1
|
Yin J, Zhu T, Li X, Yin X, Xu J, Xu G. Polystyrene nanoplastics induce cell type-dependent secondary wall reinforcement in rice (Oryza sativa) roots and reduce root hydraulic conductivity. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135309. [PMID: 39053057 DOI: 10.1016/j.jhazmat.2024.135309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Nanoplastics (NPs) have been demonstrated the ability to penetrate plant roots and cause stress. However, the extent of NPs penetration into various root tissues and the corresponding plant defense mechanisms remain unclear. This study examined the penetration and accumulation patterns of polystyrene nanoplastics (PS-NPs) in different cell types within rice roots, and explored how the roots quickly modify their cell wall structure in response. The findings showed that fully developed sclerenchyma cells in rice roots effectively prevented the invasion of PS-NPs. Meanwhile, PS-NPs triggered the accumulation of lignin and suberin in specific cells such as the exodermis, sclerenchyma, and xylem vessels. PS-NPs at a concentration of 50 mg L-1 increased cell wall thickness by 18.6 %, 21.1 %, and 22.4 % in epidermis, exodermis, and sclerenchyma cells, respectively, and decreased root hydraulic conductivity by 14.8 %. qPCR analysis revealed that PS-NPs influenced the cell wall synthesis pathway, promoting the deposition of lignin and suberin monomers on the secondary wall through the up-regulation of genes such as OsLAC and OsABCG. These results demonstrate that PS-NPs can induce cell type-specific strengthening of secondary walls and barrier formation in rice roots, suggesting the potential role of plant secondary wall development in mitigating NPs contamination risks in crops.
Collapse
Affiliation(s)
- Jingjing Yin
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China
| | - Tongshan Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan 250100, PR China
| | - Xiaozun Li
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China
| | - Xiao Yin
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China
| | - Jiandi Xu
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China
| | - Guoxin Xu
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China.
| |
Collapse
|
2
|
Yu B, Chao DY, Zhao Y. How plants sense and respond to osmotic stress. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:394-423. [PMID: 38329193 DOI: 10.1111/jipb.13622] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
Drought is one of the most serious abiotic stresses to land plants. Plants sense and respond to drought stress to survive under water deficiency. Scientists have studied how plants sense drought stress, or osmotic stress caused by drought, ever since Charles Darwin, and gradually obtained clues about osmotic stress sensing and signaling in plants. Osmotic stress is a physical stimulus that triggers many physiological changes at the cellular level, including changes in turgor, cell wall stiffness and integrity, membrane tension, and cell fluid volume, and plants may sense some of these stimuli and trigger downstream responses. In this review, we emphasized water potential and movements in organisms, compared putative signal inputs in cell wall-containing and cell wall-free organisms, prospected how plants sense changes in turgor, membrane tension, and cell fluid volume under osmotic stress according to advances in plants, animals, yeasts, and bacteria, summarized multilevel biochemical and physiological signal outputs, such as plasma membrane nanodomain formation, membrane water permeability, root hydrotropism, root halotropism, Casparian strip and suberin lamellae, and finally proposed a hypothesis that osmotic stress responses are likely to be a cocktail of signaling mediated by multiple osmosensors. We also discussed the core scientific questions, provided perspective about the future directions in this field, and highlighted the importance of robust and smart root systems and efficient source-sink allocations for generating future high-yield stress-resistant crops and plants.
Collapse
Affiliation(s)
- Bo Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Sciences, Shanghai, 200032, China
- Key Laboratory of Plant Carbon Capture, The Chinese Academy of Sciences, Shanghai, 200032, China
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, The Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Sciences, Shanghai, 200032, China
- Key Laboratory of Plant Carbon Capture, The Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Liu T, Kreszies T. The exodermis: A forgotten but promising apoplastic barrier. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154118. [PMID: 37871477 DOI: 10.1016/j.jplph.2023.154118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023]
Abstract
The endodermis and exodermis are widely recognized as two important barriers in plant roots that play a role in regulating the movement of water and ions. While the endodermis is present in nearly all plant roots, the exodermis, characterized by Casparian strips and suberin lamellae is absent in certain plant species. The exodermis can be classified into three types: uniform, dimorphic, and inducible exodermis. Apart from its role in water and ion transport, the exodermis acts as a protective barrier against harmful substances present in the external environment. Furthermore, the exodermis is a complex barrier influenced by various environmental factors, and its resistance to water and ions varies depending on the type of exodermis and the maturity of the root. Therefore, investigations concerning the exodermis necessitate a plant-specific approach. However, our current understanding of the exodermal physiological functions and molecular mechanisms governing its development is limited due to the absence of an exodermis in the model plant Arabidopsis. Due to that, unfortunately, the exodermis has been largely overlooked until now. In this review, we aim to summarize the current fundamental knowledge regarding the exodermis in common research used crop species and propose suggestions for future research endeavors.
