA genome, which can be captured by single-cell RNA sequencing (scRNA-seq). Here, we performed scRNA-seq on SCMV-infected maize leaves during early systemic infection (prior to symptom manifestation) to investigate the co-variation patterns between viral accumulation and intracellular gene expression alterations. We identified five cell types and found that mesophyll-4 (MS4) cells exhibited the highest levels of viral accumulation in most cells. Early systemic infection of SCMV resulted in a greater upregulation of differentially expressed genes, which were mainly enriched in biological processes related to translation, peptide biosynthesis, and metabolism. Co-variation analysis of the altered maize gene expression and viral accumulation levels in MS1, 2, and 4 revealed several patterns, and the co-expression relationships between them were mainly positive. Furthermore, functional studies identified several potential anti- or pro-viral factors that may play crucial roles during the early stage of SCMV systemic infection. These results not only provide new insights into plant gene regulation during viral infection but also offer a foundation for future investigations of host-virus interactions across molecular, cellular, and physiological scales.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Ru Yao
- BGI Genomics, BGI-Shenzhen, Guangdong 518018, China
| | - Xia Hua
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Kaitong Du
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Boxin Liu
- BGI Genomics, BGI-Shenzhen, Guangdong 518018, China
| | | | - Pei Wang
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Qin Yan
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Laihua Dong
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Simon C Groen
- Department of Nematology and Department of Botany & Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA; Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Sanjie Jiang
- BGI Genomics, BGI-Shenzhen, Guangdong 518018, China.
| | - Tao Zhou
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Fernandez JC, Azim MF, Adams N, Strong M, Piya S, Xu M, Brunkard JO, Hewezi T, Sams CE, Burch-Smith TM. Glucosinolates can act as signals to modulate intercellular trafficking via plasmodesmata. THE NEW PHYTOLOGIST 2025; 246:1163-1182. [PMID: 40095529 DOI: 10.1111/nph.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/18/2025] [Indexed: 03/19/2025]
Abstract
Plasmodesmata (PD) allow direct communication across the cellulosic plant cell wall, facilitating the intercellular movement of metabolites and signaling molecules within the symplast. In Arabidopsis thaliana embryos with reduced levels of the chloroplast RNA helicase ISE2, intercellular trafficking and the number of branched PD were increased. We therefore investigated the relationship between altered ISE2 expression and intercellular trafficking. Gene expression analyses in Arabidopsis tissues where ISE2 expression was increased or decreased identified genes associated with the metabolism of glucosinolates (GLSs) as highly affected. Concomitant with changes in the expression of GLS-related genes, plants with abnormal ISE2 expression contained altered GLS metabolic profiles compared with wild-type (WT) counterparts. Indeed, changes in the expression of GLS-associated genes led to altered intercellular trafficking in Arabidopsis leaves. Exogenous application of GLSs but not their breakdown products also resulted in altered intercellular trafficking. These changes in trafficking may be mediated by callose levels at PD as exogenous GLS treatment was sufficient to modulate plasmodesmal callose in WT plants. Furthermore, auxin metabolism was perturbed in plants with increased indole-type GLS levels. These findings suggest that GLSs, which are themselves transported between cells via PD, can act on PD to regulate plasmodesmal trafficking capacity.
Collapse
Affiliation(s)
- Jessica C Fernandez
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Mohammad F Azim
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Nicole Adams
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Morgan Strong
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Min Xu
- Department of Plant and Microbial Biology, University of California, Berkeley, California, 94720, USA
| | - Jacob O Brunkard
- Laboratory of Genetics, University of Wisconsin, Madison, WI, 53706, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Carl E Sams
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| |
Collapse
|
3
|
Shang E, Tu Q, Yu Z, Ding Z. Cell wall dynamic changes and signaling during plant lateral root development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:632-648. [PMID: 39878232 DOI: 10.1111/jipb.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/31/2025]
Abstract
Lateral roots (LRs), are an important component of plant roots, playing a crucial role in anchoring the plant in the soil and facilitating the uptake of water and nutrients. As post-embryonic organs, LRs originate from the pericycle cells of the primary root, and their formation is characterized by precise regulation of cell division and complex intercellular interactions, both of which are closely tied to cell wall regulation. Considering the rapid advances in molecular techniques over the past three decades, we reframe the understanding of the dynamic change in cell wall during LR development by summarizing the factors that precipitate these changes and their effects, as well as the regulated signals involved. Additionally, we discuss current challenges in this field and propose potential solutions.
Collapse
Affiliation(s)
- Erlei Shang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Qiang Tu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zipeng Yu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
4
|
Pérez-Sancho J, Smokvarska M, Dubois G, Glavier M, Sritharan S, Moraes TS, Moreau H, Dietrich V, Platre MP, Paterlini A, Li ZP, Fouillen L, Grison MS, Cana-Quijada P, Immel F, Wattelet V, Ducros M, Brocard L, Chambaud C, Luo Y, Ramakrishna P, Bayle V, Lefebvre-Legendre L, Claverol S, Zabrady M, Martin PGP, Busch W, Barberon M, Tilsner J, Helariutta Y, Russinova E, Taly A, Jaillais Y, Bayer EM. Plasmodesmata act as unconventional membrane contact sites regulating intercellular molecular exchange in plants. Cell 2025; 188:958-977.e23. [PMID: 39983675 DOI: 10.1016/j.cell.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/06/2024] [Accepted: 11/26/2024] [Indexed: 02/23/2025]
Abstract
Membrane contact sites (MCSs) are fundamental for intracellular communication, but their role in intercellular communication remains unexplored. We show that in plants, plasmodesmata communication bridges function as atypical endoplasmic reticulum (ER)-plasma membrane (PM) tubular MCSs, operating at cell-cell interfaces. Similar to other MCSs, ER-PM apposition is controlled by a protein-lipid tethering complex, but uniquely, this serves intercellular communication. Combining high-resolution microscopy, molecular dynamics, and pharmacological and genetic approaches, we show that cell-cell trafficking is modulated through the combined action of multiple C2 domains transmembrane domain proteins (MCTPs) 3, 4, and 6 ER-PM tethers and phosphatidylinositol-4-phosphate (PI4P) lipid. Graded PI4P amounts regulate MCTP docking to the PM, their plasmodesmata localization, and cell-cell permeability. SAC7, an ER-localized PI4P-phosphatase, regulates MCTP4 accumulation at plasmodesmata and modulates cell-cell trafficking capacity in a cell-type-specific manner. Our findings expand MCS functions in information transmission from intracellular to intercellular cellular activities.
Collapse
Affiliation(s)
- Jessica Pérez-Sancho
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Marija Smokvarska
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Gwennogan Dubois
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRA, 69342 Lyon, France
| | - Marie Glavier
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Sujith Sritharan
- Laboratoire de Biochimie Théorique, UPR9080, CNRS, Université Paris Cité, Paris, France
| | - Tatiana S Moraes
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Hortense Moreau
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Victor Dietrich
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Matthieu P Platre
- Salk Institute for Biological Studies, Plant Molecular and Cellular Biology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Andrea Paterlini
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France; The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Ziqiang P Li
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Laetitia Fouillen
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Magali S Grison
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Pepe Cana-Quijada
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Françoise Immel
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Valerie Wattelet
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Mathieu Ducros
- Bordeaux Imaging Center, Plant Imaging Platform, UAR3420, CNRS-INSERM-University of Bordeaux-INRAE, Bordeaux, France
| | - Lysiane Brocard
- Bordeaux Imaging Center, Plant Imaging Platform, UAR3420, CNRS-INSERM-University of Bordeaux-INRAE, Bordeaux, France
| | - Clément Chambaud
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France; Bordeaux Imaging Center, Plant Imaging Platform, UAR3420, CNRS-INSERM-University of Bordeaux-INRAE, Bordeaux, France
| | - Yongming Luo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Priya Ramakrishna
- Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRA, 69342 Lyon, France
| | | | | | - Matej Zabrady
- Biomedical Sciences Research Complex, University of St Andrews, Fife KY16 9ST, UK; Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK
| | - Pascal G P Martin
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, 33882 Villenave d'Ornon, France
| | - Wolfgang Busch
- Salk Institute for Biological Studies, Plant Molecular and Cellular Biology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Marie Barberon
- Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Jens Tilsner
- Biomedical Sciences Research Complex, University of St Andrews, Fife KY16 9ST, UK; Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK
| | - Yrjö Helariutta
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK; Institute of Biotechnology, HiLIFE/Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Antoine Taly
- Laboratoire de Biochimie Théorique, UPR9080, CNRS, Université Paris Cité, Paris, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRA, 69342 Lyon, France.
| | - Emmanuelle M Bayer
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France.
| |
Collapse
|
5
|
Chen R, Tu Z, Yu T, Wu Z, Islam S, Hu X, He C, Song B, Kong Q, Nie B. DREPP protein StPCaP1 facilitates the cell-to-cell movement of Potato virus Y and Potato virus S by inhibiting callose deposition at plasmodesmata. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17239. [PMID: 39932458 DOI: 10.1111/tpj.17239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 05/08/2025]
Abstract
Plant viruses, constrained by their limited genomic coding capacity, rely significantly on host factors for successful infection. Disruption of these essential host factors can confer resistance to viruses, with such factors categorized as susceptibility genes or recessive resistance genes. Recent research has identified developmentally regulated plasma membrane polypeptide (DREPP) proteins as susceptibility factors integral to the cell-to-cell movement of potyviruses. In the present study, we demonstrated that the silencing of StPCaP1, a DREPP gene in potato, confers novel resistance to both Potato virus Y (PVY, Potyvirus) and Potato virus S (PVS, Carlavirus). Interaction and subcellular localization analyses revealed that the movement proteins (MPs) of PVY (P3NPIPO) and PVS (TGB1) interact with StPCaP1, recruiting it to plasmodesmata (PD). Furthermore, transcriptome analysis and experimental validation indicated that compared to wild-type (WT) controls, StPCaP1-silenced lines exhibit significantly increased glucose content and elevated expression levels of several UDP-glucosyltransferases (UGTs), which are potential components of the callose synthesis complex. These findings suggest that StPCaP1 participates in callose deposition, as evidenced by the increased callose deposition at PD and reduced PD permeability observed in StPCaP1-silenced lines. Additionally, we found that StPCaP1 expression in Nicotiana benthamiana led to reduced callose deposition at PD and promoted PVY-GFP cell-to-cell movement in NbPCaP1-silenced plants in a concentration-dependent manner, which suggests the changes in callose deposition at PD induced by StPCaP1 relates to viral cell-to-cell movement. This study provides a deeper understanding of DREPP-mediated viral movement and highlights potential targets for developing virus-resistant crops.
Collapse
Affiliation(s)
- Ruhao Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops (HZAU), Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Zhen Tu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops (HZAU), Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tao Yu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops (HZAU), Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhaorong Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops (HZAU), Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Saiful Islam
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops (HZAU), Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinxi Hu
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Changzheng He
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Botao Song
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops (HZAU), Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiusheng Kong
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops (HZAU), Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bihua Nie
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops (HZAU), Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
6
|
He R, Li Y, Bernards MA, Wang A. Turnip mosaic virus selectively subverts a PR-5 thaumatin-like, plasmodesmal protein to promote viral infection. THE NEW PHYTOLOGIST 2025; 245:299-317. [PMID: 39532690 PMCID: PMC11617660 DOI: 10.1111/nph.20233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024]
Abstract
Pathogenesis-related (PR) proteins are induced by abiotic and biotic stresses and generally considered as part of the plant defense mechanism. However, it remains yet largely unclear if and how they are involved in virus infection. Our recent quantitative, comparative proteomic study identified three PR-5 family proteins that are significantly differentially accumulated in the plasmodesmata (PD)-enriched fraction isolated from Nicotiana benthamiana leaves infected by turnip mosaic virus (TuMV). In this study, we employed the TuMV-Arabidopsis pathosystem to characterize the involvement of two Arabidopsis orthologs, AtOSM34 and AtOLP of the three N. benthamiana PR-5-like proteins. We show that AtOSM34 and AtOLP are PD-localized proteins and their expression is up- and downregulated in response to TuMV infection, respectively. Deficiency or overexpression of AtOLP does not affect viral RNA accumulation. Knockdown of AtOSM34 inhibits TuMV infection, whereas its overexpression promotes viral infection. We further demonstrate that AtOSM34 functions as a proviral factor through diminishing PD callose deposition to promote viral intercellular movement, targeting the viral replication complex to enhance viral replication, and suppressing the ROS-mediated antiviral response. Taken together, these data suggest that TuMV has evolved the ability to selectively upregulate and subvert AtOSM34, a PR-5 family protein to assist its infection.
