1
|
Coesel SN. More than a photoreceptor: aureochromes are intrinsic to the diatom light-regulated transcriptional network. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1786-1790. [PMID: 38534187 PMCID: PMC10967245 DOI: 10.1093/jxb/erae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
This article comments on:
Im SH, Lepetit B, Mosesso N, Shrestha S, Weiss L, Nymark M, Roellig R, Wilhelm C, Isono E, Kroth PG. 2024. Identification of promoter targets by Aureochrome 1a in the diatom Phaeodactylum tricornutum. Journal of Experimental Botany 75, 1834–1851.
Collapse
Affiliation(s)
- Sacha N Coesel
- School of Oceanography, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Yarlett N, Jarroll EL, Morada M, Lloyd D. Protists: Eukaryotic single-celled organisms and the functioning of their organelles. Adv Microb Physiol 2024; 84:243-307. [PMID: 38821633 DOI: 10.1016/bs.ampbs.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Organelles are membrane bound structures that compartmentalize biochemical and molecular functions. With improved molecular, biochemical and microscopy tools the diversity and function of protistan organelles has increased in recent years, providing a complex panoply of structure/function relationships. This is particularly noticeable with the description of hydrogenosomes, and the diverse array of structures that followed, having hybrid hydrogenosome/mitochondria attributes. These diverse organelles have lost the major, at one time, definitive components of the mitochondrion (tricarboxylic cycle enzymes and cytochromes), however they all contain the machinery for the assembly of Fe-S clusters, which is the single unifying feature they share. The plasticity of organelles, like the mitochondrion, is therefore evident from its ability to lose its identity as an aerobic energy generating powerhouse while retaining key ancestral functions common to both aerobes and anaerobes. It is interesting to note that the apicoplast, a non-photosynthetic plastid that is present in all apicomplexan protozoa, apart from Cryptosporidium and possibly the gregarines, is also the site of Fe-S cluster assembly proteins. It turns out that in Cryptosporidium proteins involved in Fe-S cluster biosynthesis are localized in the mitochondrial remnant organelle termed the mitosome. Hence, different organisms have solved the same problem of packaging a life-requiring set of reactions in different ways, using different ancestral organelles, discarding what is not needed and keeping what is essential. Don't judge an organelle by its cover, more by the things it does, and always be prepared for surprises.
Collapse
Affiliation(s)
- Nigel Yarlett
- Haskins Laboratories, Pace University, New York, NY, United States; The Department of Chemistry and Physical Sciences, Pace University, New York, NY, United States.
| | - Edward L Jarroll
- Department of Biological Sciences, CUNY-Lehman College, Bronx, NY, United States
| | - Mary Morada
- Haskins Laboratories, Pace University, New York, NY, United States
| | - David Lloyd
- Schools of Biosciences and Engineering, Cardiff University, Wales, United Kingdom
| |
Collapse
|
3
|
Diel transcriptional oscillations of light-sensitive regulatory elements in open-ocean eukaryotic plankton communities. Proc Natl Acad Sci U S A 2021; 118:2011038118. [PMID: 33547239 PMCID: PMC8017926 DOI: 10.1073/pnas.2011038118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Most organisms coordinate key biological events to coincide with the day/night cycle. These diel oscillations are entrained through the activity of light-sensitive photoreceptors that allow organisms to respond rapidly to changes in light exposure. In the ocean, the plankton community must additionally contend with dramatic changes in the quantity and quality of light over depth. Here, we show that the predominantly blue-light field in the open-ocean environment may have driven expansion of blue light-sensitive regulatory elements in open-ocean eukaryotic plankton derived from secondary and tertiary endosymbiosis. The diel transcription of genes encoding light-sensitive elements indicate that photosynthetic and heterotrophic marine protists respond to and anticipate fluctuating light conditions in the dynamic marine environment. The 24-h cycle of light and darkness governs daily rhythms of complex behaviors across all domains of life. Intracellular photoreceptors sense specific wavelengths of light that can reset the internal circadian clock and/or elicit distinct phenotypic responses. In the surface ocean, microbial communities additionally modulate nonrhythmic changes in light quality and quantity as they are mixed to different depths. Here, we show that eukaryotic plankton in the North Pacific Subtropical Gyre transcribe genes encoding light-sensitive proteins that may serve as light-activated transcription factors, elicit light-driven electrical/chemical cascades, or initiate secondary messenger-signaling cascades. Overall, the protistan community relies on blue light-sensitive photoreceptors of the cryptochrome/photolyase family, and proteins containing the Light-Oxygen-Voltage (LOV) domain. The greatest diversification occurred within Haptophyta and photosynthetic stramenopiles where the LOV domain was combined with different DNA-binding domains and secondary signal-transduction motifs. Flagellated protists utilize green-light sensory rhodopsins and blue-light helmchromes, potentially underlying phototactic/photophobic and other behaviors toward specific wavelengths of light. Photoreceptors such as phytochromes appear to play minor roles in the North Pacific Subtropical Gyre. Transcript abundance of environmental light-sensitive protein-encoding genes that display diel patterns are found to primarily peak at dawn. The exceptions are the LOV-domain transcription factors with peaks in transcript abundances at different times and putative phototaxis photoreceptors transcribed throughout the day. Together, these data illustrate the diversity of light-sensitive proteins that may allow disparate groups of protists to respond to light and potentially synchronize patterns of growth, division, and mortality within the dynamic ocean environment.