Collapse
Affiliation(s)
- Tingting Liu
- Institute of Applied Plant Nutrition, University of Göttingen, Carl-Sprengel-Weg 1, 37075, Göttingen, Germany
| | - Tino Kreszies
- Plant Nutrition and Crop Physiology, University of Göttingen, Carl-Sprengel-Weg 1, 37075, Göttingen, Germany.
| |
Collapse
|
4
|
Lu Y, Fricke W. Salt Stress-Regulation of Root Water Uptake in a Whole-Plant and Diurnal Context. Int J Mol Sci 2023; 24:ijms24098070. [PMID: 37175779 PMCID: PMC10179082 DOI: 10.3390/ijms24098070] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
This review focuses on the regulation of root water uptake in plants which are exposed to salt stress. Root water uptake is not considered in isolation but is viewed in the context of other potential tolerance mechanisms of plants-tolerance mechanisms which relate to water relations and gas exchange. Plants spend between one third and half of their lives in the dark, and salt stress does not stop with sunset, nor does it start with sunrise. Surprisingly, how plants deal with salt stress during the dark has received hardly any attention, yet any growth response to salt stress over days, weeks, months and years is the integrative result of how plants perform during numerous, consecutive day/night cycles. As we will show, dealing with salt stress during the night is a prerequisite to coping with salt stress during the day. We hope to highlight with this review not so much what we know, but what we do not know; and this relates often to some rather basic questions.
Collapse
Affiliation(s)
- Yingying Lu
- School of Biology and Environmental Science, University College Dublin (UCD), Belfield, D04 N2E5 Dublin, Ireland
| | - Wieland Fricke
- School of Biology and Environmental Science, University College Dublin (UCD), Belfield, D04 N2E5 Dublin, Ireland
| |
Collapse
|
5
|
Xie J, Qi B, Mou C, Wang L, Jiao Y, Dou Y, Zheng H. BREVIPEDICELLUS and ERECTA control the expression of AtPRX17 to prevent Arabidopsis callus browning. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1516-1532. [PMID: 34849723 DOI: 10.1093/jxb/erab512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Efficient in vitro callus generation is required for tissue culture propagation, a process that allows for plant regeneration and transgenic breeding for desired phenotypes. Identifying genes and regulatory elements that prevent impaired callus growth and callus browning is essential for the development of in vitro callus systems. Here, we show that the BREVIPEDICELLUS and ERECTA pathways in Arabidopsis calli converge to prevent callus browning, and positively regulate the expression of the isoperoxidase gene AtPRX17 in rapidly growing calli. Loss-of-function mutations in both BREVIPEDICELLUS and ERECTA resulted in markedly increased callus browning. Transgenic lines expressing 35S pro::AtPRX17 in the bp-5 er105 double mutant background fully rescued this phenotypic abnormality. Using in vivo (chromatin immunoprecipitation-PCR and transient expression) and in vitro (electrophoretic mobility shift assays) assays, we observed that the BREVIPEDICELLUS protein binds directly to the upstream sequence of AtPRX17 to promote its transcription during callus growth. ERECTA is a ubiquitous factor required for cell proliferation and growth. We show that ERECTA positively regulates the expression of the transcription factor WRKY6, which directly binds to a separate site on the AtPRX17 promoter, further increasing its expression. Our data reveal an important molecular mechanism involved in the regulation of peroxidase isozyme expression to reduce Arabidopsis callus browning.
Collapse
Affiliation(s)
- Junyan Xie
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bin Qi
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chenghong Mou
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lihua Wang
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuwei Jiao
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanhui Dou
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huiqiong Zheng
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
6
|
Chourasia KN, More SJ, Kumar A, Kumar D, Singh B, Bhardwaj V, Kumar A, Das SK, Singh RK, Zinta G, Tiwari RK, Lal MK. Salinity responses and tolerance mechanisms in underground vegetable crops: an integrative review. PLANTA 2022; 255:68. [PMID: 35169941 DOI: 10.1007/s00425-022-03845-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/25/2022] [Indexed: 05/04/2023]
Abstract
The present review gives an insight into the salinity stress tolerance responses and mechanisms of underground vegetable crops. Phytoprotectants, agronomic practices, biofertilizers, and modern biotechnological approaches are crucial for salinity stress management. Underground vegetables are the source of healthy carbohydrates, resistant starch, antioxidants, vitamins, mineral, and nutrients which benefit human health. Soil salinity is a serious threat to agriculture that severely affects the growth, development, and productivity of underground vegetable crops. Salt stress induces several morphological, anatomical, physiological, and biochemical changes in crop plants which include reduction in plant height, leaf area, and biomass. Also, salinity stress impedes the growth of the underground organs, which ultimately reduces crop yield. Moreover, salt stress is detrimental to photosynthesis, membrane integrity, nutrient balance, and leaf water content. Salt tolerance mechanisms involve a complex interplay of several genes, transcription factors, and proteins that are involved in the salinity tolerance mechanism in underground crops. Besides, a coordinated interaction between several phytoprotectants, phytohormones, antioxidants, and microbes is needed. So far, a comprehensive review of salinity tolerance responses and mechanisms in underground vegetables is not available. This review aims to provide a comprehensive view of salt stress effects on underground vegetable crops at different levels of biological organization and discuss the underlying salt tolerance mechanisms. Also, the role of multi-omics in dissecting gene and protein regulatory networks involved in salt tolerance mechanisms is highlighted, which can potentially help in breeding salt-tolerant underground vegetable crops.