Collapse
Affiliation(s)
- Rongrong He
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonONN5V 4T3Canada
- Department of BiologyWestern University1151 Richmond St.LondonONN6A 5B7Canada
| | - Yinzi Li
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonONN5V 4T3Canada
| | - Mark A. Bernards
- Department of BiologyWestern University1151 Richmond St.LondonONN6A 5B7Canada
| | - Aiming Wang
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonONN5V 4T3Canada
- Department of BiologyWestern University1151 Richmond St.LondonONN6A 5B7Canada
| |
Collapse
|
7
|
Somashekar H, Takanami K, Benitez-Alfonso Y, Oishi A, Hiratsuka R, Nonomura KI. Callose deficiency modulates plasmodesmata frequency and extracellular distance in rice pollen mother and tapetal cells. ANNALS OF BOTANY 2024; 134:1013-1026. [PMID: 39140870 PMCID: PMC11687631 DOI: 10.1093/aob/mcae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND AND AIMS Fertilization relies on pollen mother cells able to transition from mitosis to meiosis to supply gametes. This process involves remarkable changes at the molecular, cellular and physiological levels, including (but not limited to) remodelling of the cell wall. During the onset of meiosis, the cellulose content in the pollen mother cell walls gradually declines, with the concurrent deposition of the polysaccharide callose in anther locules. We aim to understand the biological significance of cellulose-to-callose turnover in pollen mother cells walls. METHODS We carried out electron microscopic, aniline blue and renaissance staining analyses of rice flowers. KEY RESULTS Our observations indicate that in wild-type rice anthers, the mitosis-to-meiosis transition coincides with a gradual reduction in the number of cytoplasmic connections called plasmodesmata. A mutant in the Oryza sativa callose synthase GSL5 (Osgsl5-3), impaired in callose accumulation in premeiotic and meiotic anthers, displayed a greater reduction in plasmodesmata frequency among pollen mother cells and tapetal cells, suggesting a role for callose in maintenance of plasmodesmata. In addition, a significant increase in extracellular distance between pollen mother cells and impaired premeiotic cell shaping was observed in the Osgsl5-3 mutant. CONCLUSIONS The results suggest that callose-to-cellulose turnover during the transition from mitosis to meiosis is necessary to maintain cell-to-cell connections and optimal extracellular distance among the central anther locular cells. The findings of this study contribute to our understanding of the regulatory influence of callose metabolism during initiation of meiosis in flowering plants.
Collapse
Affiliation(s)
- Harsha Somashekar
- Plant Cytogenetics Laboratory, National Institute of Genetics, Mishima, Japan
- School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Kanagawa, Japan
| | - Keiko Takanami
- School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Kanagawa, Japan
- Mouse Genomics Resource Laboratory, National Institute of Genetics, MishimaJapan
- Department of Environmental Health, Nara Women’s University, Nara, Japan
| | | | - Akane Oishi
- Mouse Genomics Resource Laboratory, National Institute of Genetics, MishimaJapan
| | - Rie Hiratsuka
- Faculty of Medicine, School of Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Ken-Ichi Nonomura
- Plant Cytogenetics Laboratory, National Institute of Genetics, Mishima, Japan
- School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Kanagawa, Japan
| |
Collapse
|
8
|
Diana SG, Kamila GJ, Ewa K, Małgorzata KK, Monika T, Emilia G, Kaja S, Magdalena R, Karolina U, Monika K, Marta LK. The effect of silicon supplementation and drought stress on the deposition of callose and chemical components in the cell walls of the Brassica napus roots. BMC PLANT BIOLOGY 2024; 24:1249. [PMID: 39722029 DOI: 10.1186/s12870-024-05967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Silicon has an important role in regulating water management in plants. It is deposited in cell walls and creates a mechanical barrier against external factors. The aim of this study was to determine the role of silicon supplementation in the synthesis and distribution of callose in oilseed rape roots and to characterize the modifications of cell wall structure of these organs after exposure to drought stress. Histological and ultrastructural analyses were performed to determine the changes in the distribution of arabinogalactan proteins, pectins, and extensin in roots of Brassica napus growing under drought and supplemented with silicon. Callose deposition and the accumulation of callose synthase protein were assessed, followed by transcriptional analysis of callose synthase genes. RESULTS The results showed that silicon supplementation under drought conditions alter the direction of cortex cell differentiation, promoting fiber formation and proliferation of callose-depositing cells in the roots of the tested plants. This was reflected in an increase in the level of callose synthase and a decrease in the transcriptional activity of the gene encoding this enzyme, indicating regulation based on negative feedback under drought stress. The changes in abundance and distribution of investigated arabinogalactan proteins, pectins and extensin in roots of Si supplemented plants growing under drought stress were observed, indicating cell walls remodeling. CONCLUSION Silicon supplementation in oilseed rape roots induced significant changes in cell wall composition, including increased callose deposition and altered pectins and arabinogalactan proteins distribution. These modifications, along with the formation of fibres in the root cortex, likely contribute to enhanced cell wall strength providing a physical barrier against water loss and mechanical stress, as a probable defence mechanism induced during drought stress.
Collapse
Affiliation(s)
- Saja-Garbarz Diana
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, Kraków, 30-239, Poland.
| | - Godel-Jędrychowska Kamila
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, Katowice, 40-032, Poland.
| | - Kurczyńska Ewa
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, Katowice, 40-032, Poland
| | - Kozieradzka-Kiszkurno Małgorzata
- Department of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, Gdańsk, 80-308, Poland
| | - Tuleja Monika
- Department of Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 9, Kraków, 30-387, Poland
| | - Gula Emilia
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, Kraków, 30-239, Poland
| | - Skubała Kaja
- Department of Ecology, Institute of Botany, Jagiellonian University, Gronostajowa 3, Kraków, 30-387, Poland
| | - Rys Magdalena
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, Kraków, 30-239, Poland
| | - Urban Karolina
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, Kraków, 30-239, Poland
| | - Kwiatkowska Monika
- Department of Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 9, Kraków, 30-387, Poland
| | - Libik-Konieczny Marta
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, Kraków, 30-239, Poland
| |
Collapse
|
9
|
Xu K, Zhu J, Zhai H, Yang Q, Zhou K, Song Q, Wu J, Liu D, Li Y, Xia Z. A single-nucleotide polymorphism in PvPW1 encoding β-1,3-glucanase 9 is associated with pod width in Phaseolus vulgaris L. J Genet Genomics 2024; 51:1413-1422. [PMID: 39389459 DOI: 10.1016/j.jgg.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Pod width influences pod size, shape, yield, and consumer preference in snap beans (Phaseolus vulgaris L.). In this study, we map PvPW1, a quantitative trait locus associated with pod width in snap beans, through genotyping and phenotyping of recombinant plants. We identify Phvul.006G072800, encoding the β-1,3-glucanase 9 protein, as the causal gene for PvPW1. The PvPW1G3555 allele is found to positively regulate pod width, as revealed by an association analysis between pod width phenotype and the PvPW1G3555C genotype across 17 bi-parental F2 populations. In total, 97.7% of the 133 wide pod accessions carry PvPW1G3555, while 82.1% of the 78 narrow pod accessions carry PvPW1C3555, indicating strong selection pressure on PvPW1 during common bean breeding. Re-sequencing data from 59 common bean cultivars identify an 8-bp deletion in the intron linked to PvPW1C3555, leading to the development of the InDel marker of PvM436. Genotyping 317 common bean accessions with PvM436 demonstrated that accessions with PvM436247 and PvM436227 alleles have wider pods compared to those with PvM436219 allele, establishing PvM436 as a reliable marker for molecular breeding in snap beans. These findings highlight PvPW1 as a critical gene regulating pod width and underscore the utility of PvM436 in marker-assisted selection for snap bean breeding.
Collapse
Affiliation(s)
- Kun Xu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang 150081, China
| | - Jinlong Zhu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang 150081, China
| | - Hong Zhai
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang 150081, China
| | - Qiang Yang
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang 150081, China
| | - Keqin Zhou
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang 150081, China
| | - Qijian Song
- USDA ARS, Soybean Genome & Improvement Lab, Beltsville 20705, USA
| | - Jing Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 10081, China.
| | - Dajun Liu
- Horticulture Department, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, Heilongjiang 150000, China.
| | - Yanhua Li
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang 150081, China.
| | - Zhengjun Xia
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
10
|
Kumar R, Iswanto ABB, Kumar D, Shuwei W, Oh K, Moon J, Son GH, Oh ES, Vu MH, Lee J, Lee KW, Oh MH, Kwon C, Chung WS, Kim JY, Kim SH. C-Type LECTIN receptor-like kinase 1 and ACTIN DEPOLYMERIZING FACTOR 3 are key components of plasmodesmata callose modulation. PLANT, CELL & ENVIRONMENT 2024; 47:3749-3765. [PMID: 38780063 DOI: 10.1111/pce.14957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Plasmodesmata (PDs) are intercellular organelles carrying multiple membranous nanochannels that allow the trafficking of cellular signalling molecules. The channel regulation of PDs occurs dynamically and is required in various developmental and physiological processes. It is well known that callose is a critical component in regulating PD permeability or symplasmic connectivity, but the understanding of the signalling pathways and mechanisms of its regulation is limited. Here, we used the reverse genetic approach to investigate the role of C-type lectin receptor-like kinase 1 (CLRLK1) in the aspect of PD callose-modulated symplasmic continuity. Here, we found that loss-of-function mutations in CLRLK1 resulted in excessive PD callose deposits and reduced symplasmic continuity, resulting in an accelerated gravitropic response. The protein interactome study also found that CLRLK1 interacted with actin depolymerizing factor 3 (ADF3) in vitro and in plants. Moreover, mutations in ADF3 result in elevated PD callose deposits and faster gravitropic response. Our results indicate that CLRLK1 and ADF3 negatively regulate PD callose accumulation, contributing to fine-tuning symplasmic opening apertures. Overall, our studies identified two key components involved in the deposits of PD callose and provided new insights into how symplasmic connectivity is maintained by the control of PD callose homoeostasis.
Collapse
Affiliation(s)
- Ritesh Kumar
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Arya B B Iswanto
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Dhinesh Kumar
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Wu Shuwei
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Kyujin Oh
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jiyun Moon
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Geon H Son
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Eun-Seok Oh
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Minh H Vu
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jinsu Lee
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Keun W Lee
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Man-Ho Oh
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Chian Kwon
- Department of Molecular Biology, Dankook University, Cheonan, Korea
| | - Woo S Chung
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Sang H Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
11
|
Palumbo F, Gabelli G, Pasquali E, Vannozzi A, Farinati S, Draga S, Ravi S, Della Lucia MC, Bertoldo G, Barcaccia G. RNA-seq analyses on gametogenic tissues of alfalfa (Medicago sativa) revealed plant reproduction- and ploidy-related genes. BMC PLANT BIOLOGY 2024; 24:826. [PMID: 39227784 PMCID: PMC11370029 DOI: 10.1186/s12870-024-05542-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND In alfalfa (Medicago sativa), the coexistence of interfertile subspecies (i.e. sativa, falcata and coerulea) characterized by different ploidy levels (diploidy and tetraploidy) and the occurrence of meiotic mutants capable of producing unreduced (2n) gametes, have been efficiently combined for the establishment of new polyploids. The wealth of agronomic data concerning forage quality and yield provides a thorough insight into the practical benefits of polyploidization. However, many of the underlying molecular mechanisms regarding gene expression and regulation remained completely unexplored. In this study, we aimed to address this gap by examining the transcriptome profiles of leaves and reproductive tissues, corresponding to anthers and pistils, sampled at different time points from diploid and tetraploid Medicago sativa individuals belonging to progenies produced by bilateral sexual polyploidization (dBSP and tBSP, respectively) and tetraploid individuals stemmed from unilateral sexual polyploidization (tUSP). RESULTS Considering the crucial role played by anthers and pistils in the reduced and unreduced gametes formation, we firstly analyzed the transcriptional profiles of the reproductive tissues at different stages, regardless of the ploidy level and the origin of the samples. By using and combining three different analytical methodologies, namely weighted-gene co-expression network analysis (WGCNA), tau (τ) analysis, and differentially expressed genes (DEGs) analysis, we identified a robust set of genes and transcription factors potentially involved in both male sporogenesis and gametogenesis processes, particularly in crossing-over, callose synthesis, and exine formation. Subsequently, we assessed at the same floral stage, the differences attributable to the ploidy level (tBSP vs. dBSP) or the origin (tBSP vs. tUSP) of the samples, leading to the identification of ploidy and parent-specific genes. In this way, we identified, for example, genes that are specifically upregulated and downregulated in flower buds in the comparison between tBSP and dBSP, which could explain the reduced fertility of the former compared to the latter materials. CONCLUSIONS While this study primarily functions as an extensive investigation at the transcriptomic level, the data provided could represent not only a valuable original asset for the scientific community but also a fully exploitable genomic resource for functional analyses in alfalfa.