Collapse
|
4
|
Directly light-regulated binding of RGS-LOV photoreceptors to anionic membrane phospholipids. Proc Natl Acad Sci U S A 2018; 115:E7720-E7727. [PMID: 30065115 PMCID: PMC6099885 DOI: 10.1073/pnas.1802832115] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Light–oxygen–voltage (LOV) domain photoreceptors are found ubiquitously in nature and possess highly diverse signaling roles and mechanisms. Here, we show that a class of fungal LOV proteins dynamically associates with anionic plasma membrane phospholipids by a blue light-switched electrostatic interaction. This reversible association is rapidly triggered by blue light and ceases within seconds when illumination ceases. Within the native host, we predict that these proteins regulate G-protein signaling by the controlled recruitment of fused regulator of G-protein signaling (RGS) domains; in applied contexts, we anticipate that engineered chimeric versions of such proteins will be useful for rapid optogenetic membrane localization of fused proteins through direct interaction with the membrane itself, without requiring additional components to direct subcellular localization. We report natural light–oxygen–voltage (LOV) photoreceptors with a blue light-switched, high-affinity (KD ∼ 10−7 M), and direct electrostatic interaction with anionic phospholipids. Membrane localization of one such photoreceptor, BcLOV4 from Botrytis cinerea, is directly coupled to its flavin photocycle, and is mediated by a polybasic amphipathic helix in the linker region between the LOV sensor and its C-terminal domain of unknown function (DUF), as revealed through a combination of bioinformatics, computational protein modeling, structure–function studies, and optogenetic assays in yeast and mammalian cell line expression systems. In model systems, BcLOV4 rapidly translocates from the cytosol to plasma membrane (∼1 second). The reversible electrostatic interaction is nonselective among anionic phospholipids, exhibiting binding strengths dependent on the total anionic content of the membrane without preference for a specific headgroup. The in vitro and cellular responses were also observed with a BcLOV4 homolog and thus are likely to be general across the dikarya LOV class, whose members are associated with regulator of G-protein signaling (RGS) domains. Natural photoreceptors are not previously known to directly associate with membrane phospholipids in a light-dependent manner, and thus this work establishes both a photosensory signal transmission mode and a single-component optogenetic tool with rapid membrane localization kinetics that approaches the diffusion limit.
Collapse
|
5
|
Kinoshita N, Nagasato C, Motomura T. Phototaxis and chemotaxis of brown algal swarmers. JOURNAL OF PLANT RESEARCH 2017; 130:443-453. [PMID: 28271338 DOI: 10.1007/s10265-017-0914-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/08/2017] [Indexed: 06/06/2023]
Abstract
Brown algae exhibit three patterns of sexual reproduction: isogamy, anisogamy, and oogamy. Unicellular swarmers including gametes and zoospores bear two heterogenous flagella, an anterior flagellum with mastigonemes (fine tripartite hairs) and a posterior one. In seawater, these flagellates usually receive physico-chemical signals for finding partners and good habitats. It is well known that brown algal swarmers change their swimming direction depending on blue light (phototaxis), and male gametes do so, based on the sex pheromones from female gametes (chemotaxis). In recent years, the comparative analysis of chemotaxis in isogamy, anisogamy, and oogamy has been conducted. In this paper, we focused on the phototaxis and chemotaxis of brown algal gametes comparing the current knowledge with our recent studies.