Collapse
Affiliation(s)
- Kumar Nishant Chourasia
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, West Bengal, India
| | | | - Ashok Kumar
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, Maharashtra, India
| | - Dharmendra Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Vinay Bhardwaj
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Awadhesh Kumar
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack, India
| | | | - Rajesh Kumar Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientifc and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Gaurav Zinta
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.
- Academy of Scientifc and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
- ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
- ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
7
|
Basu S, Kumari S, Kumar A, Shahid R, Kumar S, Kumar G. Nitro-oxidative stress induces the formation of roots' cortical aerenchyma in rice under osmotic stress. PHYSIOLOGIA PLANTARUM 2021; 172:963-975. [PMID: 33826753 DOI: 10.1111/ppl.13415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 03/11/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Drought stress induces the formation of cortical aerenchyma in roots, providing drought tolerance by reducing respiration. However, unrestricted aerenchyma formation impedes the radial transport of water through the root's central cylinder; thereby decreasing the water uptake under drought stress. Therefore, exploring the root architectural and anatomical alterations in rice under drought is essential for targeting crop improvement. Drought stress-induced accumulation of reactive oxygen species (ROS) plays a key role in the lysigenous aerenchyma development. However, the influence of nitric oxide (NO) and reactive nitrogen species (RNS) in the development of lysigenous aerenchyma under drought has never been studied in rice. The present study examined the effect of ROS and RNS, generated by progressive drought stress, on the lysigenous aerenchyma formation in the roots of contrasting rice genotypes of the Eastern Indo-Gangetic plains (EIGP). As expected, the PEG-induced drought stress stimulated the expression of NADPH oxidase (NOX), thereby promoting the ROS generation in roots of the rice seedlings. Excessive ROS and RNS accumulations in roots affected the membrane lipids, promoting the tissue-specific programmed cell death (PCD) in rice. The activation of the antioxidant defense system played a major role in the ROS and RNS detoxification, thereby restricting the root aerenchyma formation in rice under drought stress. The results also displayed that drought tolerance in rice is associated with the formation of the Casparian strip, which limits the apoplastic flow of water in the water-deficient roots. Overall, our study revealed the association of nitro-oxidative metabolism with PCD and lysigenous aerenchyma formation in the cortical cells of root under drought stress in rice.
Collapse
Affiliation(s)
- Sahana Basu
- Department of Biotechnology, Assam University, Silchar, Assam, India
| | - Surbhi Kumari
- Department of Life Science, Central University of South Bihar, Gaya, Bihar, India
| | - Alok Kumar
- Department of Life Science, Central University of South Bihar, Gaya, Bihar, India
| | - Rimsha Shahid
- Department of Life Science, Central University of South Bihar, Gaya, Bihar, India
| | - Santosh Kumar
- ICAR Research Complex for Eastern Region, Patna, Bihar, India
| | - Gautam Kumar
- Department of Life Science, Central University of South Bihar, Gaya, Bihar, India
| |
Collapse
|
8
|
Zhang S, Quartararo A, Betz OK, Madahhosseini S, Heringer AS, Le T, Shao Y, Caruso T, Ferguson L, Jernstedt J, Wilkop T, Drakakaki G. Root vacuolar sequestration and suberization are prominent responses of Pistacia spp. rootstocks during salinity stress. PLANT DIRECT 2021; 5:e00315. [PMID: 34027297 PMCID: PMC8133763 DOI: 10.1002/pld3.315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/15/2021] [Accepted: 02/27/2021] [Indexed: 05/11/2023]
Abstract
Understanding the mechanisms of stress tolerance in diverse species is needed to enhance crop performance under conditions such as high salinity. Plant roots, in particular in grafted agricultural crops, can function as a boundary against external stresses in order to maintain plant fitness. However, limited information exists for salinity stress responses of woody species and their rootstocks. Pistachio (Pistacia spp.) is a tree nut crop with relatively high salinity tolerance as well as high genetic heterogeneity. In this study, we used a microscopy-based approach to investigate the cellular and structural responses to salinity stress in the roots of two pistachio rootstocks, Pistacia integerrima (PGI) and a hybrid, P. atlantica x P. integerrima (UCB1). We analyzed root sections via fluorescence microscopy across a developmental gradient, defined by xylem development, for sodium localization and for cellular barrier differentiation via suberin deposition. Our cumulative data suggest that the salinity response in pistachio rootstock species is associated with both vacuolar sodium ion (Na+) sequestration in the root cortex and increased suberin deposition at apoplastic barriers. Furthermore, both vacuolar sequestration and suberin deposition correlate with the root developmental gradient. We observed a higher rate of Na+ vacuolar sequestration and reduced salt-induced leaf damage in UCB1 when compared to P. integerrima. In addition, UCB1 displayed higher basal levels of suberization, in both the exodermis and endodermis, compared to P. integerrima. This difference was enhanced after salinity stress. These cellular characteristics are phenotypes that can be taken into account during screening for sodium-mediated salinity tolerance in woody plant species.