Collapse
Affiliation(s)
- Fabio Palumbo
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, PD, 35020, Italy
| | - Giovanni Gabelli
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, PD, 35020, Italy
| | | | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, PD, 35020, Italy
| | - Silvia Farinati
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, PD, 35020, Italy
| | - Samela Draga
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, PD, 35020, Italy
| | - Samathmika Ravi
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, PD, 35020, Italy
| | - Maria Cristina Della Lucia
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, PD, 35020, Italy
| | - Giovanni Bertoldo
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, PD, 35020, Italy
| | - Gianni Barcaccia
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, PD, 35020, Italy.
| |
Collapse
|
12
|
Iswanto ABB, Vu MH, Shon JC, Kumar R, Wu S, Kang H, Kim DR, Son GH, Kim WY, Kwak YS, Liu KH, Kim SH, Kim JY. α1-COP modulates plasmodesmata function through sphingolipid enzyme regulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1639-1657. [PMID: 38888228 DOI: 10.1111/jipb.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/30/2024] [Indexed: 06/20/2024]
Abstract
Callose, a β-1,3-glucan plant cell wall polymer, regulates symplasmic channel size at plasmodesmata (PD) and plays a crucial role in a variety of plant processes. However, elucidating the molecular mechanism of PD callose homeostasis is limited. We screened and identified an Arabidopsis mutant plant with excessive callose deposition at PD and found that the mutated gene was α1-COP, a member of the coat protein I (COPI) coatomer complex. We report that loss of function of α1-COP elevates the callose accumulation at PD by affecting subcellular protein localization of callose degradation enzyme PdBG2. This process is linked to the functions of ERH1, an inositol phosphoryl ceramide synthase, and glucosylceramide synthase through physical interactions with the α1-COP protein. Additionally, the loss of function of α1-COP alters the subcellular localization of ERH1 and GCS proteins, resulting in a reduction of GlcCers and GlcHCers molecules, which are key sphingolipid (SL) species for lipid raft formation. Our findings suggest that α1-COP protein, together with SL modifiers controlling lipid raft compositions, regulates the subcellular localization of GPI-anchored PDBG2 proteins, and hence the callose turnover at PD and symplasmic movement of biomolecules. Our findings provide the first key clue to link the COPI-mediated intracellular trafficking pathway to the callose-mediated intercellular signaling pathway through PD.
Collapse
Affiliation(s)
- Arya Bagus Boedi Iswanto
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Minh Huy Vu
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Jong Cheol Shon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 702-701, Korea
| | - Ritesh Kumar
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Shuwei Wu
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Hobin Kang
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Da-Ran Kim
- Departement of Plant Medicine, Gyeongsang National University, Jinju, 52828, Korea
| | - Geon Hui Son
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Woe Yoen Kim
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Youn-Sig Kwak
- Departement of Plant Medicine, Gyeongsang National University, Jinju, 52828, Korea
| | - Kwang Hyeon Liu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 702-701, Korea
| | - Sang Hee Kim
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
- Division of Life Science, Gyeongsang National University, Jinju, 52828, Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
- Division of Life Science, Gyeongsang National University, Jinju, 52828, Korea
| |
Collapse
|
13
|
Alazem M, Burch-Smith TM. Roles of ROS and redox in regulating cell-to-cell communication: Spotlight on viral modulation of redox for local spread. PLANT, CELL & ENVIRONMENT 2024; 47:2830-2841. [PMID: 38168864 DOI: 10.1111/pce.14805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Reactive oxygen species (ROS) are important signalling molecules that influence many aspects of plant biology. One way in which ROS influence plant growth and development is by modifying intercellular trafficking through plasmodesmata (PD). Viruses have evolved to use PD for their local cell-to-cell spread between plant cells, so it is therefore not surprising that they have found ways to modulate ROS and redox signalling to optimise PD function for their benefit. This review examines how intracellular signalling via ROS and redox pathways regulate intercellular trafficking via PD during development and stress. The relationship between viruses and ROS-redox systems, and the strategies viruses employ to control PD function by interfering with ROS-redox in plants is also discussed.
Collapse
Affiliation(s)
- Mazen Alazem
- Donald Danforth Plant Science Center, Saint Louis, Missouri, USA
| | | |
Collapse
|
14
|
An H, Wang D, Yu L, Wu H, Qin Y, Zhang S, Ji X, Xin Y, Li X. Potential Involvement of MnCYP710A11 in Botrytis cinerea Resistance in Arabidopsis thaliana and Morus notabilis. Genes (Basel) 2024; 15:853. [PMID: 39062632 PMCID: PMC11275358 DOI: 10.3390/genes15070853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Cytochrome P450 (CYP) is a crucial oxidoreductase enzyme that plays a significant role in plant defense mechanisms. In this study, a specific cytochrome P450 gene (MnCYP710A11) was discovered in mulberry (Morus notabilis). Bioinformatic analysis and expression pattern analysis were conducted to elucidate the involvement of MnCYP710A11 in combating Botrytis cinerea infection. After the infection of B. cinerea, there was a notable increase in the expression of MnCYP710A11. MnCYP710A11 is overexpressed in Arabidopsis and mulberry and strongly reacts to B. cinerea. The overexpression of the MnCYP710A11 gene in Arabidopsis and mulberry led to a substantial enhancement in resistance against B. cinerea, elevated catalase (CAT) activity, increased proline content, and reduced malondialdehyde (MDA) levels. At the same time, H2O2 and O2- levels in MnCYP710A11 transgenic Arabidopsis were decreased, which reduced the damage of ROS accumulation to plants. Furthermore, our research indicates the potential involvement of MnCYP710A11 in B. cinerea resistance through the modulation of other resistance-related genes. These findings establish a crucial foundation for gaining deeper insights into the role of cytochrome P450 in mulberry plants.
Collapse
Affiliation(s)
- Hui An
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (H.A.); (Y.Q.); (S.Z.)
- Guangxi Collaborative Innovation Center of Modern Sericulture Silk, School of Chemistry and Bioengineering, Hechi University, Hechi 546300, China
| | - Donghao Wang
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (L.Y.); (H.W.); (X.J.)
| | - Lin Yu
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (L.Y.); (H.W.); (X.J.)
| | - Hongshun Wu
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (L.Y.); (H.W.); (X.J.)
| | - Yue Qin
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (H.A.); (Y.Q.); (S.Z.)
- Guangxi Collaborative Innovation Center of Modern Sericulture Silk, School of Chemistry and Bioengineering, Hechi University, Hechi 546300, China
| | - Shihao Zhang
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (H.A.); (Y.Q.); (S.Z.)
- Guangxi Collaborative Innovation Center of Modern Sericulture Silk, School of Chemistry and Bioengineering, Hechi University, Hechi 546300, China
| | - Xianling Ji
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (L.Y.); (H.W.); (X.J.)
| | - Youchao Xin
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (L.Y.); (H.W.); (X.J.)
| | - Xiaodong Li
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (H.A.); (Y.Q.); (S.Z.)
- Guangxi Collaborative Innovation Center of Modern Sericulture Silk, School of Chemistry and Bioengineering, Hechi University, Hechi 546300, China
| |
Collapse
|
15
|
Zhao Z, Wang R, Su W, Sun T, Qi M, Zhang X, Wei F, Yu Z, Xiao F, Yan L, Yang C, Zhang J, Wang D. A comprehensive analysis of the WRKY family in soybean and functional analysis of GmWRKY164-GmGSL7c in resistance to soybean mosaic virus. BMC Genomics 2024; 25:620. [PMID: 38898399 PMCID: PMC11188170 DOI: 10.1186/s12864-024-10523-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/14/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Soybean mosaic disease caused by soybean mosaic virus (SMV) is one of the most devastating and widespread diseases in soybean producing areas worldwide. The WRKY transcription factors (TFs) are widely involved in plant development and stress responses. However, the roles of the GmWRKY TFs in resistance to SMV are largely unclear. RESULTS Here, 185 GmWRKYs were characterized in soybean (Glycine max), among which 60 GmWRKY genes were differentially expressed during SMV infection according to the transcriptome data. The transcriptome data and RT-qPCR results showed that the expression of GmWRKY164 decreased after imidazole treatment and had higher expression levels in the incompatible combination between soybean cultivar variety Jidou 7 and SMV strain N3. Remarkably, the silencing of GmWRKY164 reduced callose deposition and enhanced virus spread during SMV infection. In addition, the transcript levels of the GmGSL7c were dramatically lower upon the silencing of GmWRKY164. Furthermore, EMSA and ChIP-qPCR revealed that GmWRKY164 can directly bind to the promoter of GmGSL7c, which contains the W-box element. CONCLUSION Our findings suggest that GmWRKY164 plays a positive role in resistance to SMV infection by regulating the expression of GmGSL7c, resulting in the deposition of callose and the inhibition of viral movement, which provides guidance for future studies in understanding virus-resistance mechanisms in soybean.
Collapse
Affiliation(s)
- Zhihua Zhao
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Rongna Wang
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Weihua Su
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Tianjie Sun
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Mengnan Qi
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Xueyan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Fengju Wei
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Zhouliang Yu
- School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Fuming Xiao
- Handan Municipal Academy of Agricultural Sciences, Hebei Province, Handan, 056001, China
| | - Long Yan
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050031, China
| | - Chunyan Yang
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050031, China
| | - Jie Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China.
| | - Dongmei Wang
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
16
|
Sankoh AF, Adjei J, Roberts DM, Burch-Smith TM. Comparing Methods for Detection and Quantification of Plasmodesmal Callose in Nicotiana benthamiana Leaves During Defense Responses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:427-431. [PMID: 38377039 DOI: 10.1094/mpmi-09-23-0152-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Callose, a β-(1,3)-d-glucan polymer, is essential for regulating intercellular trafficking via plasmodesmata (PD). Pathogens manipulate PD-localized proteins to enable intercellular trafficking by removing callose at PD or, conversely, by increasing callose accumulation at PD to limit intercellular trafficking during infection. Plant defense hormones like salicylic acid regulate PD-localized proteins to control PD and intercellular trafficking during immune defense responses such as systemic acquired resistance. Measuring callose deposition at PD in plants has therefore emerged as a popular parameter for assessing likely intercellular trafficking activity during plant immunity. Despite the popularity of this metric, there is no standard for how these measurements should be made. In this study, three commonly used methods for identifying and quantifying plasmodesmal callose by aniline blue staining were evaluated to determine the most effective in the Nicotiana benthamiana leaf model. The results reveal that the most reliable method used aniline blue staining and fluorescence microscopy to measure callose deposition in fixed tissue. Manual or semiautomated workflows for image analysis were also compared and found to produce similar results, although the semiautomated workflow produced a wider distribution of data points. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Amie F Sankoh
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996, U.S.A
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, U.S.A
| | - Joseph Adjei
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, U.S.A
| | - Daniel M Roberts
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996, U.S.A
| | | |
Collapse
|
17
|
Hsieh YSY, Kao MR, Tucker MR. The knowns and unknowns of callose biosynthesis in terrestrial plants. Carbohydr Res 2024; 538:109103. [PMID: 38555659 DOI: 10.1016/j.carres.2024.109103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Callose, a linear (1,3)-β-glucan, is an indispensable carbohydrate polymer required for plant growth and development. Advances in biochemical, genetic, and genomic tools, along with specific antibodies, have significantly enhanced our understanding of callose biosynthesis. As additional components of the callose synthase machinery emerge, the elucidation of molecular biosynthetic mechanisms is expected to follow. Short-term objectives involve defining the stoichiometry and turnover rates of callose synthase subunits. Long-term goals include generating recombinant callose synthases to elucidate their biochemical properties and molecular mechanisms, potentially culminating in the determination of callose synthase three-dimensional structure. This review delves into the structures and intricate molecular processes underlying callose biosynthesis, emphasizing regulatory elements and assembly mechanisms.