Collapse
Affiliation(s)
- Nana Kinoshita
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, Hokkaido, 051-0013, Japan
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, Hokkaido, 051-0013, Japan.
| |
Collapse
|
6
|
Kinoshita N, Nagasato C, Motomura T. Chemotactic movement in sperm of the oogamous brown algae, Saccharina japonica and Fucus distichus. PROTOPLASMA 2017; 254:547-555. [PMID: 27108001 DOI: 10.1007/s00709-016-0974-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
In oogamous species of brown algae such as Saccharina japonica and Fucus distichus, the sperm possess an unusual long posterior flagellum, which oscillates actively and produces a propulsive force during swimming. In this study, we quantitatively analyzed the effect of chemotactic responses on sperm swimming and flagellar waveforms by high-speed video recordings. We found that the thigmotactic response to the chemo-attractant was not enhanced during chemotactic swimming and that the swimming velocity of sperm did not decrease. As concentration of the chemo-attractant decreased, the sperm performed drastic U-turn movements, which was caused by a rapid and large bend of the posterior flagellum. Unilateral bending of the posterior flagellum when sensing a decrease in the concentration of the chemo-attractant may be a common response in male gametes during fertilization of brown algae both oogamous and isogamous species.
Collapse
Affiliation(s)
- Nana Kinoshita
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Hokkaido, Japan
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Hokkaido, Japan
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Hokkaido, Japan.
| |
Collapse
|
7
|
Glantz ST, Carpenter EJ, Melkonian M, Gardner KH, Boyden ES, Wong GKS, Chow BY. Functional and topological diversity of LOV domain photoreceptors. Proc Natl Acad Sci U S A 2016; 113:E1442-51. [PMID: 26929367 PMCID: PMC4801262 DOI: 10.1073/pnas.1509428113] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Light-oxygen-voltage sensitive (LOV) flavoproteins are ubiquitous photoreceptors that mediate responses to environmental cues. Photosensory inputs are transduced into signaling outputs via structural rearrangements in sensor domains that consequently modulate the activity of an effector domain or multidomain clusters. Establishing the diversity in effector function and sensor-effector topology will inform what signaling mechanisms govern light-responsive behaviors across multiple kingdoms of life and how these signals are transduced. Here, we report the bioinformatics identification of over 6,700 candidate LOV domains (including over 4,000 previously unidentified sequences from plants and protists), and insights from their annotations for ontological function and structural arrangements. Motif analysis identified the sensors from ∼42 million ORFs, with strong statistical separation from other flavoproteins and non-LOV members of the structurally related Per-aryl hydrocarbon receptor nuclear translocator (ARNT)-Sim family. Conserved-domain analysis determined putative light-regulated function and multidomain topologies. We found that for certain effectors, sensor-effector linker length is discretized based on both phylogeny and the preservation of α-helical heptad repeats within an extended coiled-coil linker structure. This finding suggests that preserving sensor-effector orientation is a key determinant of linker length, in addition to ancestry, in LOV signaling structure-function. We found a surprisingly high prevalence of effectors with functions previously thought to be rare among LOV proteins, such as regulators of G protein signaling, and discovered several previously unidentified effectors, such as lipases. This work highlights the value of applying genomic and transcriptomic technologies to diverse organisms to capture the structural and functional variation in photosensory proteins that are vastly important in adaptation, photobiology, and optogenetics.
Collapse
Affiliation(s)
- Spencer T Glantz
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Eric J Carpenter
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | - Michael Melkonian
- Institute of Botany, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany
| | - Kevin H Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center, City College of New York, New York, NY 10031; Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031; Biochemistry, Chemistry and Biology Programs, Graduate Center, The City University of New York, New York, NY 10031
| | - Edward S Boyden
- The Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; McGovern Institute for Brain Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9; Department of Medicine, University of Alberta, Edmonton, AB, Canada T6G 2E1; BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Brian Y Chow
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104;
| |
Collapse
|