Collapse
Affiliation(s)
- Shuxiao Zhang
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Alessandra Quartararo
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Department of Agricultural & Forest ScienceUniversity of PalermoViale delle ScienzePalermoItaly
| | - Oliver Karl Betz
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Shahab Madahhosseini
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Present address:
Genetic and Plant Production DepartmentVali‐e‐Asr University of RafsanjanRafsanjanIran
| | - Angelo Schuabb Heringer
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Present address:
Unidade de Biologia IntegrativaSetor de Genômica e ProteômicaUENFRio de JaneiroRJBrazil
| | - Thu Le
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Yuhang Shao
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Present address:
Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of AgricultureNanjing Agricultural UniversityNanjingJiangsu ProvinceP. R. China
| | - Tiziano Caruso
- Department of Agricultural & Forest ScienceUniversity of PalermoViale delle ScienzePalermoItaly
| | - Louise Ferguson
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Judy Jernstedt
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Thomas Wilkop
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Light Microscopy CoreDepartment of PhysiologyUniversity of KentuckyLexingtonKYUSA
| | - Georgia Drakakaki
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| |
Collapse
|
9
|
Basu S, Kumar A, Benazir I, Kumar G. Reassessing the role of ion homeostasis for improving salinity tolerance in crop plants. PHYSIOLOGIA PLANTARUM 2021; 171:502-519. [PMID: 32320060 DOI: 10.1111/ppl.13112] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/03/2020] [Accepted: 04/16/2020] [Indexed: 05/23/2023]
Abstract
Soil salinity is a constraint for major agricultural crops leading to severe yield loss, which may increase with the changing climatic conditions. Disruption in the cellular ionic homeostasis is one of the primary responses induced by elevated sodium ions (Na+ ). Therefore, unraveling the mechanism of Na+ uptake and transport in plants along with the characterization of the candidate genes facilitating ion homeostasis is obligatory for enhancing salinity tolerance in crops. This review summarizes the current advances in understanding the ion homeostasis mechanism in crop plants, emphasizing the role of transporters involved in the regulation of cytosolic Na+ level along with the conservation of K+ /Na+ ratio. Furthermore, expression profiles of the candidate genes for ion homeostasis were also explored under various developmental stages and tissues of Oryza sativa based on the publicly available microarray data. The review also gives an up-to-date summary on the efforts to increase salinity tolerance in crops by manipulating selected stress-associated genes. Overall, this review gives a combined view on both the ionomic and molecular background of salt stress tolerance in plants.
Collapse
Affiliation(s)
- Sahana Basu
- Department of Biotechnology, Assam University, Silchar, 788011, India
| | - Alok Kumar
- Department of Life Science, Central University of South Bihar, Gaya, 824236, India
| | - Ibtesham Benazir
- Department of Life Science, Central University of South Bihar, Gaya, 824236, India
| | - Gautam Kumar
- Department of Life Science, Central University of South Bihar, Gaya, 824236, India
| |
Collapse
|
10
|
Petrova A, Gorshkova T, Kozlova L. Gradients of cell wall nano-mechanical properties along and across elongating primary roots of maize. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1764-1781. [PMID: 33247728 DOI: 10.1093/jxb/eraa561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
To test the hypothesis that particular tissues can control root growth, we analysed the mechanical properties of cell walls belonging to different tissues of the apical part of the maize root using atomic force microscopy. The dynamics of properties during elongation growth were characterized in four consecutive zones of the root. Extensive immunochemical characterization and quantification were used to establish the polysaccharide motif(s) related to changes in cell wall mechanics. Cell transition from division to elongation was coupled to the decrease in the elastic modulus in all root tissues. Low values of moduli were retained in the elongation zone and increased in the late elongation zone. No relationship between the immunolabelling pattern and mechanical properties of the cell walls was revealed. When measured values of elastic moduli and turgor pressure were used in the computational simulation, this resulted in an elastic response of the modelled root and the distribution of stress and strain similar to those observed in vivo. In all analysed root zones, cell walls of the inner cortex displayed moduli of elasticity that were maximal or comparable with the maximal values among all tissues. Thus, we propose that the inner cortex serves as a growth-limiting tissue in maize roots.