Collapse
Affiliation(s)
- Yves S Y Hsieh
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91, Stockholm, Sweden; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taiwan.
| | - Mu-Rong Kao
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91, Stockholm, Sweden; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taiwan
| | - Matthew R Tucker
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia.
| |
Collapse
|
18
|
Liu H, Wang F, Liu B, Kong F, Fang C. Significance of Raffinose Family Oligosaccharides (RFOs) metabolism in plants. ADVANCED BIOTECHNOLOGY 2024; 2:13. [PMID: 39883346 PMCID: PMC11740855 DOI: 10.1007/s44307-024-00022-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/23/2024] [Accepted: 03/10/2024] [Indexed: 01/31/2025]
Abstract
Raffinose Family Oligosaccharides (RFOs) are a kind of polysaccharide containing D-galactose, and they widely exist in higher plants. Synthesis of RFOs begins with galactinol synthase (GolS; EC 2.4.1.123) to convert myo-inositol into galactinol. The subsequent formation of raffinose and stachyose are catalyzed by raffinose synthase (RS; EC 2.4.1.82) and stachyose synthase (STS; EC 2.4.1.67) using sucrose and galactinol as substrate, respectively. The hydrolysis of RFOs is finished by α-galactosidase (α-Gal; EC 3.2.1.22) to produce sucrose and galactose. Importance of RFOs metabolism have been summarized, e.g. In RFOs translocating plants, the phloem loading and unloading of RFOs are widely reported in mediating the plant development process. Interference function of RFOs synthesis or hydrolysis enzymes caused growth defect. In addition, the metabolism of RFOs involved in the biotic or abiotic stresses was discussed in this review. Overall, this literature summarizes our current understanding of RFOs metabolism and points out knowledge gaps that need to be filled in future.
Collapse
Affiliation(s)
- Huan Liu
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
| | - Fan Wang
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
| | - Baohui Liu
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
| | - Fanjiang Kong
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China.
| | - Chao Fang
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
19
|
Schreiber JM, Limpens E, de Keijzer J. Distributing Plant Developmental Regulatory Proteins via Plasmodesmata. PLANTS (BASEL, SWITZERLAND) 2024; 13:684. [PMID: 38475529 DOI: 10.3390/plants13050684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
During plant development, mobile proteins, including transcription factors, abundantly serve as messengers between cells to activate transcriptional signaling cascades in distal tissues. These proteins travel from cell to cell via nanoscopic tunnels in the cell wall known as plasmodesmata. Cellular control over this intercellular movement can occur at two likely interdependent levels. It involves regulation at the level of plasmodesmata density and structure as well as at the level of the cargo proteins that traverse these tunnels. In this review, we cover the dynamics of plasmodesmata formation and structure in a developmental context together with recent insights into the mechanisms that may control these aspects. Furthermore, we explore the processes involved in cargo-specific mechanisms that control the transport of proteins via plasmodesmata. Instead of a one-fits-all mechanism, a pluriform repertoire of mechanisms is encountered that controls the intercellular transport of proteins via plasmodesmata to control plant development.
Collapse
Affiliation(s)
- Joyce M Schreiber
- Laboratory of Cell and Developmental Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Erik Limpens
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jeroen de Keijzer
- Laboratory of Cell and Developmental Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
20
|
Khalilzadeh M, Lin CY, Wang C, El-Mohtar CA, Levy A. Stem-pitting caused by Citrus tristeza virus is associated with increased phloem occlusion. Virology 2024; 589:109918. [PMID: 37944362 DOI: 10.1016/j.virol.2023.109918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
Stem-pitting (SP) disease results from disruption of normal phloem and xylem development. In citrus, a characteristic manifestation of SP caused by Citrus tristeza virus (CTV) is phloem regeneration. We hypothesized that phloem regeneration occurs due to reduced functionality of CTV infected phloem cells. To examine phloem cell occlusions in CTV-SP, we analyzed callose and phloem-protein (PP) accumulation in Citrus macrophylla trees infected with CTV mutants exhibiting different SP phenotypes from very mild (CTVΔp13) to severe (CTVΔp33), in addition to full-length CTV and healthy plants. CTV infection was accompanied by callose and PP accumulation in the phloem. With the increase in the SP symptoms from very mild to severe, there was a constant increase in the levels of callose and PP, accompanied by an increase in PHLOEM-PROTEIN 2 and a decrease in BETA-1,3-GLUCANASE gene expression levels. These results indicate that SP symptom development is associated with increased phloem occlusion.
Collapse
Affiliation(s)
- Maryam Khalilzadeh
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA; Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Chun-Yi Lin
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Chunxia Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Choaa Amine El-Mohtar
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA; Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Amit Levy
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA; Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA.
| |
Collapse
|
21
|
Brunkard JO. Communicating Across Cell Walls: Structure, Evolution, and Regulation of Plasmodesmatal Transport in Plants. Results Probl Cell Differ 2024; 73:73-86. [PMID: 39242375 DOI: 10.1007/978-3-031-62036-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Plasmodesmata are conduits in plant cell walls that allow neighboring cells to communicate and exchange resources. Despite their central importance to plant development and physiology, our understanding of plasmodesmata is relatively limited compared to other subcellular structures. In recent years, technical advances in electron microscopy, mass spectrometry, and phylogenomics have illuminated the structure, composition, and evolution of plasmodesmata in diverse plant lineages. In parallel, forward genetic screens have revealed key signaling pathways that converge to regulate plasmodesmatal transport, including chloroplast-derived retrograde signaling, phytohormone signaling, and metabolic regulation by the conserved eukaryotic Target of Rapamycin kinase. This review summarizes our current knowledge of the structure, evolution, and regulation of plasmodesmatal transport in plants.
Collapse
Affiliation(s)
- Jacob O Brunkard
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
22
|
Saatian B, Kohalmi SE, Cui Y. Localization of Arabidopsis Glucan Synthase-Like 5, 8, and 12 to plasmodesmata and the GSL8-dependent role of PDLP5 in regulating plasmodesmal permeability. PLANT SIGNALING & BEHAVIOR 2023; 18:2164670. [PMID: 36645916 PMCID: PMC9851254 DOI: 10.1080/15592324.2022.2164670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Cell-to-cell communication via membranous channels called plasmodesmata (PD) plays critical roles during plant development and in response to biotic and abiotic stresses. Several enzymes and receptor-like proteins (RLPs), including Arabidopsis thaliana glucan synthase-likes (GSLs), also known as callose synthases (CALSs), and PD-located proteins (PDLPs), have been implicated in plasmodesmal permeability regulation and intercellular communication. Localization of PDLPs to punctate structures at the cell periphery and their receptor-like identity have raised the hypothesis that PDLPs are involved in the regulation of symplastic trafficking during plant development and in response to endogenous and exogenous signals. Indeed, it was shown that PDLP5 could limit plasmodesmal permeability through inducing an increase in callose accumulation at PD. However, mechanistically, how this is achieved remains to be elucidated. To address this key issue in understanding the regulation of PD, physical and functional interactions between PDLPs and GSLs (using the PDLP5-GSL8/CALS10 pair as a model) were investigated. Our results show that GSL8/CALS10 plays essential roles and is required for the function and plasmodesmal localization of PDLP5. Furthermore, it was demonstrated that the localization of PDLP5 to PD and its function in inducing callose deposition are GSL8-dependent. Importantly, our transgenic study shows that three key members of the GSL family, i.e., GSL5/CALS12, GSL8/CALS10, and GSL12/CALS3, localize to PD and co-localize with PDLP5, suggesting that GSL8/CALS10 might not be the only callose synthase with the determining role in PD regulation. These findings, together with our previous observation showing the direct interaction of GSL8/CALS10 with PDLP5, indicate the pivotal role of the GSL8/CALS10-PDLP5 interplay in regulating PD permeability. Future work is needed to investigate whether the PDLP5 functionality and localization are also disrupted in gsl5 and gsl12, or it is just gsl8-specific.
Collapse
Affiliation(s)
- Behnaz Saatian
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada
- Department of Biology, Western University, London, Ontario, Canada
| | | | - Yuhai Cui
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada
- Department of Biology, Western University, London, Ontario, Canada
| |
Collapse
|
23
|
Liu X, Ma Z, Tran TM, Rautengarten C, Cheng Y, Yang L, Ebert B, Persson S, Miao Y. Balanced callose and cellulose biosynthesis in Arabidopsis quorum-sensing signaling and pattern-triggered immunity. PLANT PHYSIOLOGY 2023; 194:137-152. [PMID: 37647538 PMCID: PMC10756761 DOI: 10.1093/plphys/kiad473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 09/01/2023]
Abstract
The plant cell wall (CW) is one of the most important physical barriers that phytopathogens must conquer to invade their hosts. This barrier is a dynamic structure that responds to pathogen infection through a complex network of immune receptors, together with CW-synthesizing and CW-degrading enzymes. Callose deposition in the primary CW is a well-known physical response to pathogen infection. Notably, callose and cellulose biosynthesis share an initial substrate, UDP-glucose, which is the main load-bearing component of the CW. However, how these 2 critical biosynthetic processes are balanced during plant-pathogen interactions remains unclear. Here, using 2 different pathogen-derived molecules, bacterial flagellin (flg22) and the diffusible signal factor (DSF) produced by Xanthomonas campestris pv. campestris, we show a negative correlation between cellulose and callose biosynthesis in Arabidopsis (Arabidopsis thaliana). By quantifying the abundance of callose and cellulose under DSF or flg22 elicitation and characterizing the dynamics of the enzymes involved in the biosynthesis and degradation of these 2 polymers, we show that the balance of these 2 CW components is mediated by the activity of a β-1,3-glucanase (BG2). Our data demonstrate balanced cellulose and callose biosynthesis during plant immune responses.
Collapse
Affiliation(s)
- Xiaolin Liu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Tuan Minh Tran
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Carsten Rautengarten
- School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
- Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum 44810, Germany
| | - Yingying Cheng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
- School of Medicine, Southern University of Science and Technology, Nanshan District, Shenzhen 518055, China
| | - Berit Ebert
- School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
- Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum 44810, Germany
| | - Staffan Persson
- Department of Plant and Environmental Sciences (PLEN), University of Copenhagen, 1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
24
|
Fang S, Shang X, He Q, Li W, Song X, Zhang B, Guo W. A cell wall-localized β-1,3-glucanase promotes fiber cell elongation and secondary cell wall deposition. PLANT PHYSIOLOGY 2023; 194:106-123. [PMID: 37427813 DOI: 10.1093/plphys/kiad407] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023]
Abstract
β-1,3-glucanase functions in plant physiological and developmental processes. However, how β-1,3-glucanase participates in cell wall development remains largely unknown. Here, we answered this question by examining the role of GhGLU18, a β-1,3-glucanase, in cotton (Gossypium hirsutum) fibers, in which the content of β-1,3-glucan changes dynamically from 10% of the cell wall mass at the onset of secondary wall deposition to <1% at maturation. GhGLU18 was specifically expressed in cotton fiber with higher expression in late fiber elongation and secondary cell wall (SCW) synthesis stages. GhGLU18 largely localized to the cell wall and was able to hydrolyze β-1,3-glucan in vitro. Overexpression of GhGLU18 promoted polysaccharide accumulation, cell wall reconstruction, and cellulose synthesis, which led to increased fiber length and strength with thicker cell walls and shorter pitch of the fiber helix. However, GhGLU18-suppressed cotton resulted in opposite phenotypes. Additionally, GhGLU18 was directly activated by GhFSN1 (fiber SCW-related NAC1), a NAC transcription factor reported previously as the master regulator in SCW formation during fiber development. Our results demonstrate that cell wall-localized GhGLU18 promotes fiber elongation and SCW thickening by degrading callose and enhancing polysaccharide metabolism and cell wall synthesis.
Collapse
Affiliation(s)
- Shuai Fang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoguang Shang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingfei He
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohui Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
25
|
Qiu R, Liu Y, Cai Z, Li J, Wu C, Wang G, Lin C, Peng Y, Deng Z, Tang W, Wu W, Duan Y. Glucan Synthase-like 2 is Required for Seed Initiation and Filling as Well as Pollen Fertility in Rice. RICE (NEW YORK, N.Y.) 2023; 16:44. [PMID: 37804355 PMCID: PMC10560172 DOI: 10.1186/s12284-023-00662-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND The Glucan synthase-like (GSL) genes are indispensable for some important highly-specialized developmental and cellular processes involving callose synthesis and deposition in plants. At present, the best-characterized reproductive functions of GSL genes are those for pollen formation and ovary expansion, but their role in seed initiation remains unknown. RESULTS We identified a rice seed mutant, watery seed 1-1 (ws1-1), which contained a mutation in the OsGSL2 gene. The mutant produced seeds lacking embryo and endosperm but filled with transparent and sucrose-rich liquid. In a ws1-1 spikelet, the ovule development was normal, but the microsporogenesis and male gametophyte development were compromised, resulting in the reduction of fertile pollen. After fertilization, while the seed coat normally developed, the embryo failed to differentiate normally. In addition, the divided endosperm-free nuclei did not migrate to the periphery of the embryo sac but aggregated so that their proliferation and cellularization were arrested. Moreover, the degeneration of nucellus cells was delayed in ws1-1. OsGSL2 is highly expressed in reproductive organs and developing seeds. Disrupting OsGSL2 reduced callose deposition on the outer walls of the microspores and impaired the formation of the annular callose sheath in developing caryopsis, leading to pollen defect and seed abortion. CONCLUSIONS Our findings revealed that OsGSL2 is essential for rice fertility and is required for embryo differentiation and endosperm-free nucleus positioning, indicating a distinct role of OsGSL2, a callose synthase gene, in seed initiation, which provides new insight into the regulation of seed development in cereals.