Collapse
Affiliation(s)
- Anna Petrova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Tatyana Gorshkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Liudmila Kozlova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| |
Collapse
|
11
|
Liz Filartiga A, Mantuano D, Vieira RC, De Toni KLG, Vasques GM, Mantovani A. Root morphophysiology changes during the habitat transition from soil to canopy of the aroid vine Rhodospatha oblongata. ANNALS OF BOTANY 2021; 127:347-360. [PMID: 33038225 PMCID: PMC7872123 DOI: 10.1093/aob/mcaa182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/06/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIMS The aroid vine Rhodospatha oblongata is characterized by a habitat change from terrestrial to canopy, relying on aerial roots at maturity to obtain water and nutrients from the forest soil. We hypothesize that morphophysiological acclimation occurs in roots as they grow under atmospheric conditions. These changes would guarantee the whole-plant survival of aroid vines in the new and potentially stressful habitat of the canopy. METHODS Terrestrial and aerial roots were compared on a morphophysiological basis. Root anatomy, water balance, water absorption capacity via fluorescent tracer, and photochemical activity via chlorophyll fluorescence were measured. KEY RESULTS While thin fasciculate roots occur on terrestrial crawling individuals, two clearly distinct aerial roots (anchor and feeder) are produced on canopy individuals, which both adhere to the host trunk. The colour of both aerial roots changes during development from red and brownish to striped and green at maturity. Colour changes are induced by the replacement of epidermis, exodermis and outer cortex by an inner layer of lignified cork on the root region exposed to the atmosphere. In the root region that is in contact with the host, covering substitutions do not occur and both exodermis and lignified cork, along with several epidermal hairs, appear. Water retention capacity was higher in green roots than in other root types. Rehydration capacity via water absorption by hairs of aerial roots was confirmed by fluorescence. Chlorophyll fluorescence data indicated low levels of photosynthetic capacity in aerial roots. CONCLUSIONS Plants should evolve strategies to survive stress situations. The transition from soil to canopy imposes abiotic changes and potentially stressful situations on R. oblongata. We conclude that the morphophysiological changes observed represent an important strategy that permits the maintenance of aroid roots and the survival of R. oblongata in the canopy.
Collapse
Affiliation(s)
- Arinawa Liz Filartiga
- Universidade Federal do Rio de Janeiro, Museu Nacional, Rio de Janeiro, RJ, Brazil
- Department of Functional Ecology, Institute of Botany CAS, Trebon, Czech Republic
| | - Dulce Mantuano
- Laboratório de Ecofisiologia Vegetal, Universidade Federal do Rio de Janeiro, Sala A1-118, Bloco A, CCS, Cidade Universitária, 21941-590, Rio de Janeiro, RJ, Brazil
| | - Ricardo Cardoso Vieira
- Laboratório de Morfologia Vegetal, Universidade Federal do Rio de Janeiro, Sala A1-108, Bloco A, CCS, Cidade Universitária, 21941-590, Rio de Janeiro, RJ, Brazil
| | - Karen Lucia Gama De Toni
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão 915, Jardim Botânico, 22460-030, Rio de Janeiro, Brazil
| | - Gustavo M Vasques
- Embrapa Solos, Rua Jardim Botânico, 1024, Jardim Botânico, Rio de Janeiro, RJ, 22460-000, Brazil
| | - André Mantovani
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão 915, Jardim Botânico, 22460-030, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Karahara I, Horie T. Functions and structure of roots and their contributions to salinity tolerance in plants. BREEDING SCIENCE 2021; 71:89-108. [PMID: 33762879 PMCID: PMC7973495 DOI: 10.1270/jsbbs.20123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/15/2020] [Indexed: 05/03/2023]
Abstract
Soil salinity is an increasing threat to the productivity of glycophytic crops worldwide. The root plays vital roles under various stress conditions, including salinity, as well as has diverse functions in non-stress soil environments. In this review, we focus on the essential functions of roots such as in ion homeostasis mediated by several different membrane transporters and signaling molecules under salinity stress and describe recent advances in the impacts of quantitative trait loci (QTLs) or genetic loci (and their causal genes, if applicable) on salinity tolerance. Furthermore, we introduce important literature for the development of barriers against the apoplastic flow of ions, including Na+, as well as for understanding the functions and components of the barrier structure under salinity stress.
Collapse
Affiliation(s)
- Ichirou Karahara
- Department of Biology, Faculty of Science, University of Toyama, Toyama 930-8555, Japan
| | - Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
- Corresponding author (e-mail: )
| |
Collapse
|
13
|
Silva BRS, Batista BL, Lobato AKS. Anatomical changes in stem and root of soybean plants submitted to salt stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:57-65. [PMID: 32841475 DOI: 10.1111/plb.13176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The soybean is a legume that is widely cultivated in many countries due to the high levels of protein and oil contained in its seed, and is used for human and animal nutrition. However, salinity affects more than 800 million hectares worldwide, limiting global agricultural production. The aim of this research was to evaluate the structural behaviour of the roots and stems under progressive salt stress, detailing the possible anatomical modifications to these organs in soybean plants during this stress. The plants were randomized into five treatments (0, 50, 100, 150 and 200 mm NaCl). All the root regions studied and exposed to 100 mm Na+ exhibited increases in the epidermis and endodermis and formation of lysogenic aerenchyma with increasing salinity, revealing the protective roles of these structures in reducing Na+ influx. In the stem, increases in the cortex and pith in the first internode subject to 100 mm Na+ suggest anatomical responses that aim to minimize oxidative stress. Soybean plants subjected to progressive salt stress (>50 mm Na+ ) avoided cavitation and loss of function linked to vessel elements, reducing the metaxylem in all the root and stem regions analysed. Finally, our results confirm anatomical changes to the roots and stems.
Collapse
Affiliation(s)
- B R S Silva
- Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazônia. Paragominas, Pará, Brazil
| | - B L Batista
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil
| | - A K S Lobato
- Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazônia. Paragominas, Pará, Brazil
| |
Collapse
|
14
|
Ho WWH, Hill CB, Doblin MS, Shelden MC, van de Meene A, Rupasinghe T, Bacic A, Roessner U. Integrative Multi-omics Analyses of Barley Rootzones under Salinity Stress Reveal Two Distinctive Salt Tolerance Mechanisms. PLANT COMMUNICATIONS 2020; 1:100031. [PMID: 33367236 PMCID: PMC7748018 DOI: 10.1016/j.xplc.2020.100031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/02/2020] [Accepted: 02/06/2020] [Indexed: 05/02/2023]
Abstract
The mechanisms underlying rootzone-localized responses to salinity during early stages of barley development remain elusive. In this study, we performed the analyses of multi-root-omes (transcriptomes, metabolomes, and lipidomes) of a domesticated barley cultivar (Clipper) and a landrace (Sahara) that maintain and restrict seedling root growth under salt stress, respectively. Novel generalized linear models were designed to determine differentially expressed genes (DEGs) and abundant metabolites (DAMs) specific to salt treatments, genotypes, or rootzones (meristematic Z1, elongation Z2, and maturation Z3). Based on pathway over-representation of the DEGs and DAMs, phenylpropanoid biosynthesis is the most statistically enriched biological pathway among all salinity responses observed. Together with histological evidence, an intense salt-induced lignin impregnation was found only at stelic cell wall of Clipper Z2, compared with a unique elevation of suberin deposition across Sahara Z2. This suggests two differential salt-induced modulations of apoplastic flow between the genotypes. Based on the global correlation network of the DEGs and DAMs, callose deposition that potentially adjusted symplastic flow in roots was almost independent of salinity in rootzones of Clipper, and was markedly decreased in Sahara. Taken together, we propose two distinctive salt tolerance mechanisms in Clipper (growth-sustaining) and Sahara (salt-shielding), providing important clues for improving crop plasticity to cope with deteriorating global soil salinization.
Collapse
Affiliation(s)
- William Wing Ho Ho
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Camilla B. Hill
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Monika S. Doblin
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Megan C. Shelden
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Allison van de Meene
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Thusitha Rupasinghe
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Antony Bacic
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Metabolomics Australia, The University of Melbourne, Parkville, VIC 3010, Australia
- Corresponding author
| |
Collapse
|
15
|
Chen M, Yang Z, Liu J, Zhu T, Wei X, Fan H, Wang B. Adaptation Mechanism of Salt Excluders under Saline Conditions and Its Applications. Int J Mol Sci 2018; 19:E3668. [PMID: 30463331 PMCID: PMC6274768 DOI: 10.3390/ijms19113668] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 11/17/2022] Open
Abstract
Global soil salinization is increasingly a serious threat to agriculture worldwide. Therefore, it is imperative to improve crop salt tolerance as a means of adaptation to saline habitats. Some halophytes and most monocotyledonous crops are salt-excluders. Understanding the regulatory mechanisms of salt exclusion at the molecular level in salt-exclusion plants is critical for improving the salt tolerance of monocotyledonous crops such as maize, wheat, rice, and sorghum. In this review, we summarize recent research into salt-exclusion mechanisms and the genes that underlie them. Findings related to salt exclusion may accelerate the process of breeding tolerant cultivars by using genomic and molecular tools.
Collapse
Affiliation(s)
- Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, China.
| | - Zhen Yang
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, Shandong, China.
| | - Jing Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, China.
| | - Tingting Zhu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, China.
| | - Xiaocen Wei
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, China.
| | - Hai Fan
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, China.
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, China.
| |
Collapse
|
16
|
Byrt CS, Munns R, Burton RA, Gilliham M, Wege S. Root cell wall solutions for crop plants in saline soils. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 269:47-55. [PMID: 29606216 DOI: 10.1016/j.plantsci.2017.12.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/28/2017] [Accepted: 12/27/2017] [Indexed: 05/05/2023]
Abstract
The root growth of most crop plants is inhibited by soil salinity. Roots respond by modulating metabolism, gene expression and protein activity, which results in changes in cell wall composition, transport processes, cell size and shape, and root architecture. Here, we focus on the effects of salt stress on cell wall modifying enzymes, cellulose microfibril orientation and non-cellulosic polysaccharide deposition in root elongation zones, as important determinants of inhibition of root elongation, and highlight cell wall changes linked to tolerance to salt stressed and water limited roots. Salt stress induces changes in the wall composition of specific root cell types, including the increased deposition of lignin and suberin in endodermal and exodermal cells. These changes can benefit the plant by preventing water loss and altering ion transport pathways. We suggest that binding of Na+ ions to cell wall components might influence the passage of Na+ and that Na+ can influence the binding of other ions and hinder the function of pectin during cell growth. Naturally occurring differences in cell wall structure may provide new resources for breeding crops that are more salt tolerant.