Collapse
Affiliation(s)
- Ronghua Qiu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yang Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhengzheng Cai
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jieqiong Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chunyan Wu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Gang Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chenchen Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yulin Peng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhanlin Deng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weiqi Tang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weiren Wu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yuanlin Duan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
26
|
Sankoh AF, Adjei J, Roberts DM, Burch-Smith TM. Reliable detection and quantification of plasmodesmal callose in Nicotiana benthamiana leaves during defense responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560305. [PMID: 37873219 PMCID: PMC10592870 DOI: 10.1101/2023.09.30.560305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Callose, a beta-(1,3)-D-glucan polymer, is essential for regulating intercellular trafficking via plasmodesmata (PD). Pathogens manipulate PD-localized proteins to enable intercellular trafficking by removing callose at PD, or conversely by increasing callose accumulation at PD to limit intercellular trafficking during infection. Plant defense hormones like salicylic acid regulate PD-localized proteins to control PD and intercellular trafficking during innate immune defense responses such as systemic acquired resistance. Measuring callose deposition at PD in plants has therefore emerged as a popular parameter for assessing the intercellular trafficking activity during plant immunity. Despite the popularity of this metric there is no standard for how these measurements should be made. In this study, three commonly used methods for identifying and quantifying PD callose by aniline blue staining were evaluated to determine the most effective in the Nicotiana benthamiana leaf model. The results reveal that the most reliable method used aniline blue staining and fluorescent microscopy to measure callose deposition in fixed tissue. Manual or semi-automated workflows for image analysis were also compared and found to produce similar results although the semi-automated workflow produced a wider distribution of data points.
Collapse
Affiliation(s)
- Amie F. Sankoh
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996 USA
- Donald Danforth Plant Science Center, Saint Louis, MO 63132 USA
| | - Joseph Adjei
- Donald Danforth Plant Science Center, Saint Louis, MO 63132 USA
| | - Daniel M. Roberts
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996 USA
| | | |
Collapse
|
27
|
Barr ZK, Werner T, Tilsner J. Heavy Metal-Associated Isoprenylated Plant Proteins (HIPPs) at Plasmodesmata: Exploring the Link between Localization and Function. PLANTS (BASEL, SWITZERLAND) 2023; 12:3015. [PMID: 37631227 PMCID: PMC10459601 DOI: 10.3390/plants12163015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Heavy metal-associated isoprenylated plant proteins (HIPPs) are a metallochaperone-like protein family comprising a combination of structural features unique to vascular plants. HIPPs possess both one or two heavy metal-binding domains and an isoprenylation site, facilitating a posttranslational protein lipid modification. Recent work has characterized individual HIPPs across numerous different species and provided evidence for varied functionalities. Interestingly, a significant number of HIPPs have been identified in proteomes of plasmodesmata (PD)-nanochannels mediating symplastic connectivity within plant tissues that play pivotal roles in intercellular communication during plant development as well as responses to biotic and abiotic stress. As characterized functions of many HIPPs are linked to stress responses, plasmodesmal HIPP proteins are potentially interesting candidate components of signaling events at or for the regulation of PD. Here, we review what is known about PD-localized HIPP proteins specifically, and how the structure and function of HIPPs more generally could link to known properties and regulation of PD.
Collapse
Affiliation(s)
- Zoe Kathleen Barr
- Biomedical Sciences Research Complex, University of St Andrews, BMS Building, North Haugh, St Andrews, Fife KY16 9ST, UK;
- Cell & Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK
| | - Tomáš Werner
- Department of Biology, University of Graz, Schubertstraße 51, 8010 Graz, Austria
| | - Jens Tilsner
- Biomedical Sciences Research Complex, University of St Andrews, BMS Building, North Haugh, St Andrews, Fife KY16 9ST, UK;
- Cell & Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK
| |
Collapse
|
28
|
Liang KL, Liu JY, Bao YY, Wang ZY, Xu XB. Screening and Identification of Host Factors Interacting with the Virulence Factor P0 Encoded by Sugarcane Yellow Leaf Virus by Yeast Two-Hybrid Assay. Genes (Basel) 2023; 14:1397. [PMID: 37510302 PMCID: PMC10379860 DOI: 10.3390/genes14071397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Sugarcane yellow leaf virus (SCYLV), a member of the genus Polerovirus in the family Luteoviridae, causes severe damage and represents a great threat to sugarcane cultivation and sugar industry development. In this study, inoculation of Nicotiana benthamiana plants with a potato virus X (PVX)-based vector carrying the SCYLV P0 gene induced typical mosaic, leaf rolling symptoms and was associated with a hypersensitive-like response (HLR) necrosis symptom, which is accompanied with a systemic burst of H2O2 and also leads to higher PVX viral genome accumulation levels. Our results demonstrate that SCYLV P0 is a pathogenicity determinant and plays important roles in disease development. To further explore its function in pathogenic processes, a yeast two-hybrid assay was performed to screen the putative P0-interacting host factors. The recombinant plasmid pGBKT7-P0 was constructed as a bait and transformed into the yeast strain Y2HGold. The ROC22 cultivar (an important parental resource of the main cultivar in China) cDNA prey library was constructed and screened by co-transformation with the P0 bait. We identified 28 potential interacting partners including those involved in the optical signal path, plant growth and development, transcriptional regulation, host defense response, and viral replication. To our knowledge, this is the first time we have reported the host proteins interacting with the P0 virulence factor encoded by sugarcane yellow leaf virus. This study not only provides valuable insights into elucidating the molecular mechanism of the pathogenicity of SCYLV, but also sheds light on revealing the probable new pathogenesis of Polerovirus in the future.
Collapse
Affiliation(s)
- Kai-Li Liang
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Jing-Ying Liu
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Ying-Ying Bao
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Zhi-Yuan Wang
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Xiong-Biao Xu
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| |
Collapse
|
29
|
Yu Y, Wang S, Xu C, Xiang L, Huang W, Zhang X, Tian B, Mao C, Li T, Wang S. The β-1,3-Glucanase Degrades Callose at Plasmodesmata to Facilitate the Transport of the Ribonucleoprotein Complex in Pyrus betulaefolia. Int J Mol Sci 2023; 24:ijms24098051. [PMID: 37175758 PMCID: PMC10179145 DOI: 10.3390/ijms24098051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Grafting is widely used to improve the stress tolerance and the fruit yield of horticultural crops. Ribonucleoprotein complexes formed by mRNAs and proteins play critical roles in the communication between scions and stocks of grafted plants. In Pyrus betulaefolia, ankyrin was identified previously to promote the long-distance movement of the ribonucleoprotein complex(PbWoxT1-PbPTB3) by facilitating callose degradation at plasmodesmata. However, the mechanism of the ankyrin-mediated callose degradation remains elusive. In this study, we discovered a β-1,3-glucanase (EC 3.2.1.39, PbPDBG) using ankyrin as a bait from plasmodesmata by co-immunoprecipitation and mass spectrometry. Ankyrin was required for the plasmodesmata-localization of PbPDBG. The grafting and bombardment experiments indicated that overexpressing PbPDBG resulted in decreased callose content at plasmodesmata, and thereby promoting the long-distance transport of the ribonucleoprotein complex. Altogether, our findings revealed that PbPDBG was the key factor in ankyrin-mediated callose degradation at plasmodesmata.
Collapse
Affiliation(s)
- Yunfei Yu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Shengyuan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chaoran Xu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Ling Xiang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Wenting Huang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Xiao Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Baihui Tian
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chong Mao
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Shengnan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
30
|
Gombos S, Miras M, Howe V, Xi L, Pottier M, Kazemein Jasemi NS, Schladt M, Ejike JO, Neumann U, Hänsch S, Kuttig F, Zhang Z, Dickmanns M, Xu P, Stefan T, Baumeister W, Frommer WB, Simon R, Schulze WX. A high-confidence Physcomitrium patens plasmodesmata proteome by iterative scoring and validation reveals diversification of cell wall proteins during evolution. THE NEW PHYTOLOGIST 2023; 238:637-653. [PMID: 36636779 DOI: 10.1111/nph.18730] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Plasmodesmata (PD) facilitate movement of molecules between plant cells. Regulation of this movement is still not understood. Plasmodesmata are hard to study, being deeply embedded within cell walls and incorporating several membrane types. Thus, structure and protein composition of PD remain enigmatic. Previous studies of PD protein composition identified protein lists with few validations, making functional conclusions difficult. We developed a PD scoring approach in iteration with large-scale systematic localization, defining a high-confidence PD proteome of Physcomitrium patens (HC300). HC300, together with bona fide PD proteins from literature, were placed in Pddb. About 65% of proteins in HC300 were not previously PD-localized. Callose-degrading glycolyl hydrolase family 17 (GHL17) is an abundant protein family with representatives across evolutionary scale. Among GHL17s, we exclusively found members of one phylogenetic clade with PD localization and orthologs occur only in species with developed PD. Phylogenetic comparison was expanded to xyloglucan endotransglucosylases/hydrolases and Exordium-like proteins, which also diversified into PD-localized and non-PD-localized members on distinct phylogenetic clades. Our high-confidence PD proteome HC300 provides insights into diversification of large protein families. Iterative and systematic large-scale localization across plant species strengthens the reliability of HC300 as basis for exploring structure, function, and evolution of this important organelle.
Collapse
Affiliation(s)
- Sven Gombos
- Department of Plant Systems Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Manuel Miras
- Department of Molecular Physiology, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Vicky Howe
- Department of Developmental Genetics, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Lin Xi
- Department of Plant Systems Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Mathieu Pottier
- Department of Molecular Physiology, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Neda S Kazemein Jasemi
- Department of Developmental Genetics, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Moritz Schladt
- Department of Molecular Physiology, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - J Obinna Ejike
- Department of Molecular Physiology, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Ulla Neumann
- Central Microscopy, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Sebastian Hänsch
- Center for Advanced Imaging, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Franziska Kuttig
- Department of Developmental Genetics, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Zhaoxia Zhang
- Department of Plant Systems Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Marcel Dickmanns
- Department of Molecular Physiology, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Peng Xu
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Thorsten Stefan
- Department of Plant Systems Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Wolf B Frommer
- Department of Molecular Physiology, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
- Institute for Transformative Biomolecules, Nagoya University, Nagoya, 464-0813, Japan
| | - Rüdiger Simon
- Department of Developmental Genetics, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, 70593, Stuttgart, Germany
| |
Collapse
|
31
|
Somashekar H, Mimura M, Tsuda K, Nonomura KI. Rice GLUCAN SYNTHASE-LIKE5 promotes anther callose deposition to maintain meiosis initiation and progression. PLANT PHYSIOLOGY 2023; 191:400-413. [PMID: 36271865 PMCID: PMC9806566 DOI: 10.1093/plphys/kiac488] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Callose is a plant cell wall polysaccharide whose deposition is spatiotemporally regulated in various developmental processes and environmental stress responses. The appearance of callose in premeiotic anthers is a prominent histological hallmark for the onset of meiosis in flowering plants; however, the biological role of callose in meiosis remains unknown. Here, we show that rice (Oryza sativa) GLUCAN SYNTHASE LIKE5 (OsGSL5), a callose synthase, localizes on the plasma membrane of pollen mother cells (PMCs) and is responsible for biogenesis of callose in anther locules through premeiotic and meiotic stages. In Osgsl5 mutant anthers mostly lacking callose deposition, aberrant PMCs accompanied by aggregated, unpaired, or multivalent chromosomes were frequently observed and, furthermore, a considerable number of mutant PMCs had untimely progress into meiosis compared to that of wild-type PMCs. Immunostaining of meiosis-specific protein HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS2 in premeiotic PMCs revealed precocious meiosis entry in Osgsl5 anthers. These findings provide insights into the function of callose in controlling the timing of male meiosis initiation and progression, in addition to roles in microsporogenesis, in flowering plants.
Collapse
Affiliation(s)
- Harsha Somashekar
- Plant Cytogenetics Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, The Graduate University of Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | - Manaki Mimura
- Plant Cytogenetics Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Katsutoshi Tsuda
- Plant Cytogenetics Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, The Graduate University of Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | | |
Collapse
|
32
|
Yuan Z, Zhao Y, Mo Z, Liu H. A Bacillus licheniformis Glycoside Hydrolase 43 Protein Is Recognized as a MAMP. Int J Mol Sci 2022; 23:ijms232214435. [PMID: 36430908 PMCID: PMC9697650 DOI: 10.3390/ijms232214435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022] Open
Abstract
Glycoside hydrolases from pathogens have often been reported as inducers of immune responses. However, the roles of glycoside hydrolase from plant-growth-promoting rhizobacteria (PGPR) in the resistance of plants against pathogens is not well studied. In this study, we identified a glycoside hydrolase 43 protein, H1AD43, produced by Bacillus licheniformis BL06 that can trigger defense responses, including cell death. Ion-exchange and size-exclusion chromatography were used for separation, and the amino acid sequence was identified by mass spectrometry. The recombinant protein generated by prokaryotic expression was able to elicit a hypersensitive response (HR) in Nicotiana benthamiana and trigger early defense responses, including reactive oxygen species (ROS) burst, callose accumulation, and the induction of defense genes. In addition, the protein could induce resistance in N. benthamiana, in which it inhibited infection by Phytophthora capsici Leonian and tobacco mosaic virus-green fluorescent protein (TMV-GFP) expression. H1AD43 thus represents a microbe-associated molecular pattern (MAMP) of PGPR that induces plant disease resistance and may provide a new method for the biological control of plant disease.
Collapse
Affiliation(s)
- Zhixiang Yuan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhitong Mo
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongxia Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: ; Tel.: +86-025-8439-5240
| |
Collapse
|
33
|
Ershova N, Sheshukova E, Kamarova K, Arifulin E, Tashlitsky V, Serebryakova M, Komarova T. Nicotiana benthamiana Kunitz peptidase inhibitor-like protein involved in chloroplast-to-nucleus regulatory pathway in plant-virus interaction. FRONTIERS IN PLANT SCIENCE 2022; 13:1041867. [PMID: 36438111 PMCID: PMC9685412 DOI: 10.3389/fpls.2022.1041867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Plant viruses use a variety of strategies to infect their host. During infection, viruses cause symptoms of varying severity, which are often associated with altered leaf pigmentation due to structural and functional damage to chloroplasts that are affected by viral proteins. Here we demonstrate that Nicotiana benthamiana Kunitz peptidase inhibitor-like protein (KPILP) gene is induced in response to potato virus X (PVX) infection. Using reverse genetic approach, we have demonstrated that KPILP downregulates expression of LHCB1 and LHCB2 genes of antenna light-harvesting complex proteins, HEMA1 gene encoding glutamyl-tRNA reductase, which participates in tetrapyrrole biosynthesis, and RBCS1A gene encoding RuBisCO small subunit isoform involved in the antiviral immune response. Thus, KPILP is a regulator of chloroplast retrograde signaling system during developing PVX infection. Moreover, KPILP was demonstrated to affect carbon partitioning: reduced glucose levels during PVX infection were associated with KPILP upregulation. Another KPILP function is associated with plasmodesmata permeability control. Its ability to stimulate intercellular transport of reporter 2xGFP molecules indicates that KPILP is a positive plasmodesmata regulator. Moreover, natural KPILP glycosylation is indispensable for manifestation of this function. During PVX infection KPILP increased expression leads to the reduction of plasmodesmata callose deposition. These results could indicate that KPILP affects plasmodesmata permeability via callose-dependent mechanism. Thus, virus entering a cell and starting reproduction triggers KPILP expression, which leads to downregulation of nuclear-encoded chloroplast genes associated with retrograde signaling, reduction in photoassimilates accumulation and increase in intercellular transport, creating favorable conditions for reproduction and spread of viral infection.
Collapse
Affiliation(s)
- Natalia Ershova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Sheshukova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Kamila Kamarova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Evgenii Arifulin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vadim Tashlitsky
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Marina Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana Komarova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
34
|
Yang F, Zhang X, Xue H, Tian T, Tong H, Hu J, Zhang R, Tang J, Su Q. (Z)-3-hexenol primes callose deposition against whitefly-mediated begomovirus infection in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:694-708. [PMID: 36086899 DOI: 10.1111/tpj.15973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Rapid callose accumulation has been shown to mediate defense in certain plant-virus interactions. Exposure to the green leaf volatile (Z)-3-hexenol (Z-3-HOL) can prime tomato (Solanum lycopersicum) for an enhanced defense against subsequent infection by whitefly-transmitted Tomato yellow leaf curl virus (TYLCV). However, the molecular mechanisms affecting Z-3-HOL-induced resistance are poorly understood. Here, we explored the mechanisms underlying Z-3-HOL-induced resistance against whitefly-transmitted TYLCV infection and the role of callose accumulation during this process. Tomato plants pre-treated with Z-3-HOL displayed callose priming upon whitefly infestation. The callose inhibitor 2-deoxy-d-glucose abolished Z-3-HOL-induced resistance, confirming the importance of callose in this induced resistance. We also found that Z-3-HOL pre-treatment enhanced salicylic acid levels and activated sugar signaling in tomato upon whitefly infestation, which increased the expression of the cell wall invertase gene Lin6 to trigger augmented callose deposition against TYLCV infection resulting from whitefly transmission. Using virus-induced gene silencing, we demonstrated the Lin6 expression is relevant for sugar accumulation mediated callose priming in restricting whitefly-transmitted TYLCV infection in plants that have been pre-treated with Z-3-HOL. Moreover, Lin6 induced the expression of the callose synthase gene Cals12, which is also required for Z-3-HOL-induced resistance of tomato against whitefly-transmitted TYLCV infection. These findings highlight the importance of sugar signaling in the priming of callose as a defense mechanism in Z-3-HOL-induced resistance of tomato against whitefly-transmitted TYLCV infection. The results will also increase our understanding of defense priming can be useful for the biological control of viral diseases.
Collapse
Affiliation(s)
- Fengbo Yang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Xinyi Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Hu Xue
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Tian Tian
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Hong Tong
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Jinyu Hu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Rong Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Juan Tang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Qi Su
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| |
Collapse
|
35
|
Rodríguez-Gómez G, Vargas-Mejía P, Silva-Rosales L. Differential Expression of Genes between a Tolerant and a Susceptible Maize Line in Response to a Sugarcane Mosaic Virus Infection. Viruses 2022; 14:v14081803. [PMID: 36016425 PMCID: PMC9415032 DOI: 10.3390/v14081803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022] Open
Abstract
To uncover novel genes associated with the Sugarcane mosaic virus (SCMV) response, we used RNA-Seq data to analyze differentially expressed genes (DEGs) and transcript expression pattern clusters between a tolerant/resistant (CI-RL1) and a susceptible (B73) line, in addition to the F1 progeny (CI-RL1xB73). A Gene Ontology (GO) enrichment of DEGs led us to propose three genes possibly associated with the CI-RL1 response: a heat shock 90-2 protein and two ABC transporters. Through a clustering analysis of the transcript expression patterns (CTEPs), we identified two genes putatively involved in viral systemic spread: the maize homologs to the PIEZO channel (ZmPiezo) and to the Potyvirus VPg Interacting Protein 1 (ZmPVIP1). We also observed the complex behavior of the maize eukaryotic factors ZmeIF4E and Zm-elfa (involved in translation), homologs to eIF4E and eEF1α in A. thaliana. Together, the DEG and CTEPs results lead us to suggest that the tolerant/resistant CI-RL1 response to the SCMV encompasses the action of diverse genes and, for the first time, that maize translation factors are associated with viral interaction.
Collapse
|
36
|
Legume plant defenses and nutrients mediate indirect interactions between soil rhizobia and chewing herbivores. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Jin T, Wu H, Deng Z, Cai T, Li J, Liu Z, Waterhouse PM, White RG, Liang D. Control of root-to-shoot long-distance flow by a key ROS-regulating factor in Arabidopsis. PLANT, CELL & ENVIRONMENT 2022; 45:2476-2491. [PMID: 35689480 DOI: 10.1111/pce.14375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 05/09/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Inter-tissue communication is instrumental to coordinating the whole-body level behaviour for complex multicellular organisms. However, little is known about the regulation of inter-tissue information exchange. Here we carried out genetic screens for root-to-shoot mobile silencing in Arabidopsis plants with a compromised small RNA-mediated gene silencing movement rate and identified radical-induced cell death 1 (RCD1) as a critical regulator of root-shoot communication. RCD1 belongs to a family of poly (ADP-ribose) polymerase proteins, which are highly conserved across land plants. We found that RCD1 coordinates symplastic and apoplastic movement by modulating the sterol level of lipid rafts. The higher superoxide production in rcd1-knockout plants resulted in lower plasmodesmata (PD) frequency and altered PD structure in the symplasm of the hypocotyl cortex. Furthermore, the mutants showed increased lateral area of tracheary pits, which reduced axial movement. Our study highlights a novel mechanism through which root-to-shoot long-distance signalling can be modulated both symplastically and apoplastically.
Collapse
Affiliation(s)
- Tianling Jin
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
| | - Huiyan Wu
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
| | - Zhuying Deng
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
| | - Tingting Cai
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
| | - Junkai Li
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
| | - Zhangyong Liu
- Engineering Research Center of Ecology and Agricultural Use of Wetlandy, Ministry of Education/Hubei Key Laboratory of Waterlogging Disaster and Wetland Agriculture, Yangtze University, Jingzhou, Hubei Province, China
| | - Peter M Waterhouse
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Rosemary G White
- Department of Plant Sciences, Australian National University, Canberra, ACT, Australia
| | - Dacheng Liang
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
- Engineering Research Center of Ecology and Agricultural Use of Wetlandy, Ministry of Education/Hubei Key Laboratory of Waterlogging Disaster and Wetland Agriculture, Yangtze University, Jingzhou, Hubei Province, China
| |
Collapse
|
38
|
Fischerová L, Gemperlová L, Cvikrová M, Matušíková I, Moravčíková J, Gerši Z, Malbeck J, Kuderna J, Pavlíčková J, Motyka V, Eliášová K, Vondráková Z. The humidity level matters during the desiccation of Norway spruce somatic embryos. FRONTIERS IN PLANT SCIENCE 2022; 13:968982. [PMID: 35968100 PMCID: PMC9372446 DOI: 10.3389/fpls.2022.968982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
In Norway spruce, as in many other conifers, the germination capacity of somatic embryos is strongly influenced by the desiccation phase inserted after maturation. The intensity of drying during desiccation eminently affected the formation of emblings (i.e., seedlings developed from somatic embryos). Compared to non-desiccated embryos, the germination capacity of embryos desiccated at 100% relative humidity was about three times higher, but the reduction of relative humidity to 95 and 90% had a negative effect on the subsequent embryo development. The water loss observed in these embryos did not lead to an increase in lipid peroxidation, as shown by malondialdehyde levels. Another metabolic pathway in plants that mediates a response to abiotic stresses is directed toward the biosynthesis of polyamines (PAs). The activities of PA biosynthetic enzymes increased steadily in embryos during desiccation at 100% relative humidity, whereas they decreased at lower humidity. The total content of free PAs in the embryos gradually decreased throughout desiccation. The increase in free putrescine (Put) and perchloric acid-insoluble Put conjugates was observed in embryos desiccated at lower humidity. These changes were accompanied to some extent by the transcription of the genes for the PA biosynthesis enzymes. Desiccation at 100% relative humidity increased the activity of the cell wall-modifying enzymes β-1,3-glucanases and chitinases; the activities of these enzymes were also significantly suppressed at reduced humidity. The same pattern was observed in the transcription of some β-1,3-glucanase and chitinase genes. Desiccation treatments triggered metabolic processes that responded to water availability, suggesting an active response of the embryo to the reduction in humidity. A positive effect was demonstrated only for desiccation at high relative humidity. Some of the physiological characteristics described can be used as markers of inappropriate relative humidity during somatic embryo desiccation.