Collapse
Affiliation(s)
- Caitlin S Byrt
- Plant Transport and Signalling Group, Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia. http://twitter.com/BotanicGeek
| | - Rana Munns
- ARC Centre of Excellence in Plant Energy Biology, and School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Rachel A Burton
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Matthew Gilliham
- Plant Transport and Signalling Group, Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Stefanie Wege
- Plant Transport and Signalling Group, Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
17
|
Man Y, Zhao Y, Ye R, Lin J, Jing Y. In vivo cytological and chemical analysis of Casparian strips using stimulated Raman scattering microscopy. JOURNAL OF PLANT PHYSIOLOGY 2018; 220:136-144. [PMID: 29175545 DOI: 10.1016/j.jplph.2017.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 05/26/2023]
Abstract
The Casparian strip, a barrier to the apoplastic movement of solutes from the cortex to the stele, is essential for the exclusion of salts, selective nutrient uptake, and many other processes. To date, extensive studies have focused on the physiological functions of endodermal Casparian strips. However, the chemical deposition nature of Casparian strips, as well as its relevance with respect to diffusion barrier functions, remains to be further elucidated. Here, we revealed three developmental stages of Casparian strips in maize primary roots using a traditional fluorescent staining method. Apoplastic permeability tests demonstrated that the barrier function of Casparian strips is largely related to their developmental stage and the pattern of lignin and suberin deposits. Fourier transform infrared (FTIR) analysis showed that the Casparian strips from the roots exhibited significant absorption bands characteristic of lignin and suberin, implying that the Casparian strips in maize primary roots consist largely of lignin and suberin. Furthermore, we developed a new method for label-free, in vivo structural, and biochemical analysis of Casparian strips based on stimulated Raman scattering (SRS) microscopy. Using SRS microscopy, we found that lignin and suberin accumulate simultaneously during the Casparian strip formation process. Based on these results, we propose a potential application of SRS for the chemical composition analysis of plant Casparian strips in situ.
Collapse
Affiliation(s)
- Yi Man
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yuanyuan Zhao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Rong Ye
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yanping Jing
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
18
|
Ben Hamed-Laouti I, Arbelet-Bonnin D, De Bont L, Biligui B, Gakière B, Abdelly C, Ben Hamed K, Bouteau F. Comparison of NaCl-induced programmed cell death in the obligate halophyte Cakile maritima and the glycophyte Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 247:49-59. [PMID: 27095399 DOI: 10.1016/j.plantsci.2016.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
Salinity represents one of the most important constraints that adversely affect plants growth and productivity. In this study, we aimed at determining possible differences between salt tolerant and salt sensitive species in early salt stress response. To this purpose, we subjected suspension-cultured cells from the halophyte Cakile maritima and the glycophyte Arabidopsis thaliana, two Brassicaceae, to salt stress and compared their behavior. In both species we could observe a time and dose dependent programmed cell death requiring an active metabolism, a dysfunction of mitochondria and caspase-like activation although C. maritima cells appeared less sensitive than A. thaliana cells. This capacity to mitigate salt stress could be due to a higher ascorbate pool that could allow C. maritima reducing the oxidative stress generated in response to NaCl. It further appeared that a higher number of C. maritima cultured cells when compared to A. thaliana could efficiently manage the Na(+) accumulation into the cytoplasm through non selective cation channels allowing also reducing the ROS generation and the subsequent cell death.
Collapse
Affiliation(s)
- Ibtissem Ben Hamed-Laouti
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France; Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, University of Carthage-Tunis, BP 901, 2050 Hammam Lif, Tunisia
| | - Delphine Arbelet-Bonnin
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
| | - Linda De Bont
- Institute of Plant Sciences-Paris-Saclay (UMR 9213) Bât. 630, 91405 Orsay, France
| | - Bernadette Biligui
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
| | - Bertrand Gakière
- Institute of Plant Sciences-Paris-Saclay (UMR 9213) Bât. 630, 91405 Orsay, France
| | - Chedly Abdelly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, University of Carthage-Tunis, BP 901, 2050 Hammam Lif, Tunisia
| | - Karim Ben Hamed
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, University of Carthage-Tunis, BP 901, 2050 Hammam Lif, Tunisia
| | - François Bouteau
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France.
| |
Collapse
|
19
|
Paudel I, Cohen S, Shaviv A, Bar-Tal A, Bernstein N, Heuer B, Ephrath J. Impact of treated wastewater on growth, respiration and hydraulic conductivity of citrus root systems in light and heavy soils. TREE PHYSIOLOGY 2016; 36:770-85. [PMID: 27022106 DOI: 10.1093/treephys/tpw013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/27/2016] [Indexed: 05/17/2023]
Abstract
Roots interact with soil properties and irrigation water quality leading to changes in root growth, structure and function. We studied these interactions in an orchard and in lysimeters with clay and sandy loam soils. Minirhizotron imaging and manual sampling showed that root growth was three times lower in the clay relative to sandy loam soil. Treated wastewater (TWW) led to a large reduction in root growth with clay (45-55%) but not with sandy loam soil (<20%). Treated wastewater increased salt uptake, membrane leakage and proline content, and decreased root viability, carbohydrate content and osmotic potentials in the fine roots, especially in clay. These results provide evidence that TWW challenges and damages the root system. The phenology and physiology of root orders were studied in lysimeters. Soil type influenced diameter, specific root area, tissue density and cortex area similarly in all root orders, while TWW influenced these only in clay soil. Respiration rates were similar in both soils, and root hydraulic conductivity was severely reduced in clay soil. Treated wastewater increased respiration rate and reduced hydraulic conductivity of all root orders in clay but only of the lower root orders in sandy loam soil. Loss of hydraulic conductivity increased with root order in clay and clay irrigated with TWW. Respiration and hydraulic properties of all root orders were significantly affected by sodium-amended TWW in sandy loam soil. These changes in root order morphology, anatomy, physiology and hydraulic properties indicate rapid and major modifications of root systems in response to differences in soil type and water quality.