Collapse
Affiliation(s)
- Lucie Fischerová
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Lenka Gemperlová
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Milena Cvikrová
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Ildiko Matušíková
- Department of Ecochemistry and Radioecology, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Jana Moravčíková
- Department of Biotechnologies, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Zuzana Gerši
- Department of Biology, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Jiří Malbeck
- Laboratory of Mass Spectroscopy, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Jan Kuderna
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Jana Pavlíčková
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Václav Motyka
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Kateřina Eliášová
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Zuzana Vondráková
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
39
|
Soares JMDS, Rocha ADJ, Nascimento FDS, de Amorim VBO, Ramos APDS, Ferreira CF, Haddad F, Amorim EP. Gene Expression, Histology and Histochemistry in the Interaction between Musa sp. and Pseudocercospora fijiensis. PLANTS (BASEL, SWITZERLAND) 2022; 11:1953. [PMID: 35956430 PMCID: PMC9370387 DOI: 10.3390/plants11151953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Bananas are the main fruits responsible for feeding more than 500 million people in tropical and subtropical countries. Black Sigatoka, caused by the fungus Pseudocercospora fijiensis, is one of the most destructive disease for the crop. This fungus is mainly controlled with the use of fungicides; however, in addition to being harmful to human health, they are associated with a high cost. The development of resistant cultivars through crosses of susceptible commercial cultivars is one of the main focuses of banana breeding programs worldwide. Thus, the objective of the present study was to investigate the interaction between Musa sp. and P. fijiensis through the relative expression of candidate genes involved in the defence response to black Sigatoka in four contrasting genotypes (resistant: Calcutta 4 and Krasan Saichon; susceptible: Grand Naine and Akondro Mainty) using quantitative real-time PCR (RT-qPCR) in addition to histological and histochemical analyses to verify the defence mechanisms activated during the interaction. Differentially expressed genes (DEGs) related to the jasmonic acid and ethylene signalling pathway, GDSL-like lipases and pathogenesis-related proteins (PR-4), were identified. The number and distance between stomata were directly related to the resistance/susceptibility of each genotype. Histochemical tests showed the production of phenolic compounds and callosis as defence mechanisms activated by the resistant genotypes during the interaction process. Scanning electron microscopy (SEM) showed pathogenic structures on the leaf surface in addition to calcium oxalate crystals. The resistant genotype Krasan Saichon stood out in the analyses and has potential for use in breeding programs for resistance to black Sigatoka in banana and plantains.
Collapse
Affiliation(s)
- Julianna Matos da Silva Soares
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana 44036-900, BA, Brazil; (J.M.d.S.S.); (A.d.J.R.); (F.d.S.N.)
| | - Anelita de Jesus Rocha
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana 44036-900, BA, Brazil; (J.M.d.S.S.); (A.d.J.R.); (F.d.S.N.)
| | - Fernanda dos Santos Nascimento
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana 44036-900, BA, Brazil; (J.M.d.S.S.); (A.d.J.R.); (F.d.S.N.)
| | | | | | - Cláudia Fortes Ferreira
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (V.B.O.d.A.); (A.P.d.S.R.); (C.F.F.); (F.H.)
| | - Fernando Haddad
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (V.B.O.d.A.); (A.P.d.S.R.); (C.F.F.); (F.H.)
| | - Edson Perito Amorim
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (V.B.O.d.A.); (A.P.d.S.R.); (C.F.F.); (F.H.)
| |
Collapse
|
40
|
Mbiza NIT, Hu Z, Zhang H, Zhang Y, Luo X, Wang Y, Wang Y, Liu T, Li J, Wang X, Zhang J, Yu Y. GhCalS5 is involved in cotton response to aphid attack through mediating callose formation. FRONTIERS IN PLANT SCIENCE 2022; 13:892630. [PMID: 35937318 PMCID: PMC9350506 DOI: 10.3389/fpls.2022.892630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Callose synthase plays an essential role in plant growth and development and in response to all sorts of stresses through regulating callose formation. However, few research about the function and mechanism of the insect resistance of callose synthase genes have been reported in cotton. In this study, a cotton callose synthase gene GhCalS5 was cloned, and its function and mechanism of resistance to cotton aphids were analyzed. The expression of GhCalS5 was significantly upregulated in both, leaves and stems of cotton plants at 48 h after cotton aphid infestation and in the leaves of cotton plants at 24 h after salicylic acid treatment. The overexpression of GhCalS5 enhanced cotton resistance to cotton aphids. Expectedly silencing of GhCalS5 reduced cotton resistance to cotton aphids. Overexpression of GhCalS5 enhanced callose formation in cotton leaves. Our results suggest that GhCalS5 is involved in cotton resistance against cotton aphids by influencing callose formation.
Collapse
Affiliation(s)
| | - Zongwei Hu
- College of Agriculture, Institute of Entomology, Yangtze University, Jingzhou, China
| | - Haoran Zhang
- College of Agriculture, Institute of Entomology, Yangtze University, Jingzhou, China
| | - Yi Zhang
- College of Agriculture, Institute of Entomology, Yangtze University, Jingzhou, China
| | - Xincheng Luo
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Yuxue Wang
- College of Agriculture, Institute of Entomology, Yangtze University, Jingzhou, China
| | - Yi Wang
- College of Agriculture, Institute of Entomology, Yangtze University, Jingzhou, China
| | - Ting Liu
- College of Agriculture, Institute of Entomology, Yangtze University, Jingzhou, China
| | - Jianping Li
- College of Agriculture, Institute of Entomology, Yangtze University, Jingzhou, China
| | - Xiangping Wang
- College of Agriculture, Institute of Entomology, Yangtze University, Jingzhou, China
| | - Jianmin Zhang
- College of Agriculture, Institute of Entomology, Yangtze University, Jingzhou, China
| | - Yonghao Yu
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
41
|
Jiang Z, Jin X, Yang M, Pi Q, Cao Q, Li Z, Zhang Y, Wang XB, Han C, Yu J, Li D. Barley stripe mosaic virus γb protein targets thioredoxin h-type 1 to dampen salicylic acid-mediated defenses. PLANT PHYSIOLOGY 2022; 189:1715-1727. [PMID: 35325212 PMCID: PMC9237698 DOI: 10.1093/plphys/kiac137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/27/2022] [Indexed: 05/14/2023]
Abstract
Salicylic acid (SA) acts as a signaling molecule to perceive and defend against pathogen infections. Accordingly, pathogens evolve versatile strategies to disrupt the SA-mediated signal transduction, and how plant viruses manipulate the SA-dependent defense responses requires further characterization. Here, we show that barley stripe mosaic virus (BSMV) infection activates the SA-mediated defense signaling pathway and upregulates the expression of Nicotiana benthamiana thioredoxin h-type 1 (NbTRXh1). The γb protein interacts directly with NbTRXh1 in vivo and in vitro. The overexpression of NbTRXh1, but not a reductase-defective mutant, impedes BSMV infection, whereas low NbTRXh1 expression level results in increased viral accumulation. Similar with its orthologs in Arabidopsis (Arabidopsis thaliana), NbTRXh1 also plays an essential role in SA signaling transduction in N. benthamiana. To counteract NbTRXh1-mediated defenses, the BSMV γb protein targets NbTRXh1 to dampen its reductase activity, thereby impairing downstream SA defense gene expression to optimize viral cell-to-cell movement. We also found that NbTRXh1-mediated resistance defends against lychnis ringspot virus, beet black scorch virus, and beet necrotic yellow vein virus. Taken together, our results reveal a role for the multifunctional γb protein in counteracting plant defense responses and an expanded broad-spectrum antibiotic role of the SA signaling pathway.
Collapse
Affiliation(s)
- Zhihao Jiang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Meng Yang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Qinglin Pi
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Qing Cao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Zhenggang Li
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Xian-Bing Wang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Chenggui Han
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Jialin Yu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
42
|
Mustafa AS, Ssenku JE, Ssemanda P, Ntambi S, Dinesh-Kumar SP, Tugume AK. Sandwich Enzyme-Linked Immunosorbent Assay for Quantification of Callose. Methods Protoc 2022; 5:54. [PMID: 35893580 PMCID: PMC9326611 DOI: 10.3390/mps5040054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/07/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
The existing methods of callose quantification include epifluorescence microscopy and fluorescence spectrophotometry of aniline blue-stained callose particles, immuno-fluorescence microscopy and indirect assessment of both callose synthase and β-(1,3)-glucanase enzyme activities. Some of these methods are laborious, time consuming, not callose-specific, biased and require high technical skills. Here, we describe a method of callose quantification based on Sandwich Enzyme-Linked Immunosorbent Assay (S-ELISA). Tissue culture-derived banana plantlets were inoculated with Xanthomonas campestris pv. musacearum (Xcm) bacteria as a biotic stress factor inducing callose production. Banana leaf, pseudostem and corm tissue samples were collected at 14 days post-inoculation (dpi) for callose quantification. Callose levels were significantly different in banana tissues of Xcm-inoculated and control groups except in the pseudostems of both banana genotypes. The method described here could be applied for the quantification of callose in different plant species with satisfactory level of specificity to callose, and reproducibility. Additionally, the use of 96-well plate makes this method suitable for high throughput callose quantification studies with minimal sampling and analysis biases. We provide step-by-step detailed descriptions of the method.
Collapse
Affiliation(s)
- Abubakar S. Mustafa
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (A.S.M.); (J.E.S.); (P.S.); (S.N.)
| | - Jamilu E. Ssenku
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (A.S.M.); (J.E.S.); (P.S.); (S.N.)
| | - Paul Ssemanda
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (A.S.M.); (J.E.S.); (P.S.); (S.N.)
| | - Saidi Ntambi
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (A.S.M.); (J.E.S.); (P.S.); (S.N.)
| | - Savithramma P. Dinesh-Kumar
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA;
| | - Arthur K. Tugume
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (A.S.M.); (J.E.S.); (P.S.); (S.N.)
| |
Collapse
|
43
|
Ren X, Wang J, Zhu F, Wang Z, Mei J, Xie Y, Liu T, Ye X. β-aminobutyric acid (BABA)-induced resistance to tobacco black shank in tobacco (Nicotiana tabacum L.). PLoS One 2022; 17:e0267960. [PMID: 35679273 PMCID: PMC9182692 DOI: 10.1371/journal.pone.0267960] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
Tobacco black shank is a kind of soil-borne disease caused by the Oomycete Phytophthora parasitica. This disease is one of the most destructive diseases to tobacco (Nicotiana tabacum L.) growth worldwide. At present, various measures have been taken to control this disease, but they still have different challenges and limitations. Studies have shown that β-aminobutyric acid (BABA), a nonprotein amino acid, can enhance disease resistance in plants against different varieties of pathogens. However, it is unclear whether BABA can induce plants to resist Phytophthora parasitica infection. Therefore, this study aims to explore the effect and related mechanism of BABA against tobacco black shank. Our results showed that 5 mmol.L-1 BABA had an obvious anti-inducing effect on the pathogenic fungus and could effectively inhibit the formation of dark spots in the stems. The results also showed that a large amount of callose deposition was observed in BABA-treated tobacco. Furthermore, the application of BABA induced the accumulation of H2O2 in tobacco and effectively regulated the homeostasis of reactive oxygen in tobacco plants, reducing the toxicity of H2O2 to plants while activating the defense system. In addition, BABA spray treatment could induce an increase in the concentrations of salicylic acid (SA) and jasmonic acid-isoleucine (JA-Ile) in tobacco, and the gene expression results confirmed that BABA upregulated the expression of SA-related genes (PR1, PR2 and PR5), JA-related genes (PDF1.2) and ET-related genes (EFE26 and ACC oxidase) in tobacco plants. Taken together, BABA could activate tobacco resistance to black shank disease by increasing H2O2 accumulation, callose deposition, plant hormone (SA and JA-Ile) production, and SA-, JA-, and ET- signaling pathways.
Collapse
Affiliation(s)
- Xiyue Ren
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- National-Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Jianjun Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Faliang Zhu
- Yunnan Tobacco Co., Ltd., Kunming Branch, Kunming, China
| | - Zhijiang Wang
- Yunnan Tobacco Co., Ltd., Kunming Branch, Kunming, China
| | - Jian Mei
- Yunnan Tobacco Co., Ltd., Kunming Branch, Kunming, China
| | - Yonghui Xie
- Yunnan Tobacco Co., Ltd., Kunming Branch, Kunming, China
| | - Tao Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- National-Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Xianwen Ye
- Yunnan Tobacco Co., Ltd., Kunming Branch, Kunming, China
| |
Collapse
|
44
|
Sphingolipids at Plasmodesmata: Structural Components and Functional Modulators. Int J Mol Sci 2022; 23:ijms23105677. [PMID: 35628487 PMCID: PMC9145688 DOI: 10.3390/ijms23105677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Plasmodesmata (PD) are plant-specific channels connecting adjacent cells to mediate intercellular communication of molecules essential for plant development and defense. The typical PD are organized by the close apposition of the plasma membrane (PM), the desmotubule derived from the endoplasmic reticulum (ER), and spoke-like elements linking the two membranes. The plasmodesmal PM (PD-PM) is characterized by the formation of unique microdomains enriched with sphingolipids, sterols, and specific proteins, identified by lipidomics and proteomics. These components modulate PD to adapt to the dynamic changes of developmental processes and environmental stimuli. In this review, we focus on highlighting the functions of sphingolipid species in plasmodesmata, including membrane microdomain organization, architecture transformation, callose deposition and permeability control, and signaling regulation. We also briefly discuss the difference between sphingolipids and sterols, and we propose potential unresolved questions that are of help for further understanding the correspondence between plasmodesmal structure and function.