Collapse
Affiliation(s)
- Indira Paudel
- Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, Bet Dagan 50250, Israel The Robert H. Smith Faculty of Food Agriculture and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Shabtai Cohen
- Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, Bet Dagan 50250, Israel
| | - Avi Shaviv
- Department of Environmental, Water and Agricultural Engineering, Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Asher Bar-Tal
- Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, Bet Dagan 50250, Israel
| | - Nirit Bernstein
- Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, Bet Dagan 50250, Israel
| | - Bruria Heuer
- Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, Bet Dagan 50250, Israel
| | - Jhonathan Ephrath
- Jacob Blaustein Institutes for Desert Research, French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Sde Boqer 849900, Israel
| |
Collapse
|
20
|
Jue D, Sang X, Lu S, Dong C, Zhao Q, Chen H, Jia L. Genome-Wide Identification, Phylogenetic and Expression Analyses of the Ubiquitin-Conjugating Enzyme Gene Family in Maize. PLoS One 2015; 10:e0143488. [PMID: 26606743 PMCID: PMC4659669 DOI: 10.1371/journal.pone.0143488] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/05/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Ubiquitination is a post-translation modification where ubiquitin is attached to a substrate. Ubiquitin-conjugating enzymes (E2s) play a major role in the ubiquitin transfer pathway, as well as a variety of functions in plant biological processes. To date, no genome-wide characterization of this gene family has been conducted in maize (Zea mays). METHODOLOGY/PRINCIPAL FINDINGS In the present study, a total of 75 putative ZmUBC genes have been identified and located in the maize genome. Phylogenetic analysis revealed that ZmUBC proteins could be divided into 15 subfamilies, which include 13 ubiquitin-conjugating enzymes (ZmE2s) and two independent ubiquitin-conjugating enzyme variant (UEV) groups. The predicted ZmUBC genes were distributed across 10 chromosomes at different densities. In addition, analysis of exon-intron junctions and sequence motifs in each candidate gene has revealed high levels of conservation within and between phylogenetic groups. Tissue expression analysis indicated that most ZmUBC genes were expressed in at least one of the tissues, indicating that these are involved in various physiological and developmental processes in maize. Moreover, expression profile analyses of ZmUBC genes under different stress treatments (4°C, 20% PEG6000, and 200 mM NaCl) and various expression patterns indicated that these may play crucial roles in the response of plants to stress. CONCLUSIONS Genome-wide identification, chromosome organization, gene structure, evolutionary and expression analyses of ZmUBC genes have facilitated in the characterization of this gene family, as well as determined its potential involvement in growth, development, and stress responses. This study provides valuable information for better understanding the classification and putative functions of the UBC-encoding genes of maize.
Collapse
Affiliation(s)
- Dengwei Jue
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Xuelian Sang
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Shengqiao Lu
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530227, China
| | - Chen Dong
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Qiufang Zhao
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Hongliang Chen
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Liqiang Jia
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| |
Collapse
|
21
|
Genome-wide identification and expression profiling analysis of ZmPIN, ZmPILS, ZmLAX and ZmABCB auxin transporter gene families in maize (Zea mays L.) under various abiotic stresses. PLoS One 2015; 10:e0118751. [PMID: 25742625 PMCID: PMC4351008 DOI: 10.1371/journal.pone.0118751] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/06/2015] [Indexed: 11/30/2022] Open
Abstract
The auxin influx carriers auxin resistant 1/like aux 1 (AUX/LAX), efflux carriers pin-formed (PIN) (together with PIN-like proteins) and efflux/conditional P-glycoprotein (ABCB) are major protein families involved in auxin polar transport. However, how they function in responses to exogenous auxin and abiotic stresses in maize is largely unknown. In this work, the latest updated maize (Zea mays L.) reference genome sequence was used to characterize and analyze the ZmLAX, ZmPIN, ZmPILS and ZmABCB family genes from maize. The results showed that five ZmLAXs, fifteen ZmPINs, nine ZmPILSs and thirty-five ZmABCBs were mapped on all ten maize chromosomes. Highly diversified gene structures, nonconservative transmembrane helices and tissue-specific expression patterns suggested the possibility of function diversification for these genes. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the expression patterns of ZmLAX, ZmPIN, ZmPILS and ZmABCB genes under exogenous auxin and different environmental stresses. The expression levels of most ZmPIN, ZmPILS, ZmLAX and ZmABCB genes were induced in shoots and were reduced in roots by various abiotic stresses (drought, salt and cold stresses). The opposite expression response patterns indicated the dynamic auxin transport between shoots and roots under abiotic stresses. Analysis of the expression patterns of ZmPIN, ZmPILS, ZmLAX and ZmABCB genes under drought, salt and cold treatment may help us to understand the possible roles of maize auxin transporter genes in responses and tolerance to environmental stresses.
Collapse
|