Collapse
|
45
|
Gaibor-Vaca DG, García-Bazurto GL, Garcés-Fiallos FR. Mecanismos de defensa en plantas de Capsicum contra Phytophthora capsici. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.02.25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Phytophthora capsici es un oomiceto causante de la pudrición de raíz, tallo, frutos y tizón foliar en varias especies vegetales de importancia agrícola, principalmente en Solanáceas del género Capsicum como ají y pimiento. Este fitopatógeno cosmopolita posee mecanismos de ataque que favorecen la rápida infección, colonización y reproducción en huéspedes susceptibles. Contrariamente, estos procesos son retrasados o evitados fuertemente por genotipos resistentes, debido principalmente a sus mecanismos de defensa. En esas interacciones incompatibles, las plantas resistentes de Capsicum reconocen el oomiceto y rápidamente expresan múltiples genes que posteriormente señalizan moléculas, que permiten la acumulación de compuestos fenólicos, fitoalexinas y especies reactivas de oxígeno, la actividad de diferentes enzimas, que pueden permitir incluso la formación de barreras físicas. Esta revisión aborda, expone y discute los avances y el progreso de las investigaciones a lo largo de los ultimos veinte años, referente a los mecanismos de defensa estructurales, bioquimicos y moleculares que utilizan las plantas resistentes de Capsicum para defenderse de P. capsici.
Palabras claves. ají, pimiento, pudrición de raíz y corona, tizón foliar, resistencia vegetal
Collapse
Affiliation(s)
- Darlyn G. Gaibor-Vaca
- Facultad de Ingeniería Agronómica, Universidad Técnica de Manabí, Campus Experimental La Teodomira, Km 13, Lodana, Santa Ana, Manabí
| | - Génesis L García-Bazurto
- Facultad de Ingeniería Agronómica, Universidad Técnica de Manabí, Campus Experimental La Teodomira, Km 13, Lodana, Santa Ana, Manabí
| | - Felipe R. Garcés-Fiallos
- Facultad de Ingeniería Agronómica, Universidad Técnica de Manabí, Campus Experimental La Teodomira, Km 13, Lodana, Santa Ana, Manabí
| |
Collapse
|
46
|
Wang S, Yu Y, Xu C, Xiang L, Huang W, Zhang C, Sun S, Li T, Wang S. PbANK facilitates the long-distance movement of the PbWoxT1-PbPTB3 RNP complex by degrading deposited callose. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111232. [PMID: 35351304 DOI: 10.1016/j.plantsci.2022.111232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/10/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Grafting horticultural crops can result in phenotypic changes in the grafted materials due to the movement of macromolecular signals, including RNAs and proteins, across the graft union; however, little is known about the composition of trafficking ribonucleoprotein (RNP) complexes or how these macromolecules are transported. Here, we used the core of PbPTB3-PbWoxT1 RNP complex, PbPTB3, as bait to screen Pyrus betulaefolia cDNA library for its interaction partners. We identified an ankyrin protein, PbANK, that interacts with PbPTB3 to facilitate its transport through the phloem alongside PbWoxT1 mRNA. Heterografting experiments showed that silencing PbANK in rootstock prevented the transport of PbPTB3 and PbWoxT1 mRNA from the rootstock to the scion. Similarly, heterologous grafting experiments demonstrated that PbANK itself cannot be transported over long distances through a graft union. Fluorescence microscopy showed that silencing ANK affected the intercellular diffusion of PbPTB3 and increased callose deposition at plasmodesmata. Collectively, these findings demonstrate that PbANK mediates the long-distance movement of PbPTB3 and PbWoxT1 by degrading callose to increase the efficiency of cell-to-cell movement.
Collapse
Affiliation(s)
- Shengyuan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yunfei Yu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chaoran Xu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Ling Xiang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Wenting Huang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chuan Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Shiyue Sun
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Shengnan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
47
|
Integrative Physiological and Transcriptomic Analysis Reveals the Transition Mechanism of Sugar Phloem Unloading Route in Camellia oleifera Fruit. Int J Mol Sci 2022; 23:ijms23094590. [PMID: 35562980 PMCID: PMC9102078 DOI: 10.3390/ijms23094590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Sucrose phloem unloading plays a vital role in photoassimilate distribution and storage in sink organs such as fruits and seeds. In most plants, the phloem unloading route was reported to shift between an apoplasmic and a symplasmic pattern with fruit development. However, the molecular transition mechanisms of the phloem unloading pathway still remain largely unknown. In this study, we applied RNA sequencing to profile the specific gene expression patterns for sucrose unloading in C. oleifera fruits in the apo- and symplasmic pathways that were discerned by CF fluoresce labelling. Several key structural genes were identified that participate in phloem unloading, such as PDBG11, PDBG14, SUT8, CWIN4, and CALS10. In particular, the key genes controlling the process were involved in callose metabolism, which was confirmed by callose staining. Based on the co-expression network analysis with key structural genes, a number of transcription factors belonging to the MYB, C2C2, NAC, WRKY, and AP2/ERF families were identified to be candidate regulators for the operation and transition of phloem unloading. KEGG enrichment analysis showed that some important metabolism pathways such as plant hormone metabolism, starch, and sucrose metabolism altered with the change of the sugar unloading pattern. Our study provides innovative insights into the different mechanisms responsible for apo- and symplasmic phloem unloading in oil tea fruit and represents an important step towards the omics delineation of sucrose phloem unloading transition in crops.
Collapse
|
48
|
Brilli F, Pignattelli S, Baraldi R, Neri L, Pollastri S, Gonnelli C, Giovannelli A, Loreto F, Cocozza C. Root Exposure to 5-Aminolevulinic Acid (ALA) Affects Leaf Element Accumulation, Isoprene Emission, Phytohormonal Balance, and Photosynthesis of Salt-Stressed Arundo donax. Int J Mol Sci 2022; 23:4311. [PMID: 35457125 PMCID: PMC9028702 DOI: 10.3390/ijms23084311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022] Open
Abstract
Arundo donax has been recognized as a promising crop for biomass production on marginal lands due to its superior productivity and stress tolerance. However, salt stress negatively impacts A. donax growth and photosynthesis. In this study, we tested whether the tolerance of A. donax to salinity stress can be enhanced by the addition of 5-aminolevulinic acid (ALA), a known promoter of plant growth and abiotic stress tolerance. Our results indicated that root exposure to ALA increased the ALA levels in leaves along the A. donax plant profile. ALA enhanced Na+ accumulation in the roots of salt-stressed plants and, at the same time, lowered Na+ concentration in leaves, while a reduced callose amount was found in the root tissue. ALA also improved the photosynthetic performance of salt-stressed apical leaves by stimulating stomatal opening and preventing an increase in the ratio between abscisic acid (ABA) and indol-3-acetic acid (IAA), without affecting leaf methanol emission and plant growth. Supply of ALA to the roots reduced isoprene fluxes from leaves of non-stressed plants, while it sustained isoprene fluxes along the profile of salt-stressed A. donax. Thus, ALA likely interacted with the methylerythritol 4-phosphate (MEP) pathway and modulate the synthesis of either ABA or isoprene under stressful conditions. Overall, our study highlights the effectiveness of ALA supply through soil fertirrigation in preserving the young apical developing leaves from the detrimental effects of salt stress, thus helping of A. donax to cope with salinity and favoring the recovery of the whole plant once the stress is removed.
Collapse
Affiliation(s)
- Federico Brilli
- Institute for Sustainable Plant Protectio, National Research Council of Italy (IPSP-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (S.P.); (S.P.); (F.L.); (C.C.)
| | - Sara Pignattelli
- Institute for Sustainable Plant Protectio, National Research Council of Italy (IPSP-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (S.P.); (S.P.); (F.L.); (C.C.)
- Institute of Biosciences and BioResources, National Research Council of Italy (IBBR-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Rita Baraldi
- Institute for BioEconomy, National Research Council of Italy (IBE-CNR), Via Gobetti 101, 40129 Bologna, Italy; (R.B.); (L.N.)
| | - Luisa Neri
- Institute for BioEconomy, National Research Council of Italy (IBE-CNR), Via Gobetti 101, 40129 Bologna, Italy; (R.B.); (L.N.)
| | - Susanna Pollastri
- Institute for Sustainable Plant Protectio, National Research Council of Italy (IPSP-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (S.P.); (S.P.); (F.L.); (C.C.)
| | - Cristina Gonnelli
- Department of Biology, University of Florence, Via Micheli 1, 50121 Firenze, Italy;
| | - Alessio Giovannelli
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (IRET-CNR), Via Madonna del Piano 10, 5001 Sesto Fiorentino, Italy;
| | - Francesco Loreto
- Institute for Sustainable Plant Protectio, National Research Council of Italy (IPSP-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (S.P.); (S.P.); (F.L.); (C.C.)
- Department of Biology, University of Naples “Federico II”, Via Cinthia 7, 80126 Napoli, Italy
| | - Claudia Cocozza
- Institute for Sustainable Plant Protectio, National Research Council of Italy (IPSP-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (S.P.); (S.P.); (F.L.); (C.C.)
- Department of Agriculture Food Environment and Forestry, University of Florence, Via San Bon-Aventura 13, 50145 Firenze, Italy
| |
Collapse
|
49
|
Miller J, Burch-Smith TM, Ganusov VV. Mathematical Modeling Suggests Cooperation of Plant-Infecting Viruses. Viruses 2022; 14:741. [PMID: 35458472 PMCID: PMC9029262 DOI: 10.3390/v14040741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/12/2022] [Accepted: 03/25/2022] [Indexed: 02/05/2023] Open
Abstract
Viruses are major pathogens of agricultural crops. Viral infections often start after the virus enters the outer layer of a tissue, and many successful viruses, after local replication in the infected tissue, are able to spread systemically. Quantitative details of virus dynamics in plants, however, are poorly understood, in part, because of the lack of experimental methods which allow the accurate measurement of the degree of infection in individual plant tissues. Recently, a group of researchers followed the kinetics of infection of individual cells in leaves of Nicotiana tabacum plants using Tobacco etch virus (TEV) expressing either Venus or blue fluorescent protein (BFP). Assuming that viral spread occurs from lower to upper leaves, the authors fitted a simple mathematical model to the frequency of cellular infection by the two viral variants found using flow cytometry. While the original model could accurately describe the kinetics of viral spread locally and systemically, we found that many alternative versions of the model, for example, if viral spread starts at upper leaves and progresses to lower leaves or when virus dissemination is stopped due to an immune response, fit the data with reasonable quality, and yet with different parameter estimates. These results strongly suggest that experimental measurements of the virus infection in individual leaves may not be sufficient to identify the pathways of viral dissemination between different leaves and reasons for viral control. We propose experiments that may allow discrimination between the alternatives. By analyzing the kinetics of coinfection of individual cells by Venus and BFP strains of TEV we found a strong deviation from the random infection model, suggesting cooperation between the two strains when infecting plant cells. Importantly, we showed that many mathematical models on the kinetics of coinfection of cells with two strains could not adequately describe the data, and the best fit model needed to assume (i) different susceptibility of uninfected cells to infection by two viruses locally in the leaf vs. systemically from other leaves, and (ii) decrease in the infection rate depending on the fraction of uninfected cells which could be due to a systemic immune response. Our results thus demonstrate the difficulty in reaching definite conclusions from extensive and yet limited experimental data and provide evidence of potential cooperation between different viral variants infecting individual cells in plants.
Collapse
Affiliation(s)
- Joshua Miller
- Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA;
| | | | - Vitaly V. Ganusov
- Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA;
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
50
|
Accelerated remodeling of the mesophyll-bundle sheath interface in the maize C4 cycle mutant leaves. Sci Rep 2022; 12:5057. [PMID: 35322159 PMCID: PMC8943126 DOI: 10.1038/s41598-022-09135-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
C4 photosynthesis in the maize leaf involves the exchange of organic acids between mesophyll (M) and the bundle sheath (BS) cells. The transport is mediated by plasmodesmata embedded in the suberized cell wall. We examined the maize Kranz anatomy with a focus on the plasmodesmata and cell wall suberization with microscopy methods. In the young leaf zone where M and BS cells had indistinguishable proplastids, plasmodesmata were simple and no suberin was detected. In leaf zones where dimorphic chloroplasts were evident, the plasmodesma acquired sphincter and cytoplasmic sleeves, and suberin was discerned. These modifications were accompanied by a drop in symplastic dye mobility at the M-BS boundary. We compared the kinetics of chloroplast differentiation and the modifications in M-BS connectivity in ppdk and dct2 mutants where C4 cycle is affected. The rate of chloroplast diversification did not alter, but plasmodesma remodeling, symplastic transport inhibition, and cell wall suberization were observed from younger leaf zone in the mutants than in wild type. Our results indicate that inactivation of the C4 genes accelerated the changes in the M-BS interface, and the reduced permeability suggests that symplastic transport between M and BS could be regulated for normal operation of C4 cycle.
Collapse